
Towards Robust Overlay Networks: Enhancing
Adaptivity Mechanisms with Byzantine-Resilience

AAron Walters Kevin Bauer Cristina Nita-Rotaru
Department of Computer Science and CERIAS, Purdue University

250 N. University St., West Lafayette, IN 47907 USA
{arwalter,ksbauer,crisn}@cs.purdue.edu

Abstract— Adaptive measurement-based overlay networks of-
fer increased performance and resilience to benign failures for
end-to-end communication by using aggressive adaptivity mech-
anisms. These mechanisms dynamically optimize application-
centric metrics such as latency, jitter, bandwidth, and loss rate.
However, end-systems are more vulnerable than core routers,
making overlay networks susceptible to malicious attacks coming
from untrusted outsiders, and especially from trusted (but
compromised) members of the overlay. Unlike outsider attacks,
insider (or Byzantine) attacks can not be prevented by sim-
ply deploying cryptographic authentication mechanisms. In this
work, we identify and classify insider attacks against adaptivity
mechanisms in overlay networks and demonstrate several of
them against the ESM/Narada multicast overlay system. The
attacks target the overlay network construction, maintenance,
and availability and allow malicious nodes to control significant
traffic in the network, facilitating further attacks such as selective
forwarding and traffic analysis. We believe this work is the
first to classify insider attacks against adaptivity mechanisms
in distributed systems and the first to propose techniques to
enhance the adaptivity mechanisms with Byzantine-resilience. We
demonstrate the effectiveness of the newly proposed techniques
through real-life deployments and emulations conducted onthe
PlanetLab and DETER testbeds, respectively.

Keywords: Overlay Networks, Security, Insider Attacks,
Byzantine-Resilience, Adaptivity

Technical areas:(1) Security; (2) Peer-to-peer; (3) Operat-
ing systems and middleware

Contact author: Cristina Nita-Rotaru, crisn@cs.purdue.edu

I. I NTRODUCTION

Numerous collaborative Internet applications, such as con-
ferencing and video broadcasting, have benefited tremendously
from multicast services. Multicast overlay networks were
proposed as a viable application level multicast architecture
to overcome the scarcity of native IP multicast deployments.
Examples of multicast overlay networks include ESM/Narada
[1], Nice [2], ALMI [3], and Overcast [4]. In these types
of networks, buffering and relaying functionality is moving
from core routers toward end-systems. Efficient dissemination
structures, such as trees and meshes, allow for reduced over-
head as well as increased throughput and reliability. Further-
more, many overlay networks utilize adaptivity mechanisms
to increase performance and provide fault tolerance for end-
to-end communication. These mechanisms seek to dynam-
ically optimize application-centric metrics such as latency,

jitter, bandwidth, and loss rate. Such metrics are typically
collected by overlay nodes through passive observation of their
performance from the source (primary metrics) and through
periodic probing of peer nodes about their performance from
the source (secondary metrics). The resulting performanceof
the overlay network depends on the accurate interpretationof
performance observations, as well as the correctness of the
responses received from probed nodes.

While pushing functionality to end-systems allows overlay
networks to achieve better scalability, it also makes them
more vulnerable. In such systems, trust is often pushed to the
fringes of the Internet, where end-nodes are more likely to be
compromised than core routers [5]. As a result, end-system
overlay networks are more vulnerable to malicious outsider
attacks, as well as to insider attacks coming from (potentially
colluding) attackers that infiltrate the overlay or compromise
member nodes. In particular, attacks that target the overlay
construction and maintenance can be extremely dangerous
since they can allow an attacker to control a significant part
of the traffic. This can be used as a mechanism to further
facilitate other attacks such as selective data forwarding,
cheating, traffic analysis, and attacks against availability (i.e.,
partitioning). Some of the resulting attacks, such as selective
forwarding, may ultimately be noticed by the victim and a
posteriori detection mechanisms can be deployed. However,
other attacks, such as traffic analysis, do not have immediately
observable results. It is therefore critical to address theprimary
attacks that allow the attacker to obtain advantageous positions
in the overlay structure.

This work constitutes the first effort to identify and analyze
a set of advanced threats against adaptive overlay networks.
Unlike previous work [6], [7], our work considers the effects
of insider adversaries, also referred to as Byzantine attackers.
Current adaptivity mechanisms lack Byzantine-resilienceand
assume that the information reported by probed nodes is
always correct. Furthermore, such mechanisms fail to take into
account the effects of Byzantine attackers on their surrounding
environment. Attackers in close proximity to a given node
may influence the network in order to manipulate the metrics
collected and the subsequent decisions made by that node.

In this paper, we provide an introduction to Byzantine
attacks against standard adaptivity mechanisms in overlay
networks, an initial analysis of how such attacks can be mit-
igated and prevented throughout the life-cycle of the overlay,



and an in-depth solution to a critical aspect of the problem:
preventing poor adaptation decisions in networks influenced
by attackers. Our solution lies in performing spatial and
temporal outlier analysis on primary (measured) and secondary
(probed) metrics to allow an honest node to make better use
of available information before making an adaptation decision.
Furthermore, we demonstrate the effects of the identified
attacks on an advanced adaptive overlay network operating
over real Internet infrastructure. Finally, we experimentally
show the usefulness of our outlier detection technique for
preventing bad decisions in the face of Byzantine attackers.
We summarize our key contributions:

• We provide a characterization of the types of mechanisms
currently used to achieve adaptivity in overlay networks
and identify attacks against these mechanisms. We re-
fer to these attacks, which target overlay construction,
maintenance, and stability, asattraction, repulsion, and
disruption.

• We demonstrate the effectiveness of the above identified
attacks against the well-known adaptive multicast sys-
tem, ESM [1], and its Narada multicast protocol. Our
experiments, which were conducted using both real-life
deployments and emulations, demonstrate that, although
ESM employs an advanced set of adaptivity mechanisms,
it is unable to mitigate the attacks posed by a malicious
adversary.

