Temporal Sequence Learning and Data Reduction for Anomaly Detection

By Terran Lane and Carla E. Brodley

Presented by Maja Pusara
ECE Department – Purdue University
February 5, 2004
Intrusion Detection Classification

- **Intrusion Detection Systems**
 - **Host Intrusion Detection Systems - HIDS**
 - **Network Intrusion Detection Systems - NIDS**
Intrusion Detection Classification (Continued)

Intrusion Detection Systems

Signature Matching (Knowledge-Based)

Anomaly Detection (Behavior-Based)
IDS Design Process

Data Collection

Data Normalization

Feature Selection

Classification
Data Sources for HIDS

- Command Line
- System Calls
- Mouse Movement
- GUI Events
- Keystrokes
- ...

CS 590D, 2004
Data Collection

Command line data:

% pwd
% ls
% cat file1.txt file2.txt > file3.txt
% rm file1.txt

Intrusion Detection System
Instance-Based Anomaly Detection System

ls -1af cd foo/ cat bar.c baz.c ...

Tokenize()

ls -1af cd <1> cat <2> ...

Sim0

Profile

Sim0

F0

Profile

Class0

Params

1 1 1 1 0 0 1 0 1 1 ...

CS 590D, 2004
Instance-Based Anomaly Detection System
What is in the Data Set?

Discrete vs. Continuous
Time dependent vs. Time independent
Numerical vs. Non-numerical

% pwd
% ls
% cat <2> > <1>
% rm <1>
What is in the Data Set?

- **Discrete** vs. Continuous
- **Time dependent** vs. Time independent
- Numerical vs. **Non-numerical**

Temporal Sequence Data
Feature Extraction
Similarity Function

• Input:
 – Data stream forming a feature vector of fixed-length L
 – User’s behavioral profile containing D sequences

• Output:
 – Temporal sequence of real-valued similarity measures
Similarity Function (Continued)

Given two sequences of equal length L

$$X = (x_0, x_1, \ldots, x_{l-1})$$

$$Y = (y_0, y_1, \ldots, y_{l-1})$$

We compute the following

$$w(X, Y, i) = \begin{cases}
0 & \text{if } i < 0 \text{ or } x_i \neq y_i \\
1 + w(X, Y, i - 1) & \text{if } x_i = y_i
\end{cases}$$

$$\text{Sim}(X, Y) = \sum_{i=0}^{l-1} w(X, Y, i).$$
Similarity Function (Continued)

\[
\text{Dist}(X, Y) = \text{Sim}_{\text{max}} - \text{Sim}(X, Y)
\]

\[
\text{Sim}_{\text{max}} = \text{Sim}(X, X) = \sum_{i=1}^{l} i = l(l + 1)/2.
\]

\[
\text{Sim}_D(X) = \max_{Y \in D} \{\text{Sim}(Y, X)\}
\]
Noise Suppression

ls -laf cd foo/ cat bar.c baz.c ...

Tokenize()

ls -laf cd <1> cat <2> ...

Sim0

Profile

I I I 0 1 0 0 1 0 1 1 ...

F0

Class0

Params
Noise Suppression (Continued)

• Input:
 – Results of the similarity function for each sequence over a sliding window of W sequences

• Output:
 – Temporal sequence of smoothed real-valued similarity measures
Noise Suppression (Continued)

- Sliding window of W sequences:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \ldots & W & W+1 \\
\end{array}
\]

- 1st W sequences

- 2nd W sequences \ldots

- Noise suppression function:

\[
v_D(j) = \frac{1}{W_{i=j-W+1}} \sum_{i=j-W+1}^{j} \text{Sim}_D(i)
\]
Classification
What Learning Method to Apply?

Supervised
- Closed setting
- Labeled data
- Examples:
 - Decision trees
 - Neural networks

Unsupervised
- Open setting
- Non-labeled data
- Examples:
 - Markov models
 - Instance-based learning
IBL Classification

• Input:
 – Temporal sequence of smoothed real-valued similarity measures

• Output:
 – Binary values:
 • 1 is “normal”
 • 0 is “abnormal”
Threshold Selection

![Histogram showing threshold selection](image)

- **U1**: Anomalous User (Unobservable distribution)
- **U0**: Profiled User

Legend:
- Dashed line: Bayes-optimal threshold
- Dotted line: Acceptable False Alarm threshold
Threshold Selection (Continued)

\[T_{\text{min}} = r/2 \]

\[T_{\text{max}} = r/2 \]

