
7

Practical Defenses Against Pollution Attacks in Wireless
Network Coding

JING DONG, Purdue University
REZA CURTMOLA, New Jersey Institute of Technology
CRISTINA NITA-ROTARU, Purdue University

Recent studies have shown that network coding can provide significant benefits to network protocols, such
as increased throughput, reduced network congestion, higher reliability, and lower power consumption. The
core principle of network coding is that intermediate nodes actively mix input packets to produce output
packets. This mixing subjects network coding systems to a severe security threat, known as a pollution
attack, where attacker nodes inject corrupted packets into the network. Corrupted packets propagate in an
epidemic manner, depleting network resources and significantly decreasing throughput. Pollution attacks
are particularly dangerous in wireless networks, where attackers can easily inject packets or compromise
devices due to the increased network vulnerability.

In this article, we address pollution attacks against network coding systems in wireless mesh networks.
We demonstrate that previous solutions are impractical in wireless networks, incurring an unacceptable high
degradation of throughput. We propose a lightweight scheme, DART, that uses time-based authentication
in combination with random linear transformations to defend against pollution attacks. We further improve
system performance and propose EDART, which enhances DART with an optimistic forwarding scheme. We
also propose efficient attacker identification schemes for both DART and EDART that enable quick attacker
isolation and the selection of attacker-free paths, achieving additional performance improvement. A detailed
security analysis shows that the probability of a polluted packet passing our verification procedure is very
low (less than 0.002% in typical settings). Performance results using the well-known MORE protocol and
realistic link quality measurements from the Roofnet experimental testbed show that our schemes improve
system performance over 20 times compared with previous solutions.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design—Wireless communication; C.2.0 [Computer-Communication Networks]: General—Security
and protection (e.g., firewalls); K.6.5 [Management of Computing and Information Systems]: Security
and Protection

General Terms: Performance, Security

Additional Key Words and Phrases: Network coding, pollution attacks, network coding security, wireless
network security, security

ACM Reference Format:
Dong, J., Curtmola, R., and Nita-Rotaru, C. 2011. Practical defenses against pollution attacks in wireless
network coding. ACM Trans. Info. Syst. Sec. 14, 1, Article 7 (May 2011), 31 pages.
DOI = 10.1145/1952982.1952989 http://doi.acm.org/10.1145/1952982.1952989

This research is sponsored in part by the U.S. National Science Foundation CAREER grant 0545949-CNS.
Authors’ addresses: J. Dong, Knight Equity Markets, 575 Market Street, San Francisco, CA 94105; email:
jingdong@gmail.com; R. Curtmola, Department Computer Science, New Jersey Institute of Technology,
GITC4301, 218 Central Ave., Newark, NJ 07102; email: crix@njit.edu; C. Nita-Rotaru, Computer Science
Department, Purdue University, LWSN 2142J, 305 N. University St., West Lafayette, IN 47907; email:
crisn@cs.purdue.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1094-9224/2011/05-ART7 $10.00

DOI 10.1145/1952982.1952989 http://doi.acm.org/10.1145/1952982.1952989

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:2 J. Dong et al.

1. INTRODUCTION

Network coding [Ahlswede et al. 2000] introduces a new paradigm for network pro-
tocols. Recent research has demonstrated the advantages of network coding through
practical systems such as COPE [Katti et al. 2005] and MORE [Chachulski et al. 2007]
for wireless unicast and multicast, Avalanche [Gkantsidis and Rodriguez 2005] for P2P
content distribution, and protocols for P2P storage [Dimakis et al. 2007] and for net-
work monitoring and management [Fragouli and Markopoulou 2005, 2006; Ho et al.
2005]. Network coding has been shown to increase throughput [Effros et al. 2006; Jin
et al. 2006; Dana et al. 2006], reduce network congestion [Deb and Medard 2006],
increase reliability [Widmer and Boudec 2005; Lun et al. 2005a], and reduce power
consumption [Chou and Kung 2005; Lun et al. 2005b; Widmer et al. 2005; Jain 2005],
in unicast [Ho 2006; Traskov et al. 2006; Chachulski et al. 2007; Katti et al. 2006;
Radunovic et al. 2007], multicast [Park et al. 2006; Chachulski et al. 2007], and more
general network configurations [Médard et al. 2003; Hou et al. 2008; Li et al. 2007;
Fragouli et al. 2006].

Unlike traditional routing, where intermediate nodes just forward input packets, in
network coding, intermediate nodes actively mix (or code) input packets and forward
the resulting coded packets. Original unencoded packets are usually referred to as
native packets and packets formed from the mixing process are referred to as coded
packets. The active mixing performed by intermediate nodes increases packet diversity
in the network, resulting in fewer redundant transmissions and better use of network
resources. However, the very nature of packet mixing also subjects network coding
systems to a severe security threat known as a pollution attack, in which attackers
inject corrupted packets into the network. Since intermediate nodes forward packets
coded from their received packets, as long as at least one of the input packets is
corrupted, all output packets forwarded by a node will be corrupted. This will further
affect other nodes and result in an epidemic propagation of corrupted packets in the
network.

Wireless mesh networks are a promising technology for providing economical
community-wide wireless access. Typically, a wireless mesh network consists of a set of
stationary wireless routers that communicate via multihop wireless links. The broad-
cast nature of the wireless medium and the need for high throughput protocols make
wireless mesh networks a prime environment for protocols based on network coding. As
a result, many such systems have been developed [Chachulski et al. 2007; Radunovic
et al. 2007; Katti et al. 2005]. However, as recently shown in Dong et al. [2008], the
wireless environment makes the threat of pollution attacks particularly severe, since
in wireless networks packets can be easily injected and bogus nodes can be easily de-
ployed. Even when authentication mechanisms are used, such networks are vulnerable
to insider attacks because wireless devices can be compromised and controlled by an
adversary due to their increased susceptibility to theft and software vulnerabilities.

There are two general approaches for applying network coding to wireless mesh
networks, intraflow network coding and interflow network coding. Both approaches
exploit the broadcast advantage and opportunistic listening in wireless networks to
reduce transmissions and improve performance. However, these benefits are realized
differently: intraflow network coding systems mix packets within a single flow, while
interflow network coding systems mix packets across multiple flows.

In this article, we focus on defense mechanisms against pollution attacks in intraflow
network coding systems for wireless mesh networks. In existing intraflow coding sys-
tems [Chachulski et al. 2007; Park et al. 2006; Fragouli et al. 2006], intermediate nodes
do not decode received packets, but use them to generate new coded packets. To prevent
pollution attacks, intermediate nodes need to verify that each received coded packet is
a valid combination of native packets from the source. As a result, traditional digital

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:3

signature schemes cannot be used to defend against pollution attacks, because the
brute force approach in which the sourcegenerates and disseminates signatures of all
possible combinations of native packets has a prohibitive computation and communi-
cation cost, and thus it is not feasible.

Several solutions to pollution attacks in intraflow coding systems use special-crafted
digital signatures [Charles et al. 2006; Yu et al. 2008; Zhao et al. 2007; Li et al. 2006]
or hash functions [Krohn et al. 2004; Gkantsidis and Rodriguez 2006], which allow in-
termediate nodes to verify the integrity of combined packets using their homomorphic
properties. While these are elegant approaches from a theoretical perspective, they are
highly inefficient when applied in practice in wireless networks, even under benign
conditions when no attacks take place. Noncryptographic solutions have also been pro-
posed [Ho et al. 2004; Jaggi et al. 2007; Wang et al. 2007]. These solutions either provide
only a partial solution by detecting the attacks without any response mechanism [Ho
et al. 2004], or add data redundancy at the source, resulting in throughput degradation
proportional to the bandwidth available to the attacker [Jaggi et al. 2007; Wang et al.
2007].

We propose two practical schemes to address pollution attacks against intraflow net-
work coding in wireless mesh networks. Unlike previous work, our schemes do not
require complex cryptographic functions and incur little overhead on the system, yet
can effectively contain the impact of pollution attacks. To the best of our knowledge,
this is the first article to propose practical defenses against pollution attacks in wire-
less networks and to demonstrate their effectiveness in a practical system. Our main
contributions are as follows.

—We demonstrate through both analysis and experiments that previous defenses
against pollution attacks are impractical in wireless networks. In particular, we show
that, under a practical setting, previous cryptographic-based solutions [Charles et al.
2006; Yu et al. 2008; Zhao et al. 2007; Li et al. 2006; Krohn et al. 2004] are able to
achieve only less than 10% of the throughput that is typically available.

—We design DART (Delayed Authentication with Random Transformations), a practi-
cal new defense scheme against pollution attacks. In DART, the source periodically
disseminates random linear checksums for packets that are currently being for-
warded in the network. Other nodes verify received coded packets by checking the
correctness of their checksums via efficient random linear transformations. The se-
curity of DART relies on time asymmetry, that is, a checksum is used to verify only
those packets that are received before the checksum itself was created. This prevents
an attacker that knows a checksum to subsequently generate corrupted packets that
will pass our verification scheme, as the packets will be verified against another
checksum that has not yet been created. DART uses pipelining to efficiently deliver
multiple generations concurrently. Our analysis of the security of DART shows that,
under typical system settings, DART allows only one out of 65536 polluted packets
to pass a first hop neighbor of the attacker, and one out of over 4 billion polluted
packets to pass a second hop neighbor.

—We show how DART can be enhanced to perform optimistic forwarding of unveri-
fied packets in a controlled manner. The new scheme, EDART, improves network
throughput and reduces delivery latency, while containing the scope of pollution
attacks to a limited network region. Our analysis of EDART shows precise upper
bounds on the impact of pollution attacks under the optimistic forwarding scheme.

—We further enhance both DART and EDART with an efficient attacker identification
scheme, which isolates the attacker nodes quickly. The attacker identification scheme
for EDART leverages the independence of symbols in the coding process and a novel
cross-examination technique to efficiently identify attackers.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:4 J. Dong et al.

—We validate the performance and the overhead of our schemes with extensive sim-
ulations using a well-known network coding system for wireless networks (MORE
[Chachulski et al. 2007]) and realistic link quality measurements from the Roofnet1

experimental testbed, developed at MIT. The results show that pollution attacks
severely impact the network throughput; even a single attacker can reduce the
throughput of most flows to zero. Our schemes effectively contain pollution attacks,
achieving throughputs similar to a hypothetical ideal defense scheme. Our schemes
incur a bandwidth overhead of less than 2% of the system throughput and require
approximately five digital signatures per second at the source. The attacker identi-
fication schemes can identify attackers within around one second of the attack, and
incur only a small bandwidth overhead on the network.

Roadmap: Section 2 overviews related work. Section 3 presents our system and
adversarial model, while Section 4 motivates the need for a new practical defense
against pollution attacks. Sections 5 and 6 present our two schemes, DART and EDART.
Section 7 proposes the attacker identification schemes for both DART and EDART.
Section 8 demonstrates the impact of the attacks and the effectiveness of our defense
mechanisms through simulations. Finally, Section 9 concludes the article.

2. RELATED WORK

2.1. Cryptographic Approaches

In cryptographic approaches, the source uses cryptographic techniques to create and
send additional verification information that allows nodes to verify the validity of coded
packets. Polluted packets can then be filtered out by intermediate nodes. The proposed
schemes rely on techniques such as homomorphic hash functions or homomorphic dig-
ital signatures. These schemes have high computational overhead, as each verification
requires a large number of modular exponentiations. In addition, they require the
verification information (e.g., hashes or signatures) to be transmitted separately and
reliably to all nodes in advance; this is difficult to achieve efficiently in wireless net-
works. An exception to the paradigm of homomorphic hash or signatures is a recently
proposed scheme [Agrawal and Boneh 2009] based on efficient homomorphic MACs.
However, the scheme requires a key predistribution from a centralized trusted entity
and its security decreases as the number of compromised nodes increases. In the fol-
lowing, we only consider homomorphic hash- or signature-based schemes which ensure
security irrespective of the number of compromised nodes.