• We provide an analysis of the solution space for mitigat-
ing Byzantine attacks that exploit adaptivity: preventing
unnecessary or unnatural adaptations, increasing stability
by incorporating metrics that reflect stability into the
decision process, detecting malicious behavior that results
in observable degradation of service, and reacting to the
detected malicious nodes.

• We focus on providing a solution for what we believe
is the most critical and challenging problem: prevent-
ing bad adaptations. We propose techniques to reduce
incorrect and unnecessary adaptations by using spatial
and temporal correlations to perform context-sensitive
outlier analysis. A key component of our solution is
based on the observation that several estimated metrics
are dependent variables and the overlay and multicast tree
logical networks share overlapping physical links.

• We demonstrate the effectiveness of our defense mecha-
nisms in the context of the ESM system through exper-
iments conducted on the PlanetLab [8] and DETER [9]
testbeds.

Roadmap:The rest of the paper is organized as follows.
We provide a survey of adaptivity mechanisms employed by
overlay networks and classify attacks against them in Section
II. We demonstrate several attacks against the adaptivity
mechanisms employed by ESM in Section III and propose
defense mechanisms in Section IV. We overview related work
in Section V. We present our conclusions in Section VI.

II. ATTACKS EXPLOITING ADAPTIVITY MECHANISMS

The benefits of employing adaptivity to address intermittent
failures and degraded performance associated with dynamic
network conditions have been recognized since the earliest
days of the ARPANET [10]. Adaptivity mechanisms based
on measurements of network characteristics have been used
more recently in the design of overlay networks [1], [2], [4],
wireless networks [11] and sensor networks [12]. However,
these mechanisms can not overcome attacks performed by
insider adversaries. As the benefits of adaptive protocols are
evident, what is needed is to enhance these mechanisms with
resilience to Byzantine attacks. As a first step towards thisgoal
we first overview the main techniques that are used to augment
adaptivity and improve resiliency in overlay networks. We
then provide a characterization of insider attacks that exploit
adaptivity mechanisms and affect the overlay’s construction,
maintenance, and availability.

A. Adaptivity Mechanisms

An adaptivity mechanism allows a network protocol or
system to adjust to network environmental conditions with
the goal of improving its performance and availability. The
performance can be defined by application-centric metrics
such as latency, jitter, bandwidth, and loss rate. The adaptation
process consists of collecting information about the network
conditions and making a decision to change, oradapt, based
on some decision criteria. We now explore two areas, data
quality and decision quality, in which protocol designers have
typically developed mechanisms to improve adaptivity.

1) Data Quality: A critical factor for the effectiveness of
an adaptivity mechanism is the quality of the data observation
and estimation, as well as the ability of the metrics used to
accurately reflect the state of the network environment. An
additional factor can be scaling down the data during process-
ing in order to decrease the associated overhead. Examples of
factors that influence data quality are data freshness, variability
and the presence of noise. Mechanisms related to these issues
are data sampling, data smoothing, metric construction, and
data summarization, and aggregation.

Data sampling.Frequent sampling or probing, also referred
as data sampling, is a method used to prevent staleness of
information and subsequent oscillations. It is desirable to have
a high frequency of sampling to decrease mispredictions, as
it was shown in the design of RON [13]. However, frequent
sampling can introduce a significant overhead in the network.

Data smoothing.Measured variables often exhibit a large
amount of variance or errors, especially in discrete measure-
ments of continuous valued functions. Data smoothing is a
technique used to reduce and eliminate the noise and vari-
ability in the samples of physical state variables. The method
is also often used to reduce the effects of erratic changes
in the measured values and results in effective filtering. For
example, in [14] a smoothed Round Trip Time (RTT) is used
as the metric for the cost of the overlay link to prevent wild
oscillations in measurements.
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Metric construction. Another technique commonly used to
address the instabilities in measured data is metric construc-
tion. New metrics are constructed from existing metrics to
improve the estimation process. These methods can be used
to elucidate relationships between metrics useful for estimation
that may not have been discernible when considering the
metrics in isolation. An excellent example of the importance
of metric construction can be found in [15], where a new
metric is constructed by combining the latency as perceived
by a neighbor node with the RTT to the neighbor. The
newly constructed metric is then coupled with the bandwidth
measurement. The authors demonstrate a substantial improve-
ment over the approaches that considered both latency and
bandwidth in isolation.

Summarization and aggregation.Summarization and aggre-
gation are two techniques that are employed to provide high
scalability and improve stability. These techniques are used
by BGP [16], allowing it to scale by limiting the amount of
information that is considered by the large number of routers.
The obtained stability is at the expense of being less aggressive
in the path exploration and maintenance, which sometimes
inhibits BGP’s ability to recover from faults [17].

2) Decision Quality: The response taken by an adaptivity
mechanism has an associated cost that must be weighed
against the degree of benefit that could occur as the result of
the adaptation. Under some network conditions such decisions
could lead to instabilities [18], [19], [20], such as oscillatory
behavior commonly referred to asflapping, where nodes
rapidly switch between seemingly equal alternatives. New
techniques were deployed to mitigate these phenomena and
provide a tradeoff between responsiveness to changes and
instabilities. Examples of such techniques are damping and
hysteresis. Below we provide more details about techniques
related to the decision process.

Utility discretization.Utility measures are thresholded rel-
ative measurements used to quantify the potential usefulness
of making a particular change. They are usually tied to the
optimization strategy employed by the estimation algorithm
used when taking a response. Because often times the numeric
metrics that drive these utility functions have large variances
and frequent updates, discretization is used to reduce the
values of continued metrics by dividing the range of metric
values into intervals. Utility discretization is used whenthe
change results in substantial improvements over a threshold.
For example, in [20] a routing change is only made from
the current path when the improvement in bandwidth is
above some threshold. Other examples include RON, where
routes are changed to obtain at least a 50% improvement
in throughput [17], and GoCast [21], which avoids “futile
minor adaptations” by requiring new neighbors to have a 50%
improvement in RTT.