"Normal" Range

\[T_{\text{min}} = r/2 \quad r \quad T_{\text{max}} = r/2 \]
Classification Function

• Neyman-Pearson hypothesis test:

\[
\text{class}(v) = \begin{cases}
1 & \text{if } P_{\{T\}}(v) \geq r \\
0 & \text{if } P_{\{T\}}(v) < r
\end{cases}
\]

• Acceptance region:
 – Between T-min and T-max
 – Smaller r implies a wider acceptance region
Concept Drift
Empirical Evaluation

• Real-world data sets:
 – 8 UNIX users
 – 7,000 tokens per user
 – Collected over a time period of two years

• Performance criteria:
 – Accuracy
 • Acceptance rate
 • Alarm rate
 – Time to alarm (TTA)
Experimental Setup

• Division of the data set:

<table>
<thead>
<tr>
<th>Complete Training Data: 7000 instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train 1</td>
</tr>
<tr>
<td>Train 2</td>
</tr>
<tr>
<td>Train 3</td>
</tr>
</tbody>
</table>

• Parametric values:
 - Sequence length L=10
 - Window length W=100
 - $r \in \{0.5, 1, 2, 5, 10\}$%
Experimental Results: Accuracy
Experimental Results: TTA
Storage Reduction

- **Instance selection:**
 - Random
 - FIFO
 - LRU
 - LFU

- **Clustering**
 - K-centers
 - Greedy clustering algorithm
Instance Selection Results: Accuracy

- Random
- FIFO
- LRU
- LFU
Instance Selection Results: TTA

Comparative Mean Times to Alarm

- Random
- FIFO
- LRU
- LFU

CS 590D, 2004
Clustering Algorithms

• K-centers algorithm:
 – $K = 2$

Original data set Clustered data set
Clustering Algorithms (Continued)

- Greedy clustering algorithm:

\[\text{val}(C) = \sum_{x \in C} \sum_{y \in C} \text{Dist}(x, y) / |C|^2 \]

- Halting criterion for \(\text{val}(C) \):
 - Its 1st derivative must be within \(\epsilon \) of 0 for some \(\epsilon \)

- Similarity between a sequence \(X \) and a cluster is:

\[\text{Sim}(X, C_{\text{cent}}) \]
Clustering Algorithms (Continued)

- Complete greedy clustering algorithm:
 - Maximizes the analog of mean intracluster distance
 \[
 \text{val}\{C_1, C_2, \ldots, C_n\} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \text{Dist}(C_{i, \text{cent}}, C_{j, \text{cent}})}{n^2}.
 \]

- Halting criterion:
 - Threshold C
 - Small C implies many clusters and vice versa
Experimental Setup

• K-centers:
 – $K = \{50, 75, 100, 125, 150\}$ clusters
 – CPU time constraint = 10,000 cycles

• Greedy clustering algorithm:
 – $C = \{0.25, 0.5, 0.75\}$
 – $\epsilon = 0.005$
Results: Greedy versus K-Centers

K-centers $K = 150, C = 0.25$
Results: Greedy versus Base System

Base system

C = 0.25

Base system
Results: Greedy versus LRU

LRU

C = 0.25, S = 250

LRU
Impersonation Instances

<table>
<thead>
<tr>
<th>USER0</th>
<th>USER1</th>
<th>USER2</th>
<th>USER3</th>
<th>USER4</th>
<th>USER5</th>
<th>USER6</th>
<th>USER7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER0</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER1</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>USER4</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER5</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USER6</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER7</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER0</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER1</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>USER2</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>USER3</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USER4</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER5</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USER6</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER7</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER0</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>USER1</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USER2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>USER3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USER4</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>USER5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>USER6</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>USER7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CS 590D, 2004
Summary and Conclusions

• Goal:
 – Identification of potentially malicious intrusions while falsely flagging innocuous actions as rarely as possible

• Approach:
 – Anomaly detection via instance-based learning
 – Storage considerations

• Experimental results:
 – High false alarm rate during classification
 – Greedy clustering algorithm outperformed other storage-reduction algorithms
Future Work

• Online training
• Feature set engineering
 – File names, extensions or types
 – Login session data
• Alternative similarity measures
 – Markov models
• Metalearning and hierarchical classifiers
• Domain knowledge
• Automatic parameter selection