In hash-based schemes [Krohn et al. 2004; Gkantsidis and Rodriguez 2006], the
source uses a homomorphic hash function to compute a hash of each native data
packet and sends these hashes to intermediate nodes via an authenticated channel.
The homomorphic property of the hash function allows nodes to compute the hash
of a coded packet out of the hashes of native packets. The requirement for reliable
communication is a strong assumption that limits the applicability of such schemes
in wireless networks that have high error rates. The scheme proposed in Krohn et al.
[2004] also has a high computational overhead. To overcome this limitation, Gkantsidis
and Rodriguez [2006] proposed probabilistic batch verification in conjunction with a
cooperative detection mechanism. This scheme was proposed for and works reasonably
well in P2P networks. However, it relies on fast and reliable dissemination of pollution
alert messages. The scheme also relies on mask-based checksums that need to be sent
individually to every node via different secret and reliable channels prior to the data
transfer. Both of these are difficult to achieve in wireless networks, in which links
have higher latency and error rate than in wired networks. The “null keys” work

1http://pdos.csail.mit.edu/roofnet/doku.php.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:5

[Kehdi and Li 2009] proposes to thwart pollution attacks by checking if coded packets
belong to the subspace spanned by the native packets. This work targets network coding
in P2P networks and assumes noncolluding attackers and topological properties such
as path diversity. Both assumptions are unrealistic in wireless mesh networks.

Schemes based on digital signatures [Charles et al. 2006; Yu et al. 2008; Zhao et al.
2007; Li et al. 2006] require reliable distribution of a new public key for every new file
that is sent and the size of the public key is linear in the file size (the only exception
is a recent scheme [Boneh et al. 2009] which achieves a constant-size public key, but
uses expensive bilinear maps). The source uses specialized homomorphic signatures
to send signatures that allow intermediate nodes to filter out polluted packets. These
schemes have a high computational cost. To verify each packet, the schemes in Charles
et al. [2006] and Boneh et al. [2009] rely on expensive bilinear maps, while those in Yu
et al. [2008], Zhao et al. [2007] and Li et al. [2006] require a large number of modular
exponentiations. Although the schemes proposed in Yu et al. [2008], Zhao et al. [2007],
and Li et al. [2006] allow batch verification, in which several packets are verified at
once to amortize the cost of verification, they have inherent limitations because they
cannot achieve a suitable balance between computational overhead, network overhead,
and packet delay. Ultimately, they result in low overall performance. In Section 4, we
argue in detail that cryptographic approaches have high overhead even under benign
conditions, making them impractical for use in a wireless network.

2.2. Information Theoretic Approaches

One information-theoretic approach [Ho et al. 2004] relies on coding redundant infor-
mation into packets, allowing receivers to efficiently detect the presence of polluted
packets. The scheme provides only a partial solution, as it does not specify any mecha-
nisms to recover from pollution attacks. Another approach [Jaggi et al. 2007] provides
a distributed protocol to allow the receiver to recover native packets in the presence of
pollution attacks. However, given that polluted packets are not filtered out, the through-
put that can be achieved by the protocol is upper-bounded by the information-theoretic
optimal rate of C − zO, where C is the network capacity from the source to the receiver
and zO is the network capacity from the adversary to the receiver. Thus, if the attacker
has a large bandwidth to the receiver, the useful throughput can rapidly degrade to
zero. Unfortunately, there are many scenarios in wireless networks where the attacker
has a large bandwidth to the receivers (e.g., the attacker is located one hop away
from the receiver, or multiple attackers are present), making the scheme not practical
in wireless networks. In addition, due to the constrained bandwidth of the medium,
there is a long-term benefit in detecting the presence of the attacker and not allowing
polluted packets to propagate in the network. Wang et al. [2007] proposed to reduce the
capacity of the attacker by only allowing nodes to broadcast at most once in the net-
work. This model requires trusted nodes and differs vastly from practical systems for
wireless networks, where each intermediate node in general forwards multiple coded
packets.

3. SYSTEM AND ADVERSARIAL MODEL

3.1. System Model

We consider a general intraflow network coding system where the network consists
of a source s, multiple receivers r1, r2, . . . , rk, and other nodes, a subset of which are
forwarders for packets. Receiver nodes may also act as forwarders. The source has a
sequence of N packets which is divided into subsequences called generations. Each
generation consists of n packets and is disseminated independently to the receivers

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:6 J. Dong et al.

using network coding. We consider a setting in which network coding is performed at
the routing layer (or higher).

As required by network coding, each packet is divided into m codewords, each of
which is regarded as an element in a finite field Fq, where q is a positive power of a
prime number. Each packet �pi can be viewed as an element in an m-dimensional vector
space over the field Fq, that is, as a column vector with m symbols:

�pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

A generation G consisting of n packets can be viewed as a matrix:

G = [�p1, �p2, . . . , �pn],

with each packet in the generation as a column in the matrix.
The source forms random linear combinations of uncoded packets �e = ∑n

i=1 ci �pi,
where ci is a random element in Fq and all algebraic operations are in Fq. The source
then forwards packets consisting of (�c, �e) in the network, where �c = (c1, c2, . . . , cn). As
in Chachulski et al. [2007], we refer to uncoded packets as native packets, to (�c, �e) as
coded packets, to �c as the coded vector, and to �e as the coded data. A forwarder node also
forms new coded packets by computing linear combinations of the coded packets it has
received and forwards them in the network. When a receiver has obtained n linearly
independent coded packets, it can decode them to recover the native packets by solving
a system of n linear equations. For consistency, all vectors used throughout the article
are column vectors.

This model is the general network coding framework proposed in Chou and Wu [2007]
and fits all existing intraflow network coding systems known to us, including those in
Chachulski et al. [2007], Park et al. [2006], Lin et al. [2008], Radunovic et al. [2007],
and Cui et al. [2008]. We do not restrict the specific algorithm for selecting the subset
of forwarder nodes, nor the packet coding and the forwarding scheme.

On the need of generations in network coding. To measure the communication over-
head incurred by network coding, we use as a metric the relative network overhead
ρ = n

m (the ratio between the size of the code vector, which is overhead, and the size of
the coded data, which is the useful data). The smaller the value of ρ, the less commu-
nication overhead incurred by network coding.

Given a fixed native packet size (e.g., 1500B) and the size of field Fq, the value for m
is fixed. Therefore, to ensure a small overhead ρ, the source has to encode the native
packets in small chunks, that is, generations, to ensure a small value for n. Otherwise,
if the source applies network coding on the entire sequence of N packets (i.e., treats the
entire sequence as a single generation), then ρ = N

m . Clearly, for large files (i.e., large
N), this would result in large network overhead that would render network coding
impractical. Instead, all practical systems designed for wireless networks [Chachulski
et al. 2007; Radunovic et al. 2007; Park et al. 2006] use network coding within genera-
tions of n packets (e.g., n = 32). In general, when choosing the parameters for network
coding, one needs to ensure n � m in order to ensure a small communication overhead
ρ.

The source advances through generations of packets based on a feedback mechanism
which informs the source that all packets from a generation were received and decoded
by receivers. We refer to a generation that is in transit from the source to the destination
as an active generation. Depending on specific systems, multiple generations can be
active at the same time.

3.2. Security and Adversarial Model

We assume the source is trusted. However, both the forwarders and receivers can be
adversarial. They can either be bogus nodes introduced by the attacker or legitimate but

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:7

compromised nodes. Adversarial nodes launch the pollution attack either by injecting
bogus packets or by modifying their output packets to contain incorrect data. We say a
packet (�c, �e) is a polluted packet if the following equality does not hold: �e = ∑n

i=1 ci �pi.
As in the well-known TESLA protocol [Perrig et al. 2002a], we assume that clocks

in the network are loosely synchronized and that each node knows the upper bound
on the clock skew between itself and the source, denoted as �. Several mechanisms to
securely achieve such loose clock synchronization have beed provided in Perrig et al.
[2002a, 2002b]. Other techniques [Sun et al. 2006a] reduce the synchronization error
to the order of microseconds.

We also assume the existence of an end-to-end message authentication scheme, such
as a digital signature or a message authentication code, that allows each receiver to
efficiently verify the integrity of native packets after decoding.

We focus only on pollution attacks, which are a generic threat to all network coding
systems. We do not consider attacks on the physical or MAC layers. We also do not
consider packet dropping attacks, nor attacks that exploit design features of specific
network coding systems, such as the selection of forwarder nodes. Defending against
such attacks is complementary to our work.

4. LIMITATIONS OF PREVIOUS WORK

Approaches based on information theory have severe limitations in wireless networks,
as they assume limited bandwidth between the attacker and the receiver. However,
in wireless networks, an attacker can easily have a large bandwidth to the receiver,
for example, by injecting many corrupted packets, staying near the receiver node, or
having multiple attacker nodes.

Cryptographic approaches propose to filter out polluted packets at the intermediate
nodes by using homomorphic digital signatures [Charles et al. 2006; Li et al. 2006; Zhao
et al. 2007; Yu et al. 2008] and homomorphic hashes [Krohn et al. 2004; Gkantsidis and
Rodriguez 2006]. Below we argue that the high computational cost of these schemes
makes them impractical for wireless systems.

In the existing cryptographic-based schemes [Charles et al. 2006; Li et al. 2006; Zhao
et al. 2007; Yu et al. 2008; Krohn et al. 2004; Gkantsidis and Rodriguez 2006], verifying
the validity of a coded packet requires m+ n modular exponentiations (typically using
a 1024-bit modulus), where m is the number of symbols in a packet and n is the
number of packets in a generation. Most schemes can reduce this cost to γ = 1 + m

n
exponentiations per packet by using batch verification, which enables nodes to verify
a set of coded packets from the same generation at once. Note that batch verification
cannot be performed across generations, since each generation requires a different set
of parameters (e.g., different public keys).

We argue that, even when batch verification is used, the computational cost is still too
high for practical network coding systems. More precisely, since the relative network
overhead due to network coding is ρ = n

m and the computational overhead to verify a
packet is γ = 1 + m

n , minimizing the computational cost and minimizing the relative
network overhead are two conflicting goals; reducing one of them results in increasing
the other. We now compute the maximum throughput τ achievable in such systems. We
assume that the packet size is 1500 B and that each node in the system is equipped with
a 3.4-Ghz Pentium IV processor, which performs around 250 modular exponentiations
per second (according to OpenSSL 0.9.8e). Therefore, the destination can verify 250

γ

packets per second and the throughput is τ = (1−ρ) 250
γ

×1500 bytes/s, or equivalently,

τ =
(
1 − n

m

) 250 × 1500
1 + m

n

,

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:8 J. Dong et al.

which achieves the maximum value of 502 kb/s when n
m = 0.41. Therefore, even if

the source and destination are direct neighbors and there is no attack, the maximum
throughput achievable is 502 kb/s, regardless of the actual link bandwidth, which
can be much larger, for example, 11 Mb/s. In practice, the source and destination are
usually more than one hop away, in which case the achievable throughput is much
lower. Our experiments (see Section 8.3) show that, under typical network settings,
the achievable throughput is around 50 kb/s, which is only 4% of the throughput of the
system without using the defense mechanism; this is a 96% throughput degradation
even when no attacks take place.

Besides having a high computational cost, previously proposed cryptographic
schemes require the source to disseminate new parameters for each generation (e.g.,
a new public key per generation) with a size linear to the size of the generation. This
further increases the overhead and reduces the throughput.

Previously proposed cryptographic schemes also have requirements that conflict with
the parameters for practical network coding in wireless systems. A critical factor for
the security of cryptographic schemes is the size of the field Fq, which has to be large,
for example, 20 or 32 bytes [Charles et al. 2006; Li et al. 2006; Zhao et al. 2007; Yu
et al. 2008]. However, in all the practical network coding systems in wireless networks
[Chachulski et al. 2007; Park et al. 2006; Radunovic et al. 2007], the symbol size used
is much smaller, usually 1 byte. This is because arithmetic operations over a field are
used extensively and a small symbol size ensures that these operations are inexpensive.
Furthermore, small symbols result in a large mvalue, which in turn reduces the relative
network overhead.

5. THE DART SCHEME

Our first scheme, DART, uses checksums based on efficiently computable random linear
transformations to allow each node to verify the validity of coded packets. The security
of the scheme relies on time asymmetry, that is, a node verifies a coded packet only
against a checksum that is generated after the coded packet itself was received. Each
node uses only valid coded packets to form new coded packets for forwarding. Invalid
packets are dropped after one hop, thus eliminating packet pollution. Our scheme can
be applied on top of any network coding scheme that uses generations and has one or
more active generations at a time. The time asymmetry of checksum verification in
DART is close in spirit with TESLA [Perrig et al. 2002a], in which the sender delays
disclosure of the key used to authenticate a packet.