Randomization.A common technique used to address de-
terministic and symmetric characteristics of distributedsys-
tems and network protocols is randomization. The technique
is used to offer another dimension of variability to reduce
the predictable behavior of network protocols. For example,

randomization has been used to reduce the likelihood of a
“thundering herd” effect where many nodes attempt to switch
to the same link [22]. Another example is using randomization
for path selection [20] to reduce the loss rates.

Damping.Frequent changes due to ephemeral failures can
cause significant instability in systems. Damping was proposed
as a stabilizing technique to reduce unwanted or excessive
responses to network conditions and limit the propagation of
unstable information. Damping creates a temporal diminution
of metric qualities characteristic for generating oscillatory
behavior. The benefits of the technique were demonstrated
in the context of BGP. For example, damping has been used
within BGP to suppress route changes caused by link flapping
by distinguishing consistently unstable routes from routes that
experience ephemeral failures [19]. Another example can be
found in [20], where it is demonstrated that increasing the
amount of time between route change decisions can improve
the accuracy of measurements and inhibit the frequency of
change at the expense of reactivity.

Hysteresis.Hysteresis is a technique commonly used in
protocols to add a slowing effect to changes. This is achieved
by adding a history dependence to the system where previous
readings can influence the estimation effects of subsequent
readings. Many protocols deploy different types of mecha-
nisms to introduce hysteresis to the system. For example, RON
demonstrated that smoothing was not enough to avoid flapping
and thus it used smoothing hysteresis to avoid flapping be-
tween measurably equal routes [17]. Hysteresis was introduced
by giving a bonus to the “last good” route. Hysteresis is
coupled with the aforementioned randomization in Tapestry
to further reduce the likelihood of a “thundering herd” effect
[22] .

3) Summary: A brief analysis of the above techniques
indicates that the data quality phase depends on the accurate
interpretation of performance observations, as well as the
correctness of the responses received from probed nodes.
None of the mechanisms described above take into account
the correctness of the responses received from probed nodes
or the effect of Byzantine attackers on their surrounding
environment.

B. Attacks Classification

In this section we present three classes of attacks that
an adversary may seek to carry out on an adaptive overlay
network. We first describe our adversary model and then
present the attacks, which we refer to asattraction, repulsion,
anddisruption.

Attack model.We consider the model of an insider adver-
sary. An insider adversary has access to the same data as any
legitimate user, including cryptographic keys stored at a node.
This access can be the result of the adversary bypassing the
authentication mechanisms or compromising an overlay node
through other means. In this case, system participants cannot
be completely trusted although they are authenticated, and
authentication mechanisms are no longer enough to protect
the system. An insider adversary can have an arbitrary (or
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Byzantine) behavior: it can send misleading information when
probed, send inconsistent information to different nodes in the
overlay, refuse to participate in the process of forwardingdata
traffic by selectively or entirely dropping data, or store the data
traffic it has forwarded through it to perform traffic analysis.

Below we assume that data authentication and integrity
mechanisms are deployed and we focus only on attacks
directed at the adaptivity mechanisms.

The main asset in any communication network is its data.
Thus, one of the main goals of an insider adversary is to
control as much of the data disseminated in the overlay as
possible. This can be achieved if the adversary, having infil-
trated the overlay, manages to manipulate the path selection or
the multicast structure maintenance to its advantage. Based on
their effect on the control of path selection, we classify these
attacks asattraction attacks, repulsion attacks, anddisruption
attacks. Any of these attacks can be conducted by an adversary
by affecting the observed and collected metrics as follows:

• the malicious node lies about the observation space;
In this case, the adversary manipulates the secondary
sources of information used by the adaptivity mechanism.

• the malicious node imposes an artificial influence toward
the observation space; In this case, the adversary manip-
ulates the primary sources of information measured by a
node.

Attraction attacks.Attraction attacks are a form of “bait-
and-switch,” where observed data is manipulated by a mali-
cious node in order to draw attention. In such attacks, the
malicious nodes are always presenting the network conditions
to be better than they are, with the goal of gaining control
over significant traffic. The attack can also target one particular
node, in which case the attacker will persuade the victim to
attach to a malicious parent in the dissemination structure.
For example, if the dissemination structure is a tree, the
goals of the attacker can be to attract many nodes to itself
as children or to obtain a higher position in the tree. The
final goal of the attack can be manipulating data, performing
traffic analysis, man-in-the-middle attacks, causing disruption
for specific nodes by isolating them, or selectively dropping
packets for a particular destination.

A basic way to perform the attack is for a node to falsify the
answers to probe requests to deceptively create the perception
of a route with higher utility from the perspective of the
victim node. The attacker can exploit characteristics, such as
low frequency in the data sampling, to prolong the effects of
his malicious action on the data smoothing mechanism. As
a result, the utility function will create an incorrect adaption
since the utility gain does not reflect reality. For example,
if the utility function is based on the bandwidth from the
source, a malicious node can attract other nodes in the tree
by lying about its bandwidth from the source every time it is
probed. The utility function will incorrectly choose to adapt
and choose the malicious node since it appears that the change
will guarantee a better bandwidth from the source.

Repulsion attacks.Repulsion attacks seek to reduce the
attractiveness of other nodes or misrepresent the insufficiency

of their own abilities. This is accomplished by means of
lying and defamation in responses to active probes or by
manipulating the physical or logical infrastructure in a way
that creates the perception of routes with lower utility. Asin
the case of attraction attacks, repulsion attacks can target one
particular node. The ultimate purpose of such attacks is to
offer the malicious node opportunities for free-loading, traffic
pattern manipulation, augmenting attraction attacks, or to just
cause disruption.

