Proactive Recovery in a Byzantine-Fault-Tolerant System

Paper by Miguel Castro and Barbara Liskov
Presentation by Paul Kuliniewicz
Problem

- Ordinary Byzantine-fault-tolerant systems can only handle f faults during the lifetime of the system.
- Once $f + 1$ faults occur, the system fails.
- If we can recover faulty replicas, the system can handle more than f faults (as long as no more than f occur in any given window).
- But how do we recover in a Byzantine environment?
Approach

- **Proactive recovery** – We can’t reliably detect faults, so periodically recover replicas.

- **Fresh messages** – Old messages could’ve come from a faulty replica, so ignore messages that are too old.

- **Efficient state transfer** – Recovered replicas need to bring their state up to date quickly.
Faulty replicas can:

- behave arbitrarily
- coordinate with each other
- delay messages
- inject messages
- delay correct replicas (but not indefinitely)
Model: Network

- Clients and replicas communicate by sending messages.

- Messages:
 - are asynchronous
 - can be dropped
 - can be delayed
 - can be duplicated
 - can arrive out of order
Model: Replicas

- Secure Cryptographic Coprocessor
 - Signs and decrypts using inaccessible private key
 - True random number generator
 - Reliable counter
- Read-Only Memory
 - Stores public keys and program code
- Watchdog Timer
 - Periodically triggers recovery monitor
 - Tamperproof without physical access
The system is a distributed state machine.
All operations are deterministic.
All correct replicas must agree on the order of operations.
Definitions

- \mathcal{R} is the set of replicas, numbered 0 through $|\mathcal{R}| - 1$.

- One view v is active at a time. One replica is the primary p of the view, and the others are backups.

 - $p = v \mod |\mathcal{R}|$

- A certificate is a collection of messages from different replicas that certify that some statement is correct.
Keys

- Each system has a fixed public and private key.

- \(k_{i,j} \) – session key used to send from replica \(i \) to replica \(j \).

 - \(k_{i,j} \neq k_{j,i} \)

- \(k_{c,i} \) – session key used to send from client \(c \) to replica \(i \).

 - \(k_{c,i} = k_{i,c} \)

- Session keys can (and will!) change over time.
Crypto Notation

For some message m:

- $\langle m \rangle_{\mu_{i,j}} - m$ with MAC using $k_{i,j}$.
- $\langle m \rangle_{\alpha_i} - (\langle m \rangle_{\mu_{i,1}}, \ldots, \langle m \rangle_{\mu_{i,|R|-1}})$.
- $\langle m \rangle_{\sigma_i} - m$ signed with i’s private key.
- $\langle m \rangle_{\epsilon_j} - m$ encrypted with j’s public key.
High-Level Overview

- Same basic idea as in "Practical Byzantine Fault Tolerance," but:
 - Replicas are automatically recovered at regular intervals.
 - (Almost) all authentication done using MACs.
 - View changes are more complicated.
Key Exchange

- Replica i generates new inbound session keys and multicasts:
 \[
 \langle \text{NEW-KEY}, i, \ldots, \{k_{j,i}\}_{\epsilon_j, \ldots, t}\rangle_{\sigma_i}.
 \]

- Secure counter t prevents replay attacks.

- New keys generated when replica is recovered, or periodically otherwise.

- After sending new keys, replicas throw away messages in incomplete certificates in log authenticated with old keys.
 - Guarantees all messages in a certificate are equally fresh.
Key Exchange (2)

- If j can’t authenticate a message it receives from i, j resends its last new-key message to i.

- Clients use similar procedure to distribute their session keys.
Processing Requests

- Same basic three-phase procedure as before:
 - Client c sends $\langle \text{REQUEST}, o, t, c \rangle_{\alpha_c}$.
 - Primary chooses n and multicasts $\langle \langle \text{PRE-PREPARE}, v, n, d \rangle_{\alpha_p}, m \rangle$.
 - Replica i multicasts $\langle \text{PREPARE}, v, n, d, i \rangle_{\alpha_i}$.
 - Replica i multicasts $\langle \text{COMMIT}, v, n, d, i \rangle_{\alpha_i}$.
 - Replica i executes and sends $\langle \text{REPLY}, v, t, c, i, r \rangle_{\mu_{i,c}}$ to client.
More Déjà Vu:

- Every K requests, replica i multicasts $\langle \text{CHECKPOINT}, n, d, i \rangle_{\alpha_i}$.
- Upon receiving $2f + 1$ valid checkpoint messages for n, the checkpoint is stable; delete log entries $\leq n$.
- Adjust water marks: $h = n$, $H = h + L$.

Checkpointing
View Changes

- Replicas change the current view when they suspect the primary has failed.
- All correct replicas agree on committed sequence numbers across view changes.
- Views are maintained long enough to make some progress.
- Ideas the same as before, but implementation is complicated by the limited lifetime of certificates.
Recovery

- Watchdog timer triggers recovery monitor.
- Log and system state are saved to disk.
- Replica is rebooted from code stored in ROM.
- Replica loads log and system state from disk.
 - But there’s no guarantee *these* are correct!
Recovering from Recovery

- Replica must process requests as soon as its code is loaded.
 - Otherwise it’s essentially a failed replica.
 - If f are currently failed, we can’t be number $f + 1$!

- Yet need to verify (or correct!) log and system state before executing any operations.