We present our solution incrementally. First, we describe our scheme, focusing on
one active generation. We present in detail the checksum generation and verification,
showing how batch verification is performed for one generation. We then show how
multiple generations can be pipelined in a network coding system to increase perfor-
mance. Finally, we demonstrate the effectiveness of our scheme in filtering out polluted
packets by analyzing the probability that an attacker bypasses our verification scheme.

5.1. Scheme Description

Let G be an active generation. The source periodically computes and disseminates
a random checksum packet (CHKs(G), s, t) for the generation G, where CHKs(G) is a
random checksum for the packets in generation G, s is the random seed used to create
the checksum, and t is the timestamp at the source when the checksum is created. The
source ensures the authenticity of the checksum packet itself by digitally signing it.

Each forwarder node maintains two packet buffers, verified set and unverified set,
that buffer the verified and unverified packets, respectively. Each forwarder combines
only packets in the verified set to code new packets and forwards such packets as

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:9

specified by the network coding system. On receiving a new coded packet, a node
buffers the packet into unverified set and records the corresponding receiving time.

Upon receiving a checksum packet (CHKs(G), s, t), a forwarder node first verifies that
it is not a duplicate and that it was sent by the source by checking its digital signature.
If the checksum is authentic, the node rebroadcasts it to its neighbors. It then uses the
checksum to verify the packets in unverified set that were received by that node before
the checksum was created at the source (i.e., packets whose receive time is smaller than
the time t − �, where � is the maximum time skew in the network). Valid packets are
transferred from unverified set to verified set. Packets that do not pass the verification
are discarded.

Checksum packets are not required to be delivered reliably: if a node fails to receive
a checksum, it can verify its buffered packets upon the receipt of the next checksum.
To reduce the overhead, we restrict the checksum to be flooded only among forwarder
nodes.

When a receiver node receives enough linearly independent coded packets that have
passed the checksum verification, it decodes the packets to recover the native packets.
It verifies the native packets using an end-to-end authentication scheme such as digital
signature or message authentication code before passing the packets to the upper layer
protocol. The additional end-to-end authentication is to address the extremely rare
occasion when some polluted packets pass the checksum verification at the receiver,
which would otherwise cause incorrect packets to be delivered to the upper layer.

The key points of our approach are that checksums are very efficient to create and
verify, as they are based on cheap algebraic operations, and that each node uses a
checksum to verify only those packets that were received before the checksum itself
was created. Therefore, although after obtaining a checksum an attacker can generate
corrupted packets that match the known checksum, it cannot convince other nodes to
accept them, as these packets will not be verified with the checksum known to the
attacker, but with another random checksum generated by the source at a time after
the attacker-injected packets are received.

Since coded packets are delayed at each hop for checksum verification, the number
of checksums needed for a generation is at least as many as the number of hops
from the source to the receiver. As checksums are released at fixed time intervals,
the requirement of multiple checksums for a generation can result in a large delivery
time for a generation, hence reducing throughput. The packet delivery time could be
reduced by releasing checksums more often; however, this would increase the network
overhead. We solve this dilemma by using pipelining across generations such that
multiple generations are being transmitted concurrently. We describe pipelining in
Section 5.3.

5.2. Checksum Computation and Verification

We now describe in detail how checksums are generated and how individual coded
packets are verified. We then show how to amortize the verification cost by verifying a
set of packets at once (i.e., batch verification).

As mentioned in the system model (Section 3.1), we denote the generation size used
for network coding as n. Let �p1, �p2, . . . , �pn be the packets to be transmitted in the
current generation. We view each packet as an element in an m-dimensional vector
space over a field Fq, i.e., as a column vector with m symbols:

�pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

We use a m× n matrix G to denote all packets in the generation:

G = [�p1, �p2, . . . , �pn].

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:10 J. Dong et al.

Let f : {0, 1}κ × {0, 1}log2(b)+log2(m) → Fq be a pseudorandom function, where κ and b are
security parameters (κ is the size of the key for f , whereas b controls the size of the
checksum). We write fs(x) to denote f keyed with key s applied on input x.

Our checksum generation and verification are based on a random linear transforma-
tion applied on the packets in a generation.

Checksum creation. The source generates a random b×mmatrix Hs = [ui, j] using the
pseudorandom function f and a random κ-bit seed s, where ui, j = fs(i|| j). We define
the checksum CHKs(G) based on seed s for generation G as

CHKs(G) = HsG.

Hence, CHKs(G) is obtained by applying a random linear transformation Hs on the
packets in G. Since Hs is a b×mmatrix and G is a m×n matrix, the checksum CHKs(G)
is a b × n matrix. The source includes (CHKs(G), s, t) in the checksum packet, where t
is the timestamp at the source when the checksum is created, and then disseminates
it in an authenticated manner.

Packet verification. Given an authentic checksum (CHKs(G), s, t) for generation G, a
node uses it to verify coded packets that are received before time t − �, where � is
the maximum time skew in the network. Given such a packet (�c, �e), a node checks its
validity by checking if the following equation holds:

CHKs(G)�c = Hs�e, (1)

where Hs is the random b × m matrix generated from seed s as described above.
If Equation (1) holds, then the coded packet is deemed valid; otherwise, it is deemed

invalid. To see the correctness of this check, consider a valid packet (�c, �e), where �e =∑n
i=1 ci �pi = G�c and the checksum (CHKs(G), s, t), where CHKs(G) = HsG. Then

CHKs(G)�c = (HsG)�c = Hs(G�c) = Hs�e.
Batch verification. The above individual verification can be extended to efficiently

verify a set of coded packets at once. Let

E = {(�c1, �e1), . . . , (�cl, �el)}
be a set of l coded packets from a generation G where all packets are received before
time t − �. To verify E against a checksum (CHKs(G), s, t), a node computes a random
linear combination of the packets,

(�c, �e) = (
∑l

i=1 ui �ci,
∑l

i=1 ui �ei
)
, where the coefficients

u1, u2, . . . , ul are selected uniformly at random from Fq. The node then verifies the com-
bined packet (�c, �e) using the individual verification described above. A node can further
reduce the false negative probability of the verification by repeating the procedure with
different random coefficients.

If E passes the verification, then all l coded packets are regarded as valid. Other-
wise, the invalid packets in the set are identified efficiently using a binary search-like
technique.

Checksum overhead. The size of a checksum (CHKs(G), s, t) is dominated by the size
of CHKs(G), which is a b×n matrix of elements in Fq. Thus its size is bn log2 q bits. Com-
pared to the total data size in a generation, the overhead is (bn log2 q)/n(n+ m) log2 q =
b/(n+ m). In a typical setting, b = 2, n = 32, m = 1500, the overhead is less than 0.1%.
The computational overhead for checksum computation and verification is also com-
parable to generating a single coded packet in network coding, and is experimentally
evaluated in Section 8.4.

5.3. Pipelining Across Generations

As discussed in Section 5.1, the basic DART scheme may reduce throughput due to
the increased packet delivery time. A general approach to address this problem is

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:11

using pipelining, in which transmissions are pipelined across generations and multiple
generations are delivered concurrently. Several existing network coding systems [Park
et al. 2006; Radunovic et al. 2007] already incorporate pipelining for performance
purposes and DART can be applied directly to such systems without performance
penalties. Next, we propose a generic mechanism for pipelining across generations in
systems that do not perform pipelining natively, for example, MORE [Chachulski et al.
2007].

To pipeline packet transmission across generations, the source transmits n coded
packets for each generation, moving to the next generation without waiting for ac-
knowledgments. The source maintains a window of k active generations and cycles
through these active generations, transmitting n coded packets for each generation.
Whenever the source receives an acknowledgment for an active generation, that gen-
eration is considered successfully delivered and the source activates the next available
generation of packets. Each checksum packet contains k checksum values, one for each
active generation.

Selecting a large value for k assures that no link goes idle and the bandwidth resource
is fully utilized. However, an overly large value for k increases the latency for delivering
a generation, because the number of active generations that the source cycles through
increases. To meet these two opposing requirements, the optimal k value should be the
smallest value such that the bandwidth is fully utilized. We estimate the optimal k
value as follows. Let d be the number of hops from the source to destination, and τ be
the delay at each hop. τ consists of two components, the time between two checksum
packets (t1) and the clock synchronization error between the node and the source node
(t2), which is less than �, the maximum time skew in the network. So the total delay
from the source to the destination is dτ . Let a be the time for transmitting n packets at
the source, to ensure the source never idles, we need to have k ≥ dτ

a = d(t1+t2)
a . Assuming

a relatively large clock synchronization error, that is, t2 � t1, we have k ≥ dt2
a . Thus we

can select k = d�
a . Our experiments have shown that selecting k = 5 is sufficient.

A potential concern for pipelining is that the source needs to disseminate multiple
checksums in one checksum packet, as there are multiple active generations simulta-
neously. Our experiments described in Section 8 have shown that, due to the small size
of checksums, the overall bandwidth overhead remains small.

5.4. Security Analysis

We discuss below the security properties of DART by focusing on one generation.
Pipelining across several active generations has no implication on this security analysis
as checksums are generation specific and packets for each generation are verified
independently.

Recall that checksums are signed by the source; thus the attacker cannot inject
forged checksums into the network. The only option left for the attacker that observes a
checksum is to generate corrupted packets that will match the verification against that
checksum at honest nodes. The key point of our scheme that prevents this attack is the
time asymmetry in checksum verification: a node uses a checksum to verify only packets
that are received before the creation of the checksum. Therefore, unlike traditional
hash functions where the attacker has a chance to find a collision because he has
the hash value, in our scheme, the time asymmetry in checksum verification prevents
the attacker from computing a suitable polluted packet that will pass the verification
algorithm. At best, the attacker can randomly guess the upcoming checksum value,
thus only having a small chance of success. We formalize the intuition for the security
of our scheme as follows.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:12 J. Dong et al.

We say a coded packet is safe with respect to a checksum packet if the coded packet
is created prior to the time the checksum packet is created at the source. The following
theorems quantify the security level of the checksum verification scheme with respect
to two system parameters, q and b, where q is the field size used by network coding and
b is the security parameter for the checksum generation as described in Section 5.2.

LEMMA 5.1. In DART, all packets that are verified against a checksum packet are
safe with respect to that checksum packet.

PROOF. Since packet safety is based on relative timing, without loss of generality, we
use the time at the source as the reference time. Denote by tc the creation time of the
checksum packet. For any coded packet that is verified against this checksum packet
at any node, denote its creation time by tg and its receiving time by tr. Hence, tr > tg.
We need to prove tg < tc.

When the packet is received by the node, let the local time at the node be t′
r and the

time at the source be tr. Since the maximum clock difference between the node and
the source is �, we have |tr − t′

r| < �; hence, tr < t′
r + �. In the DART scheme, the

timestamp in the checksum packet received by the node is tc and a node only verifies a
packet against this checksum packet if t′

r < tc − �. Thus, we have tg < tr < t′
r + � < tc.

Hence, the packet is safe with respect to the checksum packet.

THEOREM 5.2. Let CHK = (CHKs(G), s, t) be a checksum for a generation G, and let
(�c, �e) be a polluted packet (i.e., �e 	= G�c). The probability that (�c, �e) successfully passes the
packet verification for CHK at a node is at most 1

qb .

PROOF. Let CHK = (CHKs(G), s, t) be a checksum for a generation G and (�c, �e) be a
polluted packet, i.e., �e 	= G�c. We calculate the probability of the event that (�c, �e) passes
the checksum verification, i.e., the equation CHKs(G)�c = Hs�e holds, as follows.

Let �e′ be the correct encoding for the code vector �c, that is, �e′ = G�c. Therefore, �e′ 	= �e.
Let Hs = [�h1, �h2, . . . , �hm] be the b × m random matrix generated from the seed s, where
each �hi is a vector of b elements in Fq.