One way a malicious node can conduct the attack is by
lying about its performance. An example of such an attack is
when a malicious node lies about route costs (i.e., hop count)
in order to convince other nodes that it has a bad connection
and thus should not be selected as a parent. The malicious
node will then obtain a reduced burden. A particular attack
that falls into this category was analyzed through simulation
in [23]. The authors showed that selfish nodes (i.e., nodes that
want to obtain advantage over other nodes but do not have
destructive goals as malicious nodes) can selfishly improve
their performance by manipulating distance measurements.

An attacker may instead choose to manipulate the existing
environment, rather than lie about it, by exerting an influ-
ence of aversion toward the partially observable link state
estimation. This constitutes an attack against primary sources
of information – metrics that are directly observed by the
node. One example of the attack was demonstrated in [13],
where a flooding attack was conducted to demonstrate how
quickly the overlay could respond. However, in this case, the
attack was executed by an external attacker. An example of an
internal repulsion attack was presented in [23]. In this case,
a selfish node delayed its probe responses to affect the RTT
measured by the node performing the probing. In both cases,
the attackers manipulate the observation space of the victim
to make things seem worse than they actually are.

Disruption attacks.Disruption attacks target the availability
of the network by using the adaptivity mechanisms to turn the
system against itself. An attacker can create significant disrup-
tion in the overlay by injecting or influencing the observation
space metric data to generate self-destructive responses as a
result of unnecessary adaptations. The ultimate goal of such
attacks is to affect the infrastructure that supports the overlay
with the intent to prevent or degrade service. These attacks
can be classified as a form of denial of service (DOS) and can
result in jitter, flapping, or partitioning the overlay.

An example from this class of attacks is the attack against
TCP [6], which is an attempt to deny bandwidth to TCP flows
by manipulating the observation space to create the perception
of network congestion. The magnitude of the disruption is
generally based on obtaining a steady-state [24] and a temporal
measure of how long it takes to reach this state. The work in
[7] generalizes the work presented in [6], as a form of low-rate
reduction of quality (ROQ) attack that focuses on attacking
adaptive control loops that drive resource allocation and affect
the perceived service of a system.

Summary:We classified and described several attacks that
exploit the data quality aspect of adaptivity mechanisms. Next,
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Fig. 1. Illustration of the physical network and the two logical networks:
the overlay network and the multicast tree.

we examine the practicality of these attacks in a real-world
network deployment. In addition, we study the degree to which
mechanisms used within the adaptation decision are able to
detect and recover from the attacks we identified.

III. A N EXAMPLE : ATTACKS AGAINST ESM AND NARADA

In this section we demonstrate through experimental results
how the attacks identified above can be used against the
ESM overlay system and the Narada multicast protocol. We
first provide an overview of ESM, Narada, and the adaptivity
mechanisms they use. We selected ESM to demonstrate the
attacks because of its maturity, extensive deployment, and
particularly because of the advanced set of techniques it
uses for augmenting its adaptivity. We demonstrate that, even
though ESM employs almost all of the mechanisms discussed
in Section II-A, it is unable to mitigate the attacks posed by
a malicious insider adversary.

A. Overview of ESM and Narada

ESM [1] is an overlay multicast system that shifts the
multicast infrastructure to the end systems and forms a peer-
to-peer overlay network. The system is largely used for
broadcasting live events including academic conferences such
as SIGCOMM and INFOCOM. ESM uses an application level
multicast protocol, Narada, that builds an overlay tree for
distributing multicast content, as seen in Figure 1.

A key component of Narada is the use of adaptivity
mechanisms to dynamically change the multicast tree to im-
prove application performance or maintain it when network
conditions change. More specifically, this adaptivity serves
to improve suboptimal overlay meshes that can occur as a
result of random initial neighbor selection, aggressive partition
repair, multicast group membership changes, and the transient
nature of underlying physical network conditions.

Narada employs several adaptivity techniques from the set
we identified in Section II-A. Data sampling and data smooth-
ing are used to address variations in the metrics considered:
available bandwidth, latency, RTT and loss rate. Both passive
observation and probing are used in collecting the data usedto
make the adaptation decision. Narada also employs a number
of combined metrics, damping, randomization, hysteresis and
several different utility functions to address instabilities in
the observed data. Below we provide more details about how
these techniques are supported in ESM. The values of the
parameters we discuss below were selected empirically by
the ESM creators and were demonstrated to provide good
performance for several deployments [25].

A dedicated subsystem in ESM, theperformance agent, is
responsible for collecting the metrics used in the adaptation
scheme. This agent runs periodically (every 7 seconds) and
sends probe requests to a random subset of neighboring nodes.
Each probe response from a neighbor includes the bandwidth it
perceives from the source, the latency, the saturation level, and
the path. The probing also enables each node to determine the
RTT to a neighbor node, which is used to augment the other
metrics. In addition, every node also maintains its own viewof
the network conditions by passively observing the data traffic
it is receiving from the source. Both the passively observed
metrics and the metrics measured via probing are smoothed
using an exponential smoothing function to obtain a long-term
average.

Currently, ESM supports three utility functions: one based
on bandwidth, one based on latency, and one based on a
combination of bandwidth and latency. The bandwidth utility
function constructs a metric by combining the data offered
by the neighbor in the probe response with the measurements
made passively. If the bandwidth currently being received by
the node is equal to the source rate or the relative improvement
is less than 10% of the current bandwidth, the utility value is
set to 0. If a node’s bandwidth is greater than the current
bandwidth being received and has a greater discretized utility
function than the current parent, then the utility value is
augmented. The latency utility function is constructed by
merging the link latency with the route latency. If the new
latency is less than the current latency then the utility is set
to the relative improvement over the current metric. On the
other hand, if the link metric to the current parent is less than
5, then the utility is also augmented.

