Byzantine Tolerant Group Communication Systems

Ziad El Bizri
October 6th, 2004
Intrusion Tolerance by Unpredictable Adaptation
(http://itua.bbn.com/, http://www.perform.csl.uiuc.edu/itua.html)

Supported by the Defense Advanced Research Projects Agency (DARPA)

A joint effort by BBN Technologies, the University of Illinois, the University of Maryland, and Boeing
Main approach

- Develop a robust decentralized intrusion-response mechanism
 - Employs intrusion tolerance in multiple layers: Group Communication System, Gateways and Managers
 - Uses unpredictability in adaptive response
 - Exploits redundancy to tolerate component failures

- Two main assumptions
 - Attack model is *staged*: an attacker can only attack one domain after another
 - Intrusion detection is reliable: corrupt processes can be detected effectively
Architecture
Host

- **Subordinate**
 - Forms a *subordinate group* with other subordinate hosts and the manager host in the security domain
 - In *security advisor* role: collect information, reacts locally to events and reports to the domain manager
 - In *replication management* role: responsible for starting and killing replicas

- **Manager**
 - Forms a *manager group* with all other manager hosts across all security domains
Group communication primitives

- Built on existing secure group communication systems
- Group Membership Protocol
 - Maintains group membership: removing corrupt processes and joining new processes
- Reliable Multicast Protocol
 - Two phase protocol
 - Uses cryptographic primitives
- Total-Ordering Protocol
 - Ensures consistency by providing global sequence numbers
MAFTIA

- Malicious-and Accidental-Fault Tolerance for Internet Applications (http://www.maftia.org)
- A European joint project by University of Newcastle, Universidade de Lisboa, Qinetiq, IBM Zurich, LAAS-CNRS, Saarland University
- Three main areas of work
 - Architecture of MAFTIA
 - Design of mechanisms and protocols
 - Formal verification and assessment
Failure models

- Controlled failure assumptions
 - Failures are bounded

- Arbitrary failure assumptions
 - Byzantine behavior

- Hybrid failure model
 - Some parts of the system can exhibit arbitrary failures, while other parts can be entirely trusted (controlled failure)
 - Every subsystem must be modeled

- Composite failure model
 - Represent failures resulting from different classes of faults
 - Define a set of local techniques to handle distributed failures
Fortress model

- Uses composite failure model
- Recursive use of fault tolerance and fault prevention
 - Removal of internal vulnerabilities (patching)
 - Prevention of attacks (IDS)
 - Intrusion tolerant mechanisms inside the components
Trusted Timely Computing Base

- Small component that can be formally verified
- Trusted: can only exhibit a fail-stop behavior (non Byzantine)
- Provides trusted version of Timely Computing Base services
 - Trusted random number generation
 - Trusted absolute timestamping
 - Trusted block consensus
 - Trusted block equality test
 - Local authentication
 - Distributed authentication
Node architecture

- Two level hierarchy: *participant* level and *site* level
- A *participant-group* is mapped to a *site-group* (containing all the sites of the participants in the participant group)
- Site level
 - Multipoint network module (for multicast communication)
 - Site failure detector (assessing connectivity and correctness of sites)
 - Site membership (creates and maintains membership and view of site-groups)
 - Communication support services module (basic cryptographic primitives)
Node architecture (Cont’d)

- Participant level
 - Participant failure detector module (assess liveness of local participants)
 - Participant membership module (creates and maintains membership and view of participant-groups)
 - Activity support services module (replication and transaction management)
System architecture and Security

- Network (arbitrary failure model)
- Runtime environment (OS, protocol kernel, TTCB)
 - Must be made fail controlled
 - Select an OS that is as trustworthy as possible
 - Patch it (remove known vulnerabilities)
 - Use intrusion detection and countermeasures
 - Protect the host (close unused user accounts, strong passwords, etc…)
 - Protect protocol kernel from buffer overflow and input validation attacks
System architecture and Security (2)

- Site level abstraction must be protected
 - Attacks from OS kernel and the network (obfuscation of the code, protection from buffer overflow and input validation)
 - Joins and leaves of sites have to be secured (TTCB trusted block equality test, TTCB distributed authentication service, all sites must agree before accepting a new site into the group)
 - Communication over the network has to be secured (Encryption, checksum generated by TTCB, key management)

- Participant level
 - Must be built trustworthy (as before)
 - Participant join decision is voted upon by all participants
 - Secure identification using ID/password or secret key
Conclusion

- Two architectures based on Intrusion Tolerance
 ITUA and MAFTIA