Since both (�c, �e) and (�c, �e′) pass the checksum verification, we have CHKs(G)�c =
Hs�e and CHKs(G)�c = Hs �e′. Thus we have Hs�e = Hs �e′. Hence Hs(�e − �e′) = 0. Let �u =
(u1, u2, . . . , um) = �e − �e′, Since �e′ 	= �e, we have at least some i, 1 ≤ i ≤ m, such that
ui 	= 0. Without loss of generality, we assume u1 	= 0. Rewrite Hs �u = 0 as �h1u1 + �h2u2 +
· · · + �hmum = 0. Since u1 	= 0, u1 has a unique multiplicative inverse v1 in Fq such that
u1v1 = 1. We have

�h1 = −v1
(�h2u2 + �h3u3 + · · · + �hmum

)
. (2)

Therefore, given a fixed �h2, �h3, . . . , �hm and u1, u2, . . . , um, there exists a unique �h1 that
satisfies the above equation. Since the packet (�c, �e) is safe with respect to the checksum,
the �hi vectors are generated at random after the ui values are determined. Thus,
although the attacker can control the values for ui, the probability that Equation (2)
holds is still equal to probability that the randomly selected �h1 is the unique vector
required. Since �h1 consists of b symbols in Fq and each symbol was obtained using a
pseudorandom function with output in Fq, the probability of that to occur is 1/qb.

THEOREM 5.3. Let CHK = (CHKs(G), s, t) be a checksum for a generation G and let
E = {(�c1, �e1), . . . , (�cl, �el)} be a set containing polluted packets. The probability that E

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:13

successfully passes w independent batch verifications for CHK at a node is at most
1

qw + 1
qb .

PROOF. We evaluate the probability that a set of packets containing polluted packets
E = {(�c1, �e1), (�c2, �e2), . . . , (�cl, �el)} passes w independent batch checksum verifications as
follows. Let (�c, �e) be a random linear combination of the packets in E with coefficients
u1, . . . , ul selected uniformly at random from Fq, that is, (�c, �e) = (

∑l
i=1 ui �ci,

∑l
i=1 ui �ei).

Let E′ = {(�c1, �e′
1), . . . , (�cl, �e′

l)} be the set of correctly coded packets with the same
coefficients as in E, and (�c, �e′) be the linear combination of packets in E′ obtained with
the same coefficients u1, . . . , ul, that is, (�c, �e′) = (

∑l
i=1 ui �ci,

∑l
i=1 ui

�e′
i). Since packets in

E′ are correctly coded packets, (�c, �e′) is also a correctly coded packet.
Let Ui be the event that �e = �e′ holds for the ith batch verification and Vi be the event

that the packet (�c, �e) successfully passes the verification for the ith batch verification.
Let Fi be the event that E passes the ith batch verifications. Then, clearly, Ui ⊆ Fi

and Fi = Ui ∪ (Vi ∩ Ūi). Let H = ⋂
1≤i≤w Fi, that is, H is the event that E passes all w

batch verifications. We evaluate the probability P(H) that H occurs as follows.

P(H) = P

⎛
⎝ ⋂

1≤i≤w

Fi

⎞
⎠ = P

⎛
⎝ ⋂

1≤i≤w

(Ui ∪ (Vi ∩ Ūi))

⎞
⎠ = P

⎛
⎝ ⋂

1≤i≤w

Ui ∪
⋂

1≤i≤w

(Vi ∩ Ūi)

⎞
⎠

≤ P

⎛
⎝ ⋂

1≤i≤w

Ui

⎞
⎠ + P

⎛
⎝ ⋂

1≤i≤w

(Vi ∩ Ūi)

⎞
⎠ ≤ P

⎛
⎝ ⋂

1≤i≤w

Ui

⎞
⎠ + P(V1 ∩ Ū1)

=
∏

1≤i≤w

P(Ui) + P(V1|Ū1)P(Ū1) ≤
∏

1≤i≤w

P(Ui) + P(V1|Ū1),

(3)

where the second to last part of the equation is because Ui ’s are independent events,
since at each batch verification, the coefficients u1, . . . , ul are selected independently at
random.

By Theorem 5.2, we have P(V1|Ū1) = 1/qb. We now evaluate P(Ui), which is the
probability that the equation

∑l
i=1 ui(�ei − �e′

i) = 0 holds. Since at least one packet in
E is polluted, we have that �ei 	= �e′

i for at least some i, 1 ≤ i ≤ l. Without loss of
generality, we assume �e1 	= �e′

1. Therefore, we have that e1 j 	= e′
1 j for at least some j,

1 ≤ j ≤ m. Again, without loss of generality, we assume e11 	= e′
11. Let W be the event

that
∑l

i=1 ui(ei1 − e′
i1) = 0. Let �vi = �ei1 − �e′

i1. We have
∑l

i=1 uivi = 0. Since v1 	= 0, v1 has
a unique multiplicative inverse β1 in Fq; thus, we have u1 = −β1(

∑l
i=2 uivi). Since u1

is randomly selected from Fq, given fixed u2, . . . , ul and v1, . . . , vl, the probability that
equation u1 = −β1(

∑l
i=2 uivi) holds is 1/q, that is, P(W) = 1/q. Since Ui ⊆ W , we have

P(Ui) ≤ P(W) = 1/q. Therefore, by Equation (3) we have P(H) ≤ 1
qw + 1

qb .

Note that the checksum verification algorithm does not have false positives. Thus, a
packet can be verified against multiple checksums to further reduce the false negative
probability, as long as the packet is safe with respect to the checksums. The failure of
any checksum verification indicates that the packet is corrupted. However, our exper-
imental results (Section 8) show that verifying each packet with only one checksum
is already sufficient. Also note that, since each checksum is generated independently

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:14 J. Dong et al.

at random, knowing multiple checksums does not help the attacker in generating cor-
rupted packets that will pass the checksum verification for future checksums.

Checksum dropping attack. Attackers may try to attack the DART scheme itself by
preventing nodes from receiving checksum packets. Recall that the checksum packets
are flooded among all forwarder nodes. If attackers are always able to prevent a node
from receiving checksum packets, this implies that the node is completely surrounded
by attackers. In this case, the attackers can isolate the node by dropping all data
packets, thus achieving the same effect as dropping checksums. Our DART scheme
can provide additional resiliency against checksum dropping by flooding the checksum
not only among the set of forwarder nodes, but also among the nodes that are near
forwarder nodes (e.g., within one or two hops).

Size of the security parameters. As shown in Theorems 5.2 and 5.3, we can reduce
the false negative probability of the verification by using a large field size q or a large
security parameter b. However, using a large field size also results in large symbol
sizes, causing larger network overhead (since the ratio n/m increases for a fixed packet
size). Security parameter b allows us to increase the security of the scheme without
increasing the field size. For a typical field size of q = 28, selecting b = 2 is sufficient.
With individual packet verification, if an attacker injects more than 2562 = 65, 536
packets, then, on average, only one polluted packet will be forwarded more than one
hop away. Our experiments confirm that selecting b = 2 is sufficient to contain pollution
attacks.

6. THE EDART SCHEME

In our DART scheme, valid packets received by a node are unnecessarily delayed
until the next checksum arrives. Ideally, nodes should delay only polluted packets for
verification, whereas unpolluted packets should be mixed and forwarded without delay.
However, nodes do not know which packets are polluted before receiving a checksum
packet and are faced with a dilemma: imprudent forwarding may pollute a large portion
of the network, while overstrict verification will unnecessarily delay valid packets.

We propose EDART, an adaptive verification scheme which allows nodes to opti-
mistically forward packets without verifying them. As in DART, nodes verify packets
using the periodic checksums. But in EDART, only nodes near the attacker tend to
delay packets for verification, while nodes farther away tend to forward packets with-
out delaying. Therefore, pollution is contained to a limited region around the attacker
and correct packets are forwarded without delay in regions without attackers. A major
advantage of EDART is that, when no attacks exist in the network, the packets are
delivered without delay, incurring almost no impact on the system performance. Be-
low we describe EDART and provide bounds on the attack impact, the attack success
frequency, and the packet delivery delay.

6.1. Scheme Description

In EDART, each node is in one of two modes, forward mode or verify mode. In verify
mode, a node delays received packets until they can be verified using the next checksum.
In forward mode, a node mixes and forwards received packets immediately without
verification, except if the packet has traveled more than a predetermined number of
hops since its last verification. The limited scope of any unverified packets ensures that
the maximum number of hops a polluted packet can travel is bounded. As in DART,
upon receipt of a checksum, nodes always verify any buffered unverified packet whose
receive time is before the checksum creation time.

Nodes start in the forward mode at system initialization and switch to the verify
mode upon detecting a verification failure. The amount of time a node stays in the
verify mode is a decreasing function of its distance to an attacker node, so that nodes

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:15

ALGORITHM 1: EDART Scheme Executed by Each Forwarder Node
Executed at system initialization
1: Cv = 0; forward set = ∅; delay set = ∅

Executed on receiving packet p
1: if (Cv > 0 or hv ≥ δ) then add p to delay set
2: else add p to forward set

Executed to output a packet
1: Select a subset of packets from forward set to form a coded packet as required by the

particular network coding system.
2: Set hmax to be the maximum hv in the selected packets
3: For the coded packet, set hv = hmax + 1

Executed on receiving checksum (CHKs(G), s, t)
1: Verify all unverified safe packets in both forward set and delay set against CHKs(G)
2: Set hv = 0 for all verified packets
3: if there exist invalid packets that failed verification then
4: Set hmin to be the minimum hv in all packets that failed verification
5: Cv = Cv + α(1 − hmin

δ
)

6: else if Cv > 0 then
7: Cv = Cv − 1

near an attacker tend to verify packets, while nodes farther away tend to forward
packets without delay.

The detailed pseudocode for EDART is presented in Algorithm 1. Each network
coded packet contains a new field, hv, which records the number of hops the packet has
traveled since its last verification. Each node maintains a variable Cv (the verification
counter), indicating the amount of time that the node will stay in the verify mode (e.g.,
Cv = 0 means that the node is in the forward mode). A node also maintains two sets
of packets, forward set and delay set. Packets in forward set can be combined to form
coded packets, while packets in delay set are held for verification.

At system initialization, each node starts in the forward mode (i.e., Cv = 0) and both
forward set and delay set are empty.

Upon receiving a coded packet, a node adds the packet to the delay set if the node is in
the verify mode (i.e., Cv > 0) or if the packet has traveled more than δ hops since its last
verification (i.e., if hv > δ), where δ is a predetermined system parameter. Otherwise,
the packet is added to the forward set for immediate forwarding. A new coded packet is
formed by combining packets in the forward set. The hv field of the new packet is set to
hmax + 1, where hmax is the maximum hv among all packets that are combined to form
this new packet.

Upon receiving a checksum packet, a node verifies all unverified packets in both
forward set and delay set. If all packets pass the verification, it decrements Cv by one
(unless it is already zero). If there are packets that fail the verification, the node
increments Cv by α(1 − hmin

δ
), where hmin is the minimum hv of all the packets that fail

the verification and α is a predetermined system parameter. For all packets that pass
the verification, their hv field is reset to zero.

Note that the hv field does not require integrity protection. On the one hand, if the
attacker sets hv large, then the polluted packets are only propagated over a small
number of hops. On the other hand, if the attacker sets hv small, then the neighbors of
the attacker will stay in the verify mode longer after checksum verification, preventing
pollution from the attacker node for a longer duration of time. In the next section, we
show that, regardless of how attackers may set the hv value, the overall attack impact
is still bounded.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:16 J. Dong et al.

6.2. Security Analysis

We now analyze the properties of EDART, first in the context of one attacker, and then
extend the analysis to the case of multiple attackers. We refer to the time between two
consecutive checksum creation events as a time interval. To measure the severity of a
pollution attack, we define the following metrics.

—Pollution scope. The number of hops traveled by a polluted packet before being dis-
carded, which captures the maximum impact caused by a single polluted packet. We
also consider the average pollution scope which captures the attack impact averaged
over time.

—Pollution success frequency. The frequency of pollution attacks with scope greater
than 1. Note that an attack with pollution scope of one hop has no impact on the
network, as the polluted packet is dropped immediately by the first hop neighbors of
the attacker.