The decision whether to change the tree or not is made
locally by each node based on the utility gain (computed as
described above) and a damping factor, used to induce stability.
First, the damping factor will determine if switching the parent
will indeed happen. If a node has recently changed parents
with high frequency, a change is less likely to occur. In addi-
tion, a randomization technique is also used to avoid the case
where several nodes try to change to the same parent. Each
node maintains a switch probability indicating that the parent
change will indeed happen. A random number is selected
before making the switch decision. If the random number is
greater than the switch probability, then no parent change takes
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TABLE I

EFFECT OF ONE MALICIOUS(LYING ) NODE ON AN ESM DEPLOYMENT OF30 NODES ONPLANETLAB OVER A 90 MINUTES RUN.

Experiment Chosen as ParentParent Changes Unique Children Unique on Path Ave(sec)
Node was Lying 72 369 10 12 794.42
Node was not Lying 15 216 8 9 72.69

place. Otherwise, the change to the newly selected parent will
take place and the current parent is placed on a pending drop
list, which is flushed after a period of time. Once the change
happens, the switch probabilities are reduced if there havebeen
many switches recently and the switch probability is above a
threshold.

The process of selecting the parent to which a given node
will switch works as follows. Each node maintains links to
its parent in the tree and its neighbors in the overlay. The
agent running on each ESM node periodically processes the
cached probe responses to build a selection table of possible
candidates for becoming its new parent, referred to as the
“short list.” Nodes which are currently saturated, descendants
of this node, and those that have recently failed a bandwidth
test are not considered. If there is no utility gain, no node
is selected as a potential candidate and the process will be
repeated next cycle. If several nodes are possible candidates,
then the first node on the list is selected as the new parent. The
selection process also uses hysteresis to generate a negative
bias against nodes that have performed poorly as experience
through primary observations. As a result, those peers who
have been chosen as a parent and performed poorly are less
likely to be chosen again.

B. Attacks Against Narada

In this section we concretely demonstrate some of the
attacks identified in Section II-B in the context of the ESM
system through experiments performed in the DETER and
PlanetLab testbeds. We first provide a brief overview of the
testbeds and experiment setup, then we provide details about
the attacks.

1) Testbed and Experiment Setup:We conducted our ex-
periments on the PlanetLab [8] and DETER [9] testbeds.
PlanetLab is the most well-known live Internet testbed. It
consists of machines hosted by research institutions and al-
lows for the deployment of overlay networks and distributed
services. Currently, over 275 active research projects areusing
PlanetLab as their testing platform. We use PlanetLab in our
experiments because it provides the opportunity to study ESM
under real-world conditions.

In addition, for experiments that could be disruptive to Plan-
etLab, we used the DETER [9] testbed. DETER is a shared
testbed infrastructure that is specifically designed for cyber-
security research. Unlike PlanetLab, DETER is an emulation
testbed that allows us to emulate real networks in terms of
latency and network topology. In addition, DETER provides
a stable controlled environment and repeatable experiments.
This allowed us to isolate the issues we were investigating

and overcome some of the uncontrollable variability that can
be found on PlanetLab.

There are several parameters that characterize ESM de-
ployments and our experiments. The most important are the
number of nodes in the overlay, the degree saturation for the
nodes, and the constant bit rate of the multicast source. We
use deployments of 30 and 50 nodes and experiment durations
of 30 and 90 minutes. Nodes usually join after the experiment
begins and leave before it ends, with an average participation
of 25 minutes and 85 minutes per node. We use a saturation
degree of 4-6 nodes as in similar ESM deployments [25]. In all
the experiments below, we use a constant bit rate of 480 Kbps,
which is sufficient to transmit video at two different qualities
and one audio channel; this value was used in previous ESM
deployments [25].

2) Attraction Attacks:All the experiments demonstrating
attraction attacks were performed on PlanetLab.

Compromised nodes may use their insider position to lie
about their bandwidth, latency, and saturation with the goal
of attracting as many nodes as possible as children in the
multicast tree. To demonstrate the effect that one malicious
node, who exploits the adaptive nature of ESM, has on the
multicast tree construction, maintenance, and stability,we ran
the following experiment. One randomly selected node lies
every probing cycle about bandwidth, latency, and saturation.
This experiment was performed using 30 nodes, a degree of
6, and a duration of 90 minutes. We summarize our findings
in Table I. When it is not lying, the malicious node is selected
only 15 times as a parent by other nodes. When it is lying, the
malicious node is selected 72 times, almost 5 times more often.
When the node is lying, the overlay becomes more unstable, as
can be seen in the large number of total parent changes. This
increased instability can be attributed to the fact that thenew
child will eventually realize the bait-and-switch and change
again. In addition, Table I shows that the lying node manages
to get selected on paths such that the traffic of 12 other nodes
(out of 30) goes through the malicious node.

We next investigate the degree to which a higher percentage
of malicious nodes can affect the network. As in the case of
one malicious node, the experiment was performed using an
ESM deployment of 30 nodes with a saturation degree of
4 nodes and a duration of 90 minutes. The results of the
experiment are summarized in Figure 2. The graph depicts
the percentage of nodes that have at least a malicious node on
their path to the source at some point during the experiment.In
addition, it also shows how many of these nodes have chosen
a malicious node as a parent. Finally, it shows how many of
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Fig. 2. This graph demonstrates the effect of attraction attacks on the correct
nodes as a function of the percentage of malicious nodes. Theexperiment was
conducted on PlanetLab with an ESM overlay of 30 nodes, for a duration of
90 minutes.

the decisions to change the parent were decisions that resulted
in selecting a malicious node. Note that the malicious nodes
were randomly selected and stronger attacks may exists if
the nodes collude and perform a coordinated attack. Stronger
attacks may also be possible by choosing nodes that have very
good network connections.