- Worse, the attacker could have the stored session keys and can forge messages to and from the replica!
Step 1: Regenerating Keys

- Must assume that all session keys have been compromised.
- Throw away all client session keys.
- Generate new session keys for the other replicas and distribute them.
Step 2: Finding H_M

- Need an upper bound H_M on high-water mark to discard bogus log entries.
- i multicasts $\langle \text{QUERY-STABLE}, i, r \rangle_{\alpha_i}$.
 - r is a random nonce.
- Other replicas j reply with $\langle \text{REPLY-STABLE}, c, p, i, r \rangle_{\mu_{j,i}}$.
 - $c =$ sequence number of last checkpoint.
 - $p =$ sequence number of last prepared request.
- i keeps doing this, keeping the smallest c and maximum p from each replica.
Step 2: Finding H_M

(2)

- i chooses c_M to be the c value from replica j such that:
 - $2f$ other replicas’ c values are $\leq c_M$, and
 - f other replicas’ p values are $\geq c_M$.

- i sets $H_M = c_M + L$.

- c_M must be greater than any stable checkpoint.

- c_M must be close to a correct replica’s checkpoint, to prevent faulty replicas from delaying recovery.
Step 3: Recovery Request

- i issues request
 \[\langle \text{REQUEST}, \langle \text{RECOVERY}, H_M \rangle, t, i \rangle_{\sigma_i};\] gets assigned sequence number n_R.

- Other replicas issue new session keys when executing the request.
 - $H_R = \lfloor n_R/K \rfloor \cdot K + L$ bounds sequence number of possibly-forged messages from i.

- i waits for $2f + 1$ replies (not just $f + 1$).

- i computes recovery point $H = \max(H_M, H_R)$ and a valid view.
Step 4: Fetch State

- i will be *recovered* once checkpoint H is stable.
 - Guarantees that that state is held by $f + 1$ correct replicas.

- Other replicas know this too.
 - Changing session keys prevents bogus messages from i with sequence numbers higher than H.

State Transfer

- State transfer is needed when a replica needs to be brought up to date.
- Must be fast and efficient, since it’s needed each time a replica undergoes recovery.
- Must also guarantee replicas receive correct state information.
Representing State

- State is a contiguous memory range divided into *pages*.
- Trees represent state at each checkpoint:
 - Leaf nodes are individual pages.
 - Internal nodes store meta-data for children.
- Data at each node includes:
 - lm – Sequence number of last checkpoint where node (or children) was modified.
 - d – Digest of the node’s data.
 - p – Data contained within the page (leaf nodes only).
State Tree
What’s in a Digest?

- Leaf nodes:
 - \(d = \text{MD5}(x, lm, p) \)

- Internal nodes:
 - \(d = \text{MD5}(x, lm, d_1 + \ldots + d_n) \)
 - \(d_1, \ldots, d_n \) are digests of the child nodes
 - Modular sum is used

- Can verify digests of child nodes if the digest of the parent is known.
Trees are Helpful

- Replicas can traverse trees when transferring state, only transferring nodes that have changed.

- Copy-on-write can be used to reduce the amount of data that must be stored for checkpoints.
Fetching State

- i multicasts $\alpha_i \langle \text{FETCH}, l, x, lc, c, k, i \rangle$ to get information at index x of level l.

- lc is last checkpoint number i knows about.

- If $c \neq -1$, i wants replica k to send it the value of the node as of checkpoint c.

- i only sets $c \neq -1$ if it already knows the digest of the node it’s requesting.
Saving Internal Nodes

- If k has a checkpoint c, it replies with \langleMETA-DATA, c, l, x, P, k \rangle.
 - $P = \{\langle x', lm, d \rangle | x'$ child of x AND $lm > lc \}$
 - No MAC needed, since i can verify the digests using the parent node’s digest.

- Replicas $\neq k$ reply only if they have a stable checkpoint greater than lc or c.

- i retries with different k until k sends a valid reply or i gets $f + 1$ identical non-k replies.
Fetching Leaf Nodes

- Works same as fetching internal nodes, except:
 - Metadata is for that node, not its (nonexistent) children.
 - k replies with $\langle \text{DATA}, x, p \rangle$.

- This is efficient; the state itself only gets transferred once!

- i keeps fetching more nodes until its state tree is up to date.
Fetching Example
Vulnerability Window

Vulnerability window is \(T_v = 2T_k + T_r \).

- \(T_k \) – maximum period between key refreshes
- \(T_r \) – maximum time needed for recovery

Little control over \(T_r \) during a DoS attack.

\(T_k \) strongly influenced by watchdog timeout period \(T_w \).

But tradeoff between security and performance.
Practical Considerations

- $T_w = 4 \cdot s \cdot R_n$ is suggested.
 - R_n is average recovery time under normal load.
 - s is a safety factor.

- Stagger replicas’ recovery cycles.

- Avoid monoculture of replica implementations.
 - Want probabilities of replica failures to be independent of each other.
The Real World

<table>
<thead>
<tr>
<th>system</th>
<th>Andrew100</th>
<th>Andrew500</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS-rec</td>
<td>443.5</td>
<td>2257.8</td>
</tr>
<tr>
<td>BFS</td>
<td>381.3</td>
<td>2202.9</td>
</tr>
<tr>
<td>NFS-std</td>
<td>332.0</td>
<td>1781.6</td>
</tr>
</tbody>
</table>

- Assumes 30 sec reboots and $T_k = 15$ sec.
- BFS-rec is 16% slower than BFS in Andrew100.
- BFS-rec is 2% slower than BFS in Andrew500.
Contributions

A distributed state machine that can tolerate any number of Byzantine faults as long as:

- No more than f faults occur within any window, and
- Failed replicas can be recovered

Algorithm kept relatively efficient by avoiding expensive cryptographic operations whenever possible.