To measure the effectiveness of EDART in minimizing packet delivery delay, we
define unnecessary delay as the number of additional time intervals a node stays in the
verify mode, compared to an ideal scheme where only the direct neighbors of an active
attacker are in the verify mode and all other nodes are in the forward mode.

In EDART, attackers can only increase the pollution scope of an attack at the cost of
decreasing their pollution success frequency and vice versa: setting hv to a low value
for a polluted packet will result in a larger pollution scope, but the direct neighbors
will isolate the attacker for a longer period. Hence the overall severity of the attack
is bounded. We now present properties that precisely capture the effectiveness of the
EDART scheme for the case of one attacker.

PROPERTY 1. The maximum pollution scope of an attack is upper-bounded by δ + 1.

PROOF. Each honest node increments by one the hv field of its newly coded packets.
Then, clearly, a polluted packet that was forwarded by δ honest nodes will have hv ≥ δ;
thus it will be verified, detected, and dropped by the next honest node.

PROPERTY 2. The average pollution scope per time interval is upper-bounded by δ/α.

PROOF. Let h be the minimum hv value of polluted packets sent by an attacker in the
current time interval. Then, the maximum pollution scope of polluted packets in this
time interval is δ − h. Upon receiving the first checksum, all the direct neighbors of
the attacker will detect verification failures, and increment their Cv by α(1 − h

δ
). Thus

they will stay in the verify mode for at least α(1 − h
δ
) time intervals. As long as all the

neighbors of the attacker are in the verify mode, all the polluted packets generated by
the attacker will be detected and dropped at the first hop, thus causing no pollution
effect on the network. Therefore, the average pollution scope per time interval is at
most (δ − h)/(α(1 − h

δ
) + 1) < (δ − h)/(α(1 − h

δ
)) = δ/α.

PROPERTY 3. The maximum pollution success frequency is upper-bounded by δ/α.

PROOF. When an attacker sends polluted packets with hv = h in some time interval,
for the next α(1 − h

δ
) time intervals its pollution attacks will be ineffective (polluted

packets will be verified and dropped by its first-hop neighbors). Thus, its pollution
success frequency is at most 1/(α(1 − h

δ
) + 1). To maximize this value, the attacker sets

h = δ − 1, resulting in the maximum success frequency of 1/(α(1 − δ−1
δ

) + 1) < δ/α.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:17

A

Y

X

Protected node

Node in verify mode

Node in forward mode

Attacker
B C

Y

X

B C

Polluted packet
(a) (b)

A

f

f

f

v

vf

v

Fig. 1. (a) Attacker X attacks first and nodes A and B receive polluted packets; (b) in the following time
interval, A and B switch to the verify mode, and attacker Y starts attacking. Y ’s polluted packets are
immediately dropped by node B and further nodes (such as node C) are protected. Thus, the strength of Y ’s
attack is diminished by X’s attack.

PROPERTY 4. Let h be the minimum hv value of polluted packets sent by an attacker.
Nodes at i hops away from the attacker (for 2 ≤ i ≤ δ − h− 1) have unnecessary delay of
α(1 − h+i

δ
) time intervals. Nodes further than δ − h − 1 hops have no unnecessary delay.

PROOF. Since the hv value is incremented at each hop, nodes that are i hops away
from the attacker (with 2 ≤ i ≤ δ − h − 1) stay in the verify mode for α(1 − h+i

δ
) time

intervals. Nodes that are more than δ−h−1 hops away do not switch to the verify mode
since polluted packets are verified and dropped by nodes δ − h away from attacker.

Multiattacker case. With multiple attackers, the attack strength per attacker in terms
of maximum pollution scope, average pollution scope, and maximum success frequency
is still bounded as in Properties 1, 2, and 3. To see this, we examine two different
cases. First, we consider attackers that are far apart from each other (e.g., over 2δ
hops away) such that an honest node is in the pollution scope of only one attacker.
In this case, we can view the network subdivided into smaller areas, each of which
contain only one attacker; thus the bounds in Properties 1, 2, and 3 still hold. Second,
we consider attackers positioned such that some honest nodes are affected by multiple
attackers. The reaction of such honest nodes is driven by their closest attacker. As
shown in the example of Figure 1, the effectiveness per attacker is reduced because
nearby attackers cancel the effects of each other. Thus, Properties 1, 2, and 3 also
hold in this case. Our experiments in Section 8 confirm that EDART remains effective
against pollution attacks in the presence of multiple attackers.

6.3. Selection of δ and α

Parameter δ is defined as the number of hops after which a coded packet is always
verified. Parameter α is defined as the amount of time a node stays in the verify
mode. By Properties 1, 2, and 3, the scope and success frequency of an attack are
directly proportional to δ and inversely proportional to α, thus we can increase attack
resiliency by selecting a small δ and a large α. However, a small δ and a large α result
in a larger packet delay: a small δ causes valid packets to travel only a small number
of hops before being delayed for verification, and a large α causes a larger unnecessary
delay in the presence of attacks (Property 4). Thus we need to balance between attack
resiliency and packet delivery delay when selecting δ and α.

For systems that can tolerate large delivery latency, such as large file transfers in
mesh networks or code updates in sensor networks, we can use a small δ and a large
α to increase the resiliency of the system. On the other hand, for systems that are
sensitive to delivery latency, such as video or audio streaming, we can use a large δ
and a small α to reduce delay. We also note that, in a benign network, the value of δ
determines the delivery latency. Thus, in a network in which attacks are rare, we can
use a large δ to reduce delivery latency in normal cases, and use a large α to limit the
attack impact when under attack.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:18 J. Dong et al.

7. ATTACKER IDENTIFICATION

DART and EDART focus on detecting and dropping polluted packets. Although this
effectively limits the impact of pollution attacks, for a practical solution it is also im-
portant to be able to identify the attacker nodes. First, the ability to identify attacker
nodes allows the source node to exclude attackers on the data delivery path and make
optimal selection of forwarder nodes among only honest nodes. Otherwise, the attacker
nodes may be selected on the critical path, rendering the flow under their complete
control. Second, excluding attacker nodes from the data delivery path eliminates fur-
ther packet pollution from the identified attacker nodes. This is particularly useful for
EDART because, in the absence of packet pollution, nodes will operate in forward-only
mode, which improves performance. Finally, the identification of attacker nodes also
allows for physical intervention to recover compromised nodes, for example, by rein-
stalling software on them. In this section, we enhance both the DART and EDART
schemes to efficiently identify pollution attacker nodes.

7.1. Assumptions

In order to be able to attribute the packet pollution to a certain node, it is crucial to
have the nonrepudiation property on packets. Thus we assume that each forwarder
node signs every coded packet it generates. We further assume the existence of a
reliable end-to-end communication path between every pair of nodes. Reliable end-to-
end communication in wireless networks has been a subject of extensive study with
numerous proposals [Hu et al. 2002; Awerbuch et al. 2008; Guerrero et al. 2002], any
of which may be used with our protocol.2 Last, we assume that there is no Sybil attack,
in which a single attacker node owns multiple (bogus) identities and their associated
credential information.

7.2. DART-AI: DART with Attacker Identification

Since in DART each node verifies packets before using them for coding, honest nodes
will only forward valid packets except for a small false-negative probability in the
checksum verification scheme. Thus we propose the attacker identification scheme for
DART (DART-AI) as follows: when a node receives a corrupted packet that does not pass
the checksum verification, it reports the sender of the packet as a pollution attacker
node to the source node along with the corrupted packet itself as a proof. The source
node, on receiving such a report, checks that the packet reported is indeed corrupted
and is signed by the reported attacker node. If so, the source regards the reported node
as an attacker node; otherwise, the reporting node is regarded as an attacker node.

7.2.1. Security Analysis. Since there is a false-negative probability in the checksum ver-
ification, an honest node can also forward corrupted packets and, hence, be mistakenly
identified as an attacker node. Conversely, an attacker node whose corrupted packets
happen to pass the checksum verification at honest nodes can escape from being identi-
fied. Below we analyze such false positive and false negative probability of the attacker
identification scheme for DART.

False positive probability. Let Efp be the event that an honest node is mistakenly
identified as an attacker node and E1 the event that the node accepts a corrupted
packet as a valid one. Since Efp occurs if the node accepts a corrupted packet as a
valid one and the packet produced by the node is correctly identified by other nodes as
corrupted, we have

Pr(Efp) ≤ Pr(E1).

2Since reliable communication is required only after an attack is positively identified, even a straightforward
implementation using flooding can be used.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:19

Let k be the number of corrupted packets received by the node; then the probability
that any of these packets are accepted as valid by the node is

Pr(E1) = 1 − (1 − 1/qb)k.

Thus we have Pr(Ef p) ≤ 1 − (1 − 1/qb)k. Assuming a typical setting of q = 256 and
b = 2, the false positive probability is less than 0.002 even when k is as large as 100.

False negative probability. Let Ef n be the event that a pollution attacker is not
identified after injecting a single polluted packet. Thus Pr(Ef n) is the lower-bound
on the probability that a pollution attacker goes undetected. Let c be the number of
checksums that the injected corrupted packet is verified against at an honest node.3
The attacker is not identified only if its injected packet passes all c different checksum
verifications. Thus

Pr(Ef n) = (1/qb)c.

In the worst case, when the injected corrupted packet is verified against only one
checksum,4 we have Pr(Ef n) ≤ 1/qb. Again, with a typical setting of q = 256 and b = 2,
we have Pr(Ef n) ≤ 1/216.

7.3. EDART-AI: EDART with Attacker Identification

In EDART, an honest node may forward many corrupted packets because in the forward
mode it uses the received packets for coding without verifying them. Thus, unlike
in DART, we cannot simply accuse any node that forwards corrupted packets as an
attacker. Instead, we adopt a traceback strategy that traces backward through the
causal relationship of the packet pollution until an attacker is identified.

The strategy relies on the observation that a corrupted packet produced by an honest
node with an unverified hop count field hv1 is always caused by corrupted packets
received by the node with an unverified hop count field hv2 < hv1. Thus, to identify the
attacker node, the source iteratively queries each node that produces corrupted packets
for its input packets that have a smaller hv field than the corrupted packet produced by
the node. In this process, an honest node is always able to provide one such packet as a
proof of its coding correctness (thus being declared innocent), while the attacker node
who injects corrupted packets is not able to do so. Thus, by tracing through the packet
causal relationship in the reverse direction of the hv field, an attacker can eventually
be identified.

A naive implementation of the above strategy would require each queried node to
return to the source an entire corrupted input packet as a proof of its innocence.
Instead, we propose an efficient symbol-level traceback technique that requires the
queried nodes to only return a single symbol in the packet.5 The symbol-level traceback
strategy relies on the observation that each symbol in a packet is coded independently
of each other. A corrupted symbol at some position of a coded packet is always caused
by corrupted symbols at the same position of some input packets. Thus the source only
needs to trace the causal relationship in the generation of a corrupted symbol in a
packet in order to identify the attacker node. One challenge of symbol-level traceback
is that an attacker node may claim an arbitrary input symbol being from any node in
the network, as symbols are not signed individually by forwarder nodes. To address

3As noted in Section 5.4, the checksum verification has no false positives; thus, an honest node can use
newly received checksums to verify packets in both unverified set and verified set to further reduce the false
negative probability of checksum verificatoin. The use of batch verification and low overhead of checksum
computation ensure that the overall overhead remains low.
4If it is not verified at all, the packet will not be used for coding, and thus will not cause any pollution.
5This is a symbol used in network coding as defined in Section 3.1, which usually has a length of 1 byte.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:20 J. Dong et al.

this, we incorporate a cross-examination technique which checks the consistency of the
claimed value for a symbol with the claimed sender of the packet. If the claimed packet
sender disagrees on the symbol value, then either the claiming node or claimed packet
sender is lying. The source node can can resolve this dispute by querying the claiming
node for the complete packet containing the symbol as signed by the claimed sender
node.

In the following, we first introduce some notations and formally define a corrupted
symbol, and then describe the details of the symbol-level traceback procedure.