As shown in Figure 2, a network in which 20% of nodes are
malicious will result in those nodes controlling a significant
amount of the traffic to other (non-malicious) nodes. For
example, 20% of malicious nodes succeed in convincing more
than 50% of the nodes in the network to select a malicious
node as a parent. This potentially allows the adversary to
monitor all traffic for the nodes it tricked into selecting itas
a parent. In the case where 30% of the nodes are malicious,
90% of the nodes in the network have at least a malicious
node on their path to the source. In this case, the malicious
node can potentially affect any node that is positioned lower
in the tree.

Having malicious parents can result in a severe degradation
of service if the malicious parent decides to selectively drop
data. One interesting aspect is to examine if the stability
techniques and the decision function are able to detect the bad
adaptations. In Figure 3, we demonstrate the potential impact
of malicious nodes that use their positions on the tree to drop
data traffic. The graphs plot the bandwidth averaged over all
receivers as a function of time. The experiments are performed
using an ESM deployment of 50 nodes with a saturation
degree of 4 nodes. The duration of each experiment is 30
minutes, which corresponds to the duration of a conference
presentation. At a predetermined time during each experiment
(about 12 minutes since they joined the overlay), malicious
nodes begin to drop 100% of the data traffic that they receive
through the data dissemination tree. We vary the percentage
of malicious nodes among 10%, 30%, and 50% of the total
receivers to demonstrate the performance degradation that
results from introducing malicious faults into the system.In
each experiment, the malicious nodes are chosen at random
from the receiver set and there is no colluding communication
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Fig. 3. These graphs demonstrate the effect on average bandwidth in ESM as
a function of the number of malicious nodes. The experiment was conducted
on PlanetLab with an overlay of 50 nodes.

between the malicious nodes.
In the case when 10% of the nodes behave maliciously

about 10 minutes into the experiment, the average bandwidth
depicted in the graph is shown to start decreasing. For the
remainder of this experiment, the average bandwidth remains
below the source bit rate of 480 Kbps. A similar effect is
observed in the cases where 30% or 50% of the nodes are
malicious. As expected, increasing the percentage of malicious
nodes has a greater effect upon the system’s performance.
However, it can be noted that the effect of 10% nodes is
already significant and increasing the number of malicious
nodes to 30% and 50% does not change the effect on the
average bandwidth dramatically. We believe this is because
the tree structure is very vulnerable since it does not have
any redundant paths and 10% of malicious nodes are enough
to obtain advantageous positions in the tree. Note that in our
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Fig. 4. This graph demonstrates the effect on average bandwidth in ESM
of one malicious node that manages to maintain a high position in the tree
while dropping 100% of the traffic, starting at 1400 seconds.The experiment
was conducted on PlanetLab with an overlay of 50 nodes.

experiment the nodes lied just in the beginning to obtain the
advantageous position in the tree, then they stop lying. The
communication overhead associated with the attack is basically
zero. As it can be seen in Figure 3 the adaptivity mechanisms
react slowly and they do not manage to completely eliminate
the malicious nodes from the tree structure by the end of the
broadcast.

The closer a malicious node is to the source, the more nodes
there are that use the malicious node in their path to the source.
Thus, positioning malicious nodes connected directly or near
the source makes this attack more devastating. In Figure 4,
we demonstrate the effect of only one malicious node that lies
during each probe cycle and manages to maintain its position
in the tree near the source. The experiment was conducted
using 50 nodes, a saturation degree of 4, and a duration of 90
minutes. As it can be seen, the effect is devastating as soon as
the node starts dropping traffic. In spite of this, the adaptivity
mechanisms are not able to react for more than 15 minutes.

3) Repulsion Attacks:The experiments demonstrating re-
pulsion attacks were performed in the stable, controlled envi-
ronment provided by the DETER testbed.

We demonstrate a repulsion attack performed by exerting an
artificial influence of aversion toward the partially observable
link state estimation in order to manipulate the routing tree
topology. This attack example was also motivated by the fact
that, while performing attraction attacks, we noticed certain
nodes that were directly attached to the source, generally
powerful positions within the tree, that could not be enticed
by the lying node. Thus, we wanted to analyze how difficult
it would be to actually displace these nodes by providing an
external influence on their observation spaces.

In Figure 5, we show a simple topology to emphasize the
susceptibility of the Narada protocol to repulsion attacks. We
use a star topology composed of six nodes, all of which are
connected with 100 Mbps links to the switch, S1. There is
also no background traffic so each node has the potential to
receive full bandwidth. The Narada protocol is configured to
use a saturation degree of 2 and the utility function used takes
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Fig. 5. An example demonstrating a repulsion attack againstthe ESM
multicast overlay system in a controlled experiment on DETER. (a) shows the
overlay and the multicast tree before attack, (b), (c) and (d) show topology
changes in the multicast tree as a result of the attack, at times 115 seconds, 128
seconds and 129 seconds from the beginning of the experiments, respectively.
The result is that node E is manipulated by the attacker to attach to malicious
node D, although this makes E to be three hops away from the source, instead
of one at the beginning of the attack.

into account both bandwidth and latency. In our example, node
A is the source, nodes C, D, and E are end-systems in the
overlay, nodes B and F are outsiders who collude with D,
a malicious node that has infiltrated the overlay. During the
attack, nodes B and F generate traffic to augment the attack
of malicious node D, which lies about its bandwidth, latency,
and saturation. Similar results of the attack will be obtained if
nodes B and F are trusted members of the overlay attempting
to improve their position in the tree or influence the path the
data takes from the source to themselves or others.

As shown in the graph in Figure 5(e), the overlay converges
to a stable structure, shown in Figure 5 (a), after about 30
seconds, at which point the mean bandwidth is approximately
the same as the source rate (480 Kbps). Topology changes
before this point were due to nodes attaching to the overlay
tree, as represented by the impulses in Figure 5(e). The attack
begins at 115 seconds when nodes B and F begin flooding
30 seconds worth of traffic at the source, node A. After
several seconds of traffic, the attack is able to generate thefirst
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disturbance in the tree when node C detaches from the source
and chooses node E as its new parent 5 (b). This occurs despite
the fact that C now has an extra hop to the source. Then, 14
seconds later, C switches back to its previous position, butthe
overlay has yet to stabilize (Figure 5 (c)). Next, under a second
later, node E detaches from the source and, instead of choosing
node C, chooses the malicious node, D, as its parent (Figure 5
(d)). Note that node E was previously directly connected to
the source but is now connected three hops away. The changes
after 200 seconds are due to nodes leaving the experiment.