7.3.1. Notations. As defined in Section 3.1, each packet �pi in a generation is viewed as
a column vector of m elements over Fq, that is, �pi = (pi1, pi2, . . . , pim)T with pij ∈ Fq. A
generation G of n packets is viewed as a matrix G = [�p1, . . . , �pn] with each packet in
the generation as a column in the matrix. We further define �rj to be the jth row of the
matrix G, that is, �rj = (p1 j, p2 j, . . . , pnj). Given a corrupted coded packet p = (�c, �e) with
�c = (c1, c2, . . . , cn) and �e = (e1, e2, . . . , em), we say a symbol e j is a corrupted symbol if
e j 	= ∑n

i=1 ci pij , or equivalently, e j 	= �c · �rj , where “·” represents the vector dot product.
Thus, given �rj and a coded packet (�c, �e), one can verify whether a symbol e j in �e is
corrupted. Clearly, a corrupted packet always contains at least one corrupted symbol.

7.3.2. Scheme Details. The symbol-level traceback starts when the source receives a
pollution report with a corrupted coded packet (�c, �e). To start the traceback, the source
first locates one corrupted symbol in the corrupted coded packet.6 Let j be the position
of the corrupted symbol in �e. The source maintains the following state: the current
prover node P, the previous prover node P ′, the current value for the hv field, denote
as h, and the value e j of the corrupted symbol at the jth position of a packet produced
by the prover node P as claimed by the previous prover node P ′.

At first, the source node initializes the current prover node P to be the node that
reports the pollution and h to be the hv field of the reported polluted packet. Both
P ′ and e j are initialized to be a special null value indicating that it is not used. In
each round, the source sends to the current prover node a query that contains a tuple
Tq = (�rj, j, h, e j), where �rj is the jth row of the matrix G. The value e j in the query
tuple Tq is for cross-examination of the symbol between the previous prover node and
the current prover node.

On receiving a query tuple Tq = (�rj, j, h, e j), if e j is not null, the node first validates
the claim made by the previous prover node on e j by checking if it has generated a
corrupted packet p whose hv field is h and whose jth symbol is corrupted and has
value e j . If any of these checks fail, the node returns a response indicating the cross-
examination failure. Otherwise, the node checks all the coded packets in its buffer with
the hv field smaller than h for the correctness of their jth symbol. To do so, for a coded
packet (�c, �e), it checks if the equation e j = �c · �rj holds. An honest node will always be
able to find a corrupted packet whose jth symbol is corrupted and with hv < h. In
response to the query, the node returns a response tuple Tr = (e j, hv, n), where e j and
hv are the jth symbol and the hv field of the corrupted packet, respectively, and n is the
identifier of the node that sent the packet.

If the source fails to receive a response from the current prover node P after a
time out, it identifies P as an attacker and terminates the traceback procedure. If the
received response indicates a cross-examination failure, then either the current prover
node P or the previous prover node P ′ is lying and can be identified as an attacker.
To find out which one, the source queries the previous prover node P ′ for the packet
signed by P and whose jth symbol is corrupted and has value e j . If node P ′, which

6The source is always able to do so, as it has all the plain packets for the respective generation.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:21

should have stored the packet in its buffer, can return the queried packet, then node P
is identified as the attacker. Otherwise, node P ′ is identified as the attacker.

If the source successfully receives a response tuple Tr = (e j, hv, n) with e j being
corrupted and hv < h, it repeats the traceback on node n by setting P ′ to be P, P to
be n, h to be hv, and e j to be the e j in Tr. This process repeats until an attacker is
identified.

7.3.3. Security Analysis. Since the correctness of plain packets is ensured based on
end-to-end authentication, packet corruption is always detected at some honest node
either due to the failure of checksum verification or when the packet is decoded at the
receiver node. Therefore, for every packet pollution attack, a traceback procedure is
always invoked. We show next that every invocation of the traceback procedure will
result in an attacker node being identified with high probability. Therefore, we can
conclude that for every occurrence of a pollution attack, an attacker is identified with
high probability.

LEMMA 7.1. On each traceback procedure, an attacker is identified correctly with the
probability of 1 − 1/qb, and the probability that an honest node is mistakenly identified
as an attacker node (i.e., the false positive probability) is 1/qb.

PROOF SKETCH. An honest node will only be identified as an attacker when it forwards
a corrupted packet with its hv field reset to zero. This only occurs when the node
mistakenly classifies a corrupted packet as a correct packet, because an honest node
only resets the hv field after performing a checksum verification. By Theorem 5.2, the
false negative probability of the checksum verification is 1/qb; thus we have the honest
node being mistakenly identified as an attacker node is also 1/qb.

Since the traceback procedure always identifies some node as an attacker node, we
have that the probability that an attacker node is correctly identified is 1 − 1/qb.

7.3.4. Overhead Analysis. We analyze the computation, bandwidth, and storage over-
head of the traceback procedure in EDART-AI. The computation overhead involves
only signatures operations (i.e., creation and verification) for the query and response
messages. Since the number of traceback rounds is upper-bounded by δ (the maximum
value for hv), the maximum number of signature operations to identify an attacker is
4δ.

For the bandwidth overhead, each query packet (�rj, j, h, e j) is of size | �rj | + | j| +
|h| + |e j | = (n + 1)q + 2 bytes, where n is the number of packets in a generation, q
is the packet size, and |x| denotes the size of x. A response packet (e j, hv, n) is of size
q + 3 bytes, assuming a node identifier needs 2 bytes. Since the maximum number of
traceback round is δ, the maximum bandwidth overhead incurred is ((n + 2)q + 5)δ.
With a realistic setting of n = 32, q = 1, δ = 8, the maximum bandwidth overhead of a
traceback procedure is less than as 320 bytes.

In order to respond to traceback queries and to perform cross-examination, honest
nodes need to store both the received input coded packets and output coded packets
until a generation is successfully delivered to the receiver. A node is already required
to store the input packets for the purpose of network coding. Thus the storage over-
head induced by the traceback procedure is only the storage of the output packets. As
validated by our experiments, for each generation a node typically only sends tens of
packets. Thus the storage overhead of the traceback procedure is small.

8. EXPERIMENTAL EVALUATION

We first show through simulations the impact of pollution attacks on an unprotected
system and the high cost of current cryptographic-based solutions. We then perform
an evaluation of our defense schemes. Our experiments are based on the well-known

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:22 J. Dong et al.

MORE protocol [Chachulski et al. 2007], a network coding-based routing protocol for
wireless mesh networks. We selected MORE because it is one of the best-known net-
work coding based routing protocols for wireless networks and its source code is publicly
available. We use the real-world link quality measurements from Roofnet,7 an experi-
mental 802.11 b/g mesh network in development at MIT. Roofnet has also been widely
used in other research papers [Radunovic et al. 2007; Couto et al. 2003; Aguayo et al.
2004; Bicket et al. 2005; Biswas and Morris 2004] as a representative wireless mesh
network testbed.

8.1. Experimental Methodology

Simulation setup. Our experiments were performed with the Glomosim simulator8 con-
figured with 802.11 as the MAC layer protocol. We used realistic link quality measure-
ments for the physical layer of Glomosim to determine the link loss rate. Specifically,
we used the real-world link quality trace data from the Roofnet testbed. The network
consists of 38 nodes, and the topology and link qualities are shown in Dong et al. [2009],
Figure 3. The raw bandwidth is 5.5 Mb/s.

We assumed the clocks of nodes in the network were loosely synchronized, with the
maximum clock drift between any node and the source being � = 100 ms.9 We used
Elliptic Curve DSA signature (ECDSA) with 160-bit key size10 and simulates delays to
approximate the cryptographic performance for operations on a 3.4-GHz Intel Pentium
4 processor.

We used the MORE unicast protocol to demonstrate our schemes. In each experiment,
we randomly selected a pair of nodes as the source and destination. The source started
to transfer a large file to the destination 100 s after the experiment started and did
this for a duration of 400 s. The CDF results shown in our graphs were taken over 200
randomly selected source-destination pairs.

MORE setup. We used the default MORE setup [Chachulski et al. 2007], with a finite
field for network coding of F28 , generation size n of 32 packets, and packet size of 1500
B.

Attack scenario. We varied the number of attackers from one to 10 (out of a total
of 38 nodes). We selected attackers only among forwarder nodes and the neighbors
of forwarder nodes, because only these nodes can cause packet pollution. If the total
number of such nodes was less than the specified number of attackers, we selected all
of them as attackers.

The attackers injected polluted packets, but followed the protocol otherwise. To ex-
amine the impact of the attack, we define pollution intensity (PI) as the average number
of polluted packets injected by the attacker for each packet it receives. PI captures the
frequency of pollution attacks executed by an attacker. We varied PI to examine the
impact of different levels of attack intensity.

DART and EDART setup. We set the checksum parameter b = 2, which resulted in a
checksum size of 64 bytes. The source broadcast a checksum packet after broadcasting
every 32 data packets.11 We used the pipelining technique described in Section 5.3,
with the pipeline size of 5. For EDART, we used δ = 8 and α = 20. These parameters

7See footnote 1 for web address where this is available.
8http://pcl.cs.ucla.edu/projected/glomosim.
9Current secure clock synchronization schemes [Sun et al. 2006a, 2006b] can achieve clock drift in the order
of microseconds. We use a much larger clock drift to demonstrate that our schemes only require loose clock
synchronization.
10Equivalent to the security level of RSA with 1024-bit key size.
11This does not mean there is only one checksum per generation. In MORE, the source keeps broadcasting
coded packets for a generation (usually more than 32 packets) until the destination is able to decode the
entire generation of packets.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput (kbps)

No Attack
PI: 1.00
PI: 0.20
PI: 0.10
PI: 0.05

Fig. 2. The throughput CDF in the presence of a single attacker for various pollution intensities (PIs). Even
when the attacker injects only one polluted packet every 20 received packets (PI = 0.05%), the impact of the
attack is still very significant.

were experimentally selected to suit the small scale of the network and to balance
between overhead, throughput, and latency.

As a baseline, we used a hypothetical ideal defense scheme referred to as Ideal,
in which nodes detect polluted packets with zero cost and immediately drop them.
Note that, under benign conditions, the Ideal scheme behaves the same as the original
MORE protocol. We compared our schemes with Ideal using the same pipeline size to
examine the latency caused by delayed packet verification.

DART-AI and EDART-AI setup. The experiments for DART-AI and EDART-AI were
based on the settings for DART and EDART as described above. For the attacker
identification, each packet was signed using the ECDSA signature scheme as described
previously. We assumed the source would avoid the attacker nodes by reselecting the
forwarding node set once the attacker nodes were identified. As a baseline to evaluate
the performance of DART-AI and EDART-AI, we also defined a hypothetical ideal
defense scheme with attacker identification referred to as Ideal-AI in which polluted
packets are always filtered and the source node knows the attacker nodes without
any overhead. Thus, in Ideal-AI, the packet forwarding process is the same as if the
attacker nodes are taken out from the network.

Metrics. In our experiments, we measured the throughput, latency, and overhead
(bandwidth and computation) of our defense schemes. Throughput was measured as
the average receiving rate at which the destination received data packets (after de-
coding). Latency was measured as the delay in receiving the first packet (decoded)
at the destination. For DART and EDART, the only bandwidth overhead incurred by
our scheme was the dissemination of checksum packets. We measured the bandwidth
overhead as the average bandwidth overhead per node among all forwarder nodes that
forward checksum packets. Since intermediate nodes perform only digital signature
and checksum verification, both of which incur small overhead (checksum verification
overhead is demonstrated in our microbenchmark below), we measured the computa-
tional overhead as the number of digital signatures per second performed by the source
for signing checksum packets. The overhead measurement did not include the overhead
due to time synchronization. Similarly, for DART-AI and EDART-AI, we measured both
the bandwidth and computation overhead due to packet signatures and the attacker
identification process.

8.2. Impact of Pollution Attacks

To demonstrate the severity of pollution attacks on network coding, we evaluated the
impact of the attack conducted by a single attacker. Figure 2 shows the throughput
of MORE in a network with only one attacker with various pollution intensities. In
the no attack case, we observe that all the flows have a throughput greater than
500 kb/s, with median at around 1000 kb/s. In the attack case with pollution intensity

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:24 J. Dong et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput (kbps)

No defense
Crypto-based Defense

Fig. 3. Impracticality of previous work: throughput CDF of original MORE and of MORE with cryptographic-
based defense in a benign network. Even when no attack takes place, previous defense schemes have a very
high overhead that makes them impractical.

of 1, the throughput of around 80% of all flows goes to zero, and 97% of all flows have
throughput less than 500 kb/s. Even when the pollution intensity is very small at 0.05
(i.e., the attacker only injects, on average, one polluted packet per 20 packets received),
the throughput of most flows still degrades significantly, with around 60% of all flows
having a throughput below 500 kb/s. Therefore, we conclude that pollution attacks are
extremely detrimental to system performance, even when performed very infrequently
and by only one attacker.