One important aspect of the experiment is the amount of
traffic generated by the attackers. Two nodes create the attack
by filling the 100 Mbps link with a 30 second burst of traffic
and in some experiments it only required a 5 second burst.
Note that in real Internet deployments, the cost of the attack
will be substantially less since links will typically have alower
bandwidth.

A variant of the attack is to target the active probes on which
the victim node relies. In this case, the victim’s peers willbe
made to look unappealing for changes, thereby increasing the
chances of the malicious node to move upward in the tree.

4) Disruption Attacks: In our experiments we have also
been able to perform a number of disruption attacks against
the Narada protocol. In the interest of space we have decided
not to include those experiments. They were also excluded
since it should be intuitive for the reader to see that the
disruption caused in both the attraction and repulsion attack
could be performed in a periodic manner to create a longer
term disruption attack. These attacks are similar with the
attacks presented in detail in [7], [6].

IV. D EFENDING AGAINST ATTACKS IN ADAPTIVE

OVERLAY NETWORKS

In this section we identify several components that will pro-
vide a comprehensive solution for mitigating Byzantine attacks
that exploit adaptivity in overlay networks. These components
are: reducing unnecessary or unnatural adaptations, increasing
stability by incorporating metrics that reflect stability into the
decision process, detecting malicious behavior that resulted
in observable degradation of service, and reacting to the
detected malicious nodes. In addition, we provide an in-
depth description and experimental results for what we be-
lieve is the most critical and challenging problem: preventing
bad adaptations. As the attacks we are concerned with are
performed by compromised nodes controlled by adversaries,
cryptographic mechanisms deployed to provide authentication
and encryption will not be able to mitigate the attacks by
themselves. The solution space components we describe below
are complementary to cryptographic techniques and assume
that authentication and integrity data protection are provided.

A. Solution Space

The primary cause of the attacks we identified is the ability
of the attacker to influence the adaptation process. Thus, the
most important component of a solution is preventing, or
at least reducing, these unnecessary or bad adaptations. In

fact, a perfect prevention will render the other components
useless. Since perfect prevention is not possible, especially
in the context of Byzantine faults, we discuss three other
complementary components.

1) Reducing Unnecessary or Bad Adaptations:The adapta-
tion process relies on two sources of information one measured
by each node, the other obtained by probing a set of peer
nodes. By blindly accepting the information reported by the
– potentially malicious – probed nodes, correct nodes make
bad adaptations. One way to prevent this from happening
is to filter out the metrics reported by malicious nodes that
may influence the adaptation decision. Our defense mechanism
evaluates temporal and spatial correlations among data in the
system to detect outliers and reduce the ability of malicious
nodes to influence the adaptive responses, while still improving
the adaptation decisions made locally. Although our solution
is developed in the context of overlay networks we believe
that it can be used to address the more general problem found
in many network protocols associated with “blind acceptance”
of routing metrics [26].

2) Increase Stability:Reducing the number of unnecessary
adaptations has the potential to increase the stability. However,
we believe that explicit efforts must be taken to reduce the
overhead and the number of necessary changes by integrating
stability in the function that drives the adaptation. Reducing
the number of adaptations is obviously important since with
every adaptation there is always the potential of making a bad
adaptation. Several metrics can be included to reflect stability
such as the time a node was connected to his current parent,
the frequency of changes, or even the degree of variance in
metrics. By making adaptations that consider stability as part
of their optimization function, the nodes perceived as unstable
will be pushed to the fringes of the tree as no other node will
select them as a parent.

3) Detection and Recovery:Enhancing the adaptation de-
cision with Byzantine robustness is not sufficient since no
method will have perfect accuracy. The two mechanisms
described above may still result in bad adaptations. Thus, a
solution must also be designed that allows a node to quickly
detect and recover when such an adaptation occurs. In this
case, if the attack has observable effects such as severe
degradation of the delivery service, we propose two recovery
mechanisms that allow a node to determine that it is connected
to a malicious parent and then to find a new parent. The first
mechanism uses the low-bandwidth direct unicast link that
every node in the overlay shares with the source to provide
selective feedback information to the source about the received
data. The second mechanism uses the low-bandwidth channel
to provide information from the source to a node about its
path to the source. Since the path is sent by the source (and
can be protected cryptographically), the information can be
trusted. The path information provides another means for a
node to detect inconsistencies in the metrics reported by its
parent and neighbors.

4) Response:One important aspect of any defense mech-
anism relates to reacting to malicious nodes. We believe a
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solution must also take action and neutralize the threat of the
malicious nodes. Without taking such actions the convergence
of the protocol, as well as the overall overhead, will increase
as the malicious node continues to interfere with the system.
To this end, we have explored building a shared black list
of malicious nodes, but we do not eliminate them from the
overlay. Instead, we force them to the edges of the tree such
that they will not be able to affect other nodes. In addition,
this mechanism can be enhanced with a reward procedure that
allows bounding the amount of data that a system can lose
due to adversarial behavior similar to [27].

B. Reducing Bad Adapatations Utilizing Local Spatial and
Temporal Correlation for Outlier Detection

We now present an in-depth description and experimental
results for the most critical component of a comprehensive
solution: reducing the potential for poor adaptation decisions
in overlays influenced by attackers. Our solution consists of
determining which nodes are advertising inconsistent metrics
by performing an outlier analysis on the information received
from probed nodes and used in the decision process. An outlier
is a data point that is significantly different from the rest of
the data in the observation space based on some measure of
distance. The nodes detected as outliers will then be discarded
from the potential parent set so they will not be able to influ-
ence the multicast tree structure. The detection is performed
locally by each node using spatial and temporal correlations.
The spatial outlier detectioncompares the reported metrics
received from each node in the set of probed nodes. The
temporal outlier detectionexamines the consistency in the
metrics received from an individual probed node over time.
Considered metrics include probed latency, probed bandwidth
and RTT.