8.3. Limitations of Previous Solutions

We used a benign scenario to show that previous cryptographic-based solutions are
not practical for wireless networks. Protocols that add a significant overhead to the
system, even when no attack occurs, provide little incentive to be used.

We set up our experiments to strongly favor the cryptographic-based solutions as
follows. We only accounted for computational overhead at the intermediate nodes, and
ignored all other overhead, such as the computational overhead at the source and the
bandwidth overhead required to disseminate digital signatures and/or homomorphic
hashes. We also use a large symbol size of 20 bytes (hence m = 1500/20 = 75) to
favor these schemes in reducing their computational overhead. Any practical network
coding system requires n � mso that the network overhead of network coding is small.
With the generation size n = 32 and m = 75, the relative network overhead is already
around ρ = 42%. We also discounted such a large overhead of network coding for these
schemes. Finally, we used batch verification, such that each node can batch verify a
set of packets at the cost of one verification, and use the pipelining technique (with
pipeline size of 5) described in Section 5.3 to further boost the performance of such
schemes.

Figure 3 shows the throughput CDF of strongly favored cryptographic-based schemes
and the original MORE protocol in a network with no attackers. We see that, even
when being exceedingly favored, the large computational overhead of these schemes
still results in significant throughput degradation, for example, 80% of the flows have
throughput 100 kb/s or less12 and the median throughput degrades by 96%. Hence we
conclude they are impractical for wireless mesh networks.

8.4. Evaluation of DART and EDART

We now evaluate the performance of our proposed defense schemes, DART and EDART.
We first performed microbenchmarks to evaluated the computational cost of checksum
generation and verification. We then evaluate the performance of our defense schemes

12Some flows have throughput greater than the maximum throughput shown in Section 5 because we
discounted the network coding overhead in the results.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:25

Table I. Computational Cost for Checksum Generation and Verification for
Different Checksum Sizes

Size parameter (b value) 1 2 3
Generation time (ms) 0.475 0.957 1.432

Per packet verification time (ms) 0.188 0.388 0.507
Batch verification time (for 32 packets) (ms) 0.492 1.319 2.458

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput (kbps)

Ideal
DART

EDART

(a) Throughput CDF

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

D
A

R
T

 (
kb

ps
)

MORE (kbps)

(b) Throughput scatter plot

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Latency (s)

Ideal
DART

EDART

(c) Latency CDF

Fig. 4. The throughput and latency of DART and EDART under benign case.

for benign networks and for networks under various pollution attack intensities. Fi-
nally, we examined their bandwidth and computational overhead.

Microbenchmarks. We evaluate the computational cost of checksum generation and
verification on a computer with a 1.3-GHz Intel Centrino processor, and use the random
number generator in the OpenSSL library (version 0.9.8e) for generating the random
checksum coefficients. Table I summarizes the results.

Benign networks. Figure 4 shows the throughput and latency of our schemes in a
benign network with no attackers, as compared to the MORE protocol. In Figure 4(a),
we see that DART incurs some throughput degradation (around 9% degradation when
comparing median throughputs), whereas EDART incurs almost no degradation.

Figure 4(b) provides insights into the throughput degradation of DART by showing
the scatter plot of throughput for DART with respect to the MORE protocol. We see
that the throughput degradation is more severe for flows with smaller throughput,
while flows with higher throughput are less affected by DART. This is because the
throughput degradation of DART is primarily caused by the checksum authentication
delay at intermediate nodes. Flows with smaller throughput typically have a longer
path length; hence they incur a larger aggregate authentication delay and consequently
higher throughput degradation.

In Figure 4(c), we observe a similar pattern for the latency of DART and EDART.
DART incurs an additional 0.4 s in median latencies compared to the Ideal scheme with
the same pipeline size, while EDART incurs almost no additional latency. For similar
reasons to the throughput, we also observe that, for DART, the latency overhead is
larger for flows that already have a large latency.

In summary, when no attacks take place, both of our schemes have throughput over
20 times higher than cryptographic-based schemes and cause minimal degradation
on system performance. The performance of EDART is almost identical to the Ideal
scheme.

Networks under attack. We examine the effectiveness of our defense against different
number of pollution attackers. Figures 5(a) and 5(b) show the throughput and latency
CDF of DART and EDART for the case of five attackers with pollution intensity of 0.2.
From Figure 5(a), we see that both DART and EDART achieve a throughput close to
the Ideal scheme. EDART achieves an even higher throughput than DART, especially

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:26 J. Dong et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput (kbps)

Ideal
DART

EDART

(a) Throughput CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Latency (s)

Ideal
DART

EDART

(b) Latency CDF

Fig. 5. The throughput and latency CDF of DART and EDART with five pollution attackers.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

B
an

dw
id

th
 O

ve
rh

ea
d

(k
bp

s)

Number of attackers

DART
EDART

(a) Bandwidth overhead

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

S
ig

na
tu

re
s

pe
r

se
co

nd

Number of Attackers

DART
EDART

(b) Computational overhead at the source

Fig. 6. Bandwidth and computational overhead of DART and EDART.

for low throughput flows, as these flows typically traverse many forwarder nodes. In
Figure 5(b) we see that the median latency increase of DART and EDART over the
Ideal scheme is around 0.5 s. This confirms that the overall latency due to checksum
verification is small.

An apparent anomaly is that EDART does not have a much smaller latency than
DART, although in EDART nodes forward packets optimistically without delay. This is
because the latency metric accounts for the delay of the first generation. In EDART, the
first generation of packets will be delayed as in DART because, although nodes start in
the forward mode, the propagation of the initial polluted packets causes all forwarder
nodes to switch to the verify mode. However, for all later generations, only neighbors of
the attackers delay packets in EDART. Thus the delay of later generations is smaller,
leading to the improved throughput of EDART over DART.

We also experimented with the cases of one and 10 attackers and other pollution
intensities, all of which have results similar to the case of five pollution attackers with
the pollution intensity of 0.2. For larger pollution intensities, the congestion effect of
polluted packets also causes a certain level of throughput degradation; however, our
defense mechanisms still maintain a level of performance similar to that of the Ideal
scheme.

Overhead. Figures 6(a) and 6(b) show the bandwidth and computational overhead
of our defense schemes, respectively. Both the bandwidth and computational overhead
remain at a stable level across different number of attackers, 5.5 kb/s per forwarder
node and five signatures per second at the source, respectively. This is because our
checksum generation and dissemination is independent of the number of attackers.
The bandwidth overhead of 5.5 kb/s is about 0.6% of the throughput achieved by the
system on average.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

fl
ow

s

Throughput (kbps)

Ideal-AI
DART-AI

EDART-AI

(a) Throughput under benign network

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

fl
ow

s

Throughput (kbps)

No defense
DART

EDART
DART-AI

EDART-AI
Ideal-AI

(b) Throughput under 5 random
attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

L
at

en
cy

 (
s)

Number of attackers

DART-AI
EDART-AI

(c) Attacker identification latency

Fig. 7. Throughput and attacker identification latency for the schemes with attacker identification.

It may also be counterintuitive that both the bandwidth and computational overhead
decrease slightly when the number of attackers increases. The explanation is that the
frequency with which the source disseminates packets decreases slightly when there
are more attackers, due to the congestion effect of the polluted packets. This results in
slightly fewer checksums being generated and disseminated.

8.5. Evaluation of DART-AI and EDART-AI

We evaluated the performance and overhead of DART-AI and EDART-AI. We first eval-
uated the throughput of the schemes under benign network environment. Then we
examined the benefit of attacker identification when the network was under attack. Fi-
nally, we evaluated both the proactive and reactive overhead of attacker identification.

Benign networks. Figure 7(a) shows the throughput of the defense schemes with at-
tacker identification in benign networks. The throughput of both DART-AI and EDART-
AI is very close to that of the Ideal-AI defense scheme. Compared to the defense schemes
without attacker identification (shown previously in Figure 4(a)), the degradation in
throughput due to the additional overhead of attacker identification is very small.

Network under attack. Figure 7(b) shows the throughput of the defense schemes
with and without attacker identification when the network contains five randomly
placed attackers that perform both packet pollution and packet dropping attacks. In
other words, the attackers inject polluted packets and do not forward any correct
packets. We see that when the attackers refuse to forward any correct packets, DART
and EDART suffer around 40% performance degradation in median. This is because
although polluted packets are effectively filtered in DART and EDART, the presence of
attackers in the forwarding node set causes a suboptimal packet forwarding compared
to the case when forwarding nodes are selected only among honest nodes. By identifying
and avoiding attacker nodes, both DART-AI and EDART-AI deliver a performance
similar to that of the Ideal-AI defense scheme.

A key factor for the effectiveness of an attacker identification scheme is the latency of
attacker identification, which measures the duration between the attack execution time
and the attacker identification time. As illustrated in Figure 7(c), the latency of attacker
identification for both DART-AI and EDART-AI remains at a stable level of around 0.5 s
and 1.2 s, respectively. The main reason for the higher attacker identification latency
in EDART-AI is the traceback process, which is not necessary in DART-AI.

Overhead. The overhead of DART-AI and EDART-AI consists of a proactive com-
ponent and a reactive component. The proactive overhead involves the bandwidth
and computation overhead associated with the packet signatures, while the reactive
overhead is due to the overhead for identifying attackers. Figures 8(a) and 8(b) show
the proactive bandwidth and computation overhead of the two attacker identifica-
tion schemes. The proactive bandwidth overhead for both DART-AI and EDART-AI is

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:28 J. Dong et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

fl
ow

s

Bandwidth Overhead (kbps)

DART-AI
EDART-AI

(a) Proactive bandwidth overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

fl
ow

s

Signatures per second

DART-AI
EDART-AI

(b) Proactive computation overhead

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

B
an

dw
id

th
 O

ve
rh

ea
d

(K
B

)

Number of attackers

DART-AI
EDART-AI

(c) Reactive bandwidth overhead

Fig. 8. Computation and bandwidth overhead of the attacker identification schemes.

similar, ranging from 10 kb/s to 30 kb/s. The proactive computation overhead of the
two schemes is also similar, ranging from 30 signatures per second to 90 signatures
per second.

Figure 8(c) shows the reactive bandwidth overhead of DART-AI and EDART-AI, mea-
sured as the total number of bytes delivered for identifying all the attackers; in the
network. The reactive bandwidth overhead increases linearly with the number of at-
tackers; however, the total overhead incurred is only around 20 kB even for 10 attackers
in the network. We also observe that EDART-AI incurs a similar level of bandwidth
overhead as DART-AI, showing that the bandwidth overhead of the traceback proce-
dure in EDART is small.

9. CONCLUSION

In this article, we present two new and practical defense schemes, DART and EDART,
against pollution attacks in intraflow network coding systems for wireless mesh net-
works. DART combines random linear transformations with time asymmetry in check-
sum verification to efficiently prevent packet pollution. EDART incorporates optimistic
packet forwarding to reduce delivery latency and improve system performance. We also
propose enhancements on DART and EDART that allow efficient attacker identifica-
tion and isolation. Besides providing a detailed security analysis and analytical bounds
for our schemes, we demonstrate their practicality through simulations that use a well-
known network coding routing protocol for wireless mesh networks and real-life link
quality measurements from a representative testbed for mesh networks. Our results
demonstrate the following.

—The effect of pollution attacks is devastating in mesh networks using intraflow net-
work coding. Without any protection, a single attacker can reduce the throughput of
80% of all flows to zero.

—Previous solutions are impractical for wireless mesh networks. Even when no attack-
ers are present in the system, the large overhead of previous cryptographic-based
schemes result in as much as 96% degradation in the system throughput.