In order to prevent suspicion from other nodes, a malicious
node must insure that any lie it tells is: (1) consistent withwhat
the other peers are reporting during a probe cycle about current
conditions (external with respect to the rest of the world),(2)
consistent with the bandwidth, latency, and influence yielded
towards the RTT (internal with respect to other metrics within
a set of dependent variables), and (3) consistent with what it
said in the past. The spatial outlier detection targets the first
and second aspects of consistency, while the temporal outlier
detection targets the second and third aspects.

The intuition behind our solution is that an attacker will
have difficulty lying consistently because it does not have
perfect knowledge of the observation space and does not
have a guaranteed feedback loop to coordinate with other
attackers. For example, a set of colluding malicious nodes will
have difficulty lying in a manner consistent with information
provided by other peers probed during the same probe cycle.
This is because malicious nodes cannot accurately predict
the random subset of nodes that will be queried during the
probe cycle and only have a finite amount of time, the probe
period, to coordinate. In addition, the intrinsic dependency
existent in several measured variables requires attackersto
make sure that the “fake” metrics vary in a consistent manner.

This dependency results from a fundamental characteristicof
end-system multicast systems – that the distribution tree will
overlap itself on the routing infrastructure, often represented
as a measure called link stress [23]. Additionally, the process
is made more difficult by the fact that attackers can only make
the RTT worse, because it is a measured attribute, and yet, at
the same time, the RTT must remain consistent with both the
bandwidth and latency.

A key component of our approach is using the Maha-
lanobis [28] distance as the mechanism to detect outliers.
The Mahalanobis distance has several advantages that make
it appropriate for our problem:

• It has been shown to be better than other distance
functions for detecting outliers with multiple attributes
[29]. In our case, we can use several attributes in the
detection process since each node reports latency, RTT,
and bandwidth.

• It takes into account the variance and covariance of the
attributes that are measured by scaling each variable
based on its standard deviation and covariance. This
means that the attributes with high variance receive less
weight than components with low variance.

• It takes into consideration the correlation between at-
tributes and how the measured attributes change in re-
lation to each other. This makes it appropriate for our
environment where there is a dependency between the
attributes reported by each node.

1) Spatial Outlier Detection:Currently, the utility function
at each node relies on the observation tuple consisting of
bandwidth, latency, and RTT, recorded every probing cycle.
Our spatial outlier detection uses the same observation space
as the utility function. Thus, it does not add any com-
munication overhead. Spatial outlier detection is performed
during each probing period as follows. The observation tuples
are used to compute the centroid of the data set. We then
compare how far the observation tuple for each node is away
from the centroid. The comparison is done by computing the
Mahalanobis distance between each node and the centroid. The
Mahalanobis distance takes into account the variability ofthe
variables and the correlation between variables. It is computed
as follows:

d(~x, ~y) =
√

((~x − ~y)T C−1(~x − ~y))

~x and~y are the feature vectors which in this case include
bandwidth, latency, and RTT.~x is the value from the probe
response and~y is the average value that was calculated.C−1 is
the inverse covariance matrix developed from the observation
tuples.

Two important special cases must be considered. The first
case is when there are not enough observation tuple responses
received during a probe cycle. In this case we compare the
observation tuples received against the most recent centroid,
if available. The other special case is when there is no variance
between the observation tuples that are received. (We actually
encountered this situation when running experiments on a high
speed local area network.) In this case, we can not compute the
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Mahalanobis distance since the determinant of the covariance
matrix becomes zero. To address the problem we randomly
choose a parent from that probe set of observation tuples
and compare it to the most recent centroid, if available. If
no centroid is available we postpone the decision to the next
probe cycle.

2) Temporal Outlier Detection:The use of temporal outlier
detection is motivated by the fact that a node’s view of its peers
is manifested through periodic samplings of metrics that can be
correlated over time. We use incremental learning to develop
models for the nodes currently in a node’s peer group during
the course of a multicast session. Incremental learning allows
our models to improve over time as more data is collected
and old data is decayed [28]. In this context, we are using
temporal correlation to maintain a sense of history within the
system which allows us to compare the metrics received in
the current cycle with the information we have received in the
past from those nodes in our current peer list.

The technique we use is based on the “simplified Maha-
lanobis distance” presented in [28]:

d(x, ~y) =
∑

n−1

i=0
(|xi − ~yi|/(~σi + α))

In this equation n is 3, related to the three metrics we are
currently using (bandwidth,latency,RTT),~σi is the standard
deviation, andα is the smoothing factor. In order to reduce the
overhead of maintaining the entire set of observations we also
make a simplifying assumption that the metrics are statistically
independent. We trade-off accuracy in the distance function
related to the covariance of the metrics for the amount of data
we must maintain. Thus, we do not need to maintain the entire
history of sampled values, which continues to grow over time.

Each node will additionally maintain the mean, standard
deviation, and sample count associated with the observation
tuple within the routing table entry for each of the peers. These
values, which are stored in the routing table, will represent
the temporal centroid associated with the respective peer.This
centroid is incrementally updated with observations received
during each probe cycle, as in [28], using the technique Knuth
described in [30]. At the end of the probe cycle the latest
observation tuple associated with each peer is compared with
the centroid using the Mahalanobis distance. If the distance
is greater than the threshold, then this node is considered a
temporal outlier.

3) Utility Driven Spatio-Temporal Fusion:We now show
how the spatial and temporal outlier detection techniques are
used during the adaptation process, using a technique similar