—Both DART and EDART can effectively filter out polluted packets and restore the
network performance to a level similar to a hypothetical Ideal defense scheme. The
attacker identification schemes for both DART and EDART can identify attackers
within around 1 s of the attack, thus allowing the selection of attacker-free paths
and further improving the performance. All of our schemes incur a small overhead
in terms of both bandwidth and computation.

REFERENCES

AGRAWAL, S. AND BONEH, D. 2009. Homomorphic Macs: Mac-based integrity for network coding. In Proceedings
of the International Conference on Applied Cryptography and Network Security.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:29

AGUAYO, D., BICKET, J., BISWAS, S., JUDD, G., AND MORRIS, R. 2004. Link-level measurements from an 802.11b
mesh network. SIGCOMM Comp. Comm. Rev. 34, 4, 121–132.

AHLSWEDE, R., CAI, N., LI, S.-Y., AND YEUNG, R. 2000. Network information flow. IEEE Trans. Inform.
Theor. 46, 4, 1204–1216.

AWERBUCH, B., CURTMOLA, R., HOLMER, D., NITA-ROTARU, C., AND RUBENS, H. 2008. ODSBR: An on-demand secure
Byzantine resilient routing protocol for wireless ad hoc networks. In ACM Trans. Info. Syst. Sec. 10, 4,
Article 6.

BICKET, J., AGUAYO, D., BISWAS, S., AND MORRIS, R. 2005. Architecture and evaluation of an unplanned 802.11b
mesh network. In Proceedings of the ACM International Conference on Mobile Computing Networking.

BISWAS, S. AND MORRIS, R. 2004. Opportunistic routing in multi-hop wireless networks. SIGCOMM Comp.
Comm. Rev. 34, 1, 69–74.

BONEH, D., FREEMAN, D., KATZ, J., AND WATERS, B. 2009. Signing a linear subspace: Signature schemes for
network coding. In Proceedings of the International Conference on Public Key Cryptography.

CHACHULSKI, S., JENNINGS, M., KATTI, S., AND KATABI, D. 2007. Trading structure for randomness in wireless
opportunistic routing. In Proceedings of the ACM SIGCOMM Data Communications Festival.

CHARLES, D., JAIN, K., AND LAUTER, K. 2006. Signatures for network coding. In Proceedings of the Annual
Conference on Information Sciences and Systems.

CHOU, P. AND WU, Y. 2007. Network coding for the Internet and wireless networks. IEEE Signal Process Mag.
24, 77–85.

CHOU, Y. W. P. A. AND KUNG, S.-Y. 2005. Minimum-energy multicast in mobile ad hoc networks using network
coding. IEEE Trans. Comm. 53, 11, 1906–1918.

COUTO, D. S. J. D., AGUAYO, D., BICKET, J., AND MORRIS, R. 2003. A high-throughput path metric for multi-hop
wireless routing. In Proceedings of the ACM Annual Conference on Mobile Computing and Networking.

CUI, T., CHEN, L., AND HO, T. 2008. Energy efficient opportunistic network coding for wireless networks. In
Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies.

DANA, A. F., GOWAIKAR, R., PALANKI, R., HASSIBI, B., AND EFFROS, M. 2006. Capacity of wireless erasure networks.
IEEE Trans. Inform. Theor. 52, 3, 789–804.

DEB, S. AND MEDARD, M. 2006. Algebraic gossip: A network coding approach to optimal multiple rumor
mongering. IEEE Trans. Inform. Theor. 52, 6, 2486–2507.

DIMAKIS, A. G., GODFREY, P. B., WAINWRIGHT, M. J., AND RAMCHANDRAN, K. 2007. The benefits of network cod-
ing for peer-to-peer storage systems. In Proceedings of the Workshop on Network Coding, Theory, and
Applications.

DONG, J., CURTMOLA, R., AND NITA-ROTARU, C. 2009. Practical defenses against pollution attacks in intra-flow
network coding for wireless mesh networks. In Proceedings of the 2nd ACM Conference on Wireless
Network Security.

DONG, J., CURTMOLA, R., SETHI, R., AND NITA-ROTARU, C. 2008. Toward secure network coding in wire-
less networks: Threats and challenges. In Proceedings of the Fourth Workshop on Secure Network
Protocols.

EFFROS, M., HO, T., AND KIM, S. 2006. A tiling approach to network code design for wireless networks. In
Proceedings of the IEEE Information Theory Workshop.

FRAGOULI, C. AND MARKOPOULOU, A. 2005. A network coding approach to overlay network monitoring. In
Proceedings of the Annual Allerton Conference on Communication Control and Computing.

FRAGOULI, C. AND MARKOPOULOU, A. 2006. Network coding techniques for network monitoring: A brief intro-
duction. In Proceedings of the International Zurich Seminar on Communications.

FRAGOULI, C., WIDMER, J., AND LE BOUDEC, J.-Y. 2006. A network coding approach to energy efficient broadcast-
ing: From theory to practice. In Proceedings of the Annual Joint Conference of the IEEE Computer and
Communications Societies.

GKANTSIDIS, C. AND RODRIGUEZ, P. 2005. Network coding for large scale content distribution. In Proceedings of
the Annual Joint Conference of the IEEE Computer and Communications Societies.

GKANTSIDIS, C. AND RODRIGUEZ, P. 2006. Cooperative security for network coding file distribution. In Proceedings
of the Annual Joint Conference of the IEEE Computer and Communications Societies.

GUERRERO ZAPATA, M. AND ASOKAN, N. 2002. Securing Ad hoc Routing Protocols. In Proceedings of the ACM
Workshop on Wireless Security (WiSe02). 1–10.

HO, T. 2006. On constructive network coding for multiple unicasts. In Proceedings of the Annual Allrton
Conference on Communication Control and Computing.

HO, T., LEONG, B., CHANG, Y.-H., WEN, Y., AND KOETTER, R. 2005. Network monitoring in multicast networks
using network coding. In Proceedings of the IEEE International Symposium on Information Theory.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

7:30 J. Dong et al.

HO, T., LEONG, B., KOETTER, R., MEDARD, M., EFFROS, M., AND KARGER, D. 2004. Byzantine modification detection
in multicast networks using randomized network coding. In Proceedings of the IEEE International
Symposium on Information Theory.

HOU, I.-H., TSAI, Y.-E., ABDELZAHER, T., AND GUPTA, I. 2008. Adapcode: Adaptive network coding for code updates
in wireless sensor networks. In Proceedings of the Annual Joint Conference of the IEEE Computer and
Communications Societies.

HU, Y.-C., PERRIG, A., AND JOHNSON, D. B. 2002. Ariadne: A secure on-demand routing protocol for ad hoc
networks. In Proceedings of the ACM Annual International Conference on Mobile Computing Networking.

JAGGI, S., LANGBERG, M., KATTI, S., HO, T., KATABI, D., AND MEDARD, M. 2007. Resilient network coding in the
presence of byzantine adversaries. In Proceedings of the Annual Joint Conference of the IEEE Computer
and Communications Societies.

JAIN, K. 2005. On the power (saving) of network coding. In Proceedings of the Annual Allerton Conference on
Communication Control and Computing.

JIN, J., HO, T., AND VISWANATHAN, H. 2006. Comparison of network coding and non-network coding schemes
for multi-hop wireless networks. In Proceedings of the IEEE International Symposium on Information
Theory.

KATTI, S., KABATI, D., HU, W., RAHUL, H., AND MEDARD, M. 2005. The importance of being opportunistic:
Practical network coding for wireless environments. In Proceedings of the Annual Allerton Conference
on Communication Control and Computing.

KATTI, S., RAHUL, H., HU, W., KATABI, D., MÉDARD, M., AND CROWCROFT, J. 2006. Xors in the air: practical wireless
network coding. SIGCOMM Comp. Comm. Rev. 36, 4, 243–254.

KEHDI, E. AND LI, B. 2009. Null keys: Limiting malicious attacks via null space properties of network
coding. In Proceedings of the Annual Joint Conference of the IEEE Computer and Communications
Societies.

KROHN, M., FREEDMAN, M., AND MAZIERES, D. 2004. On-the-fly verification of rateless erasure codes for efficient
content distribution. In Proceedings of the IEEE Symposium on Security and Privacy.

LI, L., RAMJEE, R., BUDDHIKOT, M., AND MILLER, S. 2007. Network coding-based broadcast in mobile ad-hoc
networks. In Proceedings of the Annual Joint Conference of the IEEE Computer and Communications
Societies.

LI, Q., CHIU, D.-M., AND LUI, J. Nov. 2006. On the practical and security issues of batch content distribution
via network coding. In Proceedings of the IEEE International Conference on Network Protocols.

LIN, Y., LI, B., AND LIANG, B. 2008. Efficient network coded data transmissions in disruption tolerant net-
works. In Proceedings of the Annual Joint Conference of the IEEE Computer and Communications
Societies.

LUN, D. S., MÉDARD, M., KOETTER, R., AND EFFROS, M. 2005a. Further results on coding for reliable commu-
nication over packet networks. In Proceedings of the IEEE International Symposium on Information
Theory.

LUN, D. S., RATNAKAR, N., KOETTER, R., EDARD, M. M., AHMED, E., AND LEE, H. 2005b. Achieving minimum
cost multicast: A decentralized approach based on network coding. In Proceedings of the Annual Joint
Conference of the IEEE Computer and Communications Societies.

MÉDARD, M., EFFROS, M., HO, T., AND KARGER, D. R. 2003. On coding for non-multicast networks. In Proceedings
of the Annual Allerton Conference on Communication Control and Computing.

PARK, J.-S., GERLA, M., LUN, D. S., YI, Y., AND MEDARD, M. 2006. Codecast: A network-coding-based ad hoc
multicast protocol. IEEE Wireless Comm. 13, 5, 76–81.

PERRIG, A., CANETTI, R., TYGAR, J. D., AND SONG, D. 2002a. The TESLA broadcast authentication protocol. RSA
CryptoBytes 5, 2, 2–13.

PERRIG, A., SZEWCZYK, R., TYGAR, J. D., WEN, V., AND CULLER, D. E. 2002b. Spins: security protocols for sensor
networks. Wireless Netw. 8, 5.

RADUNOVIC, B., GKANTSIDIS, C., P. KEY, S. G., HU, W., AND RODRIGUEZ, P. March 2007. Multipath code casting for
wireless mesh networks. Tech. rep. MSR-TR-2007-68. Microsoft Research, Redmond, WA.

SUN, K., NING, P., AND WANG, C. 2006a. Secure and resilient clock synchronization in wireless sensor networks.
IEEE J. Select. Areas. Comm. 24, 2.

SUN, K., NING, P., AND WANG, C. 2006b. Tinysersync: secure and resilient time synchronization in wire-
less sensor networks. In Proceedings of the ACM Conference on Computer and Communcations
Security.

TRASKOV, D., RATNAKAR, N., LUN, D. S., KOETTER, R., AND MÉDARD, M. 2006. Network coding for multiple unicasts:
An approach based on linear optimization. In Proceedings of the IEEE International Symposium on
Information Theory.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

Practical Defenses Against Pollution Attacks in Intraflow Network Coding 7:31

WANG, D., SILVA, D., AND KSCHISCHANG, F. R. 2007. Constricting the adversary: A broadcast transformation
for network coding. In Proceedings of the Annual Allerton Conference on Communication Control and
Computing.

WIDMER, J. AND BOUDEC, J.-Y. L. 2005. Network coding for efficient communication in extreme networks. In
Proceedings of the ACM SIGCOMM Workshops on Delay-Tolerent Networking.

WIDMER, J., FRAGOULI, C., AND BOUDEC, J.-Y. L. 2005. Energy-efficient broadcasting in wireless ad-hoc networks.
In Proceedings of the IEEE International Sympossium on Network Coding.

YU, Z., WEI, Y., RAMKUMAR, B., AND GUAN, Y. 2008. An efficient signature-based scheme for securing network
coding against pollution attacks. In Proceedings of the Annual Joint Conference of the IEEE Computer
and Communications Societies.

ZHAO, F., KALKER, T., MEDARD, M., AND HAN, K. 2007. Signatures for content distribution with network coding.
In Proceedings of the IEEE Internation Symposium on International Theory.

Received September 2009; revised June 2010; accepted September 2010

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 7, Publication date: May 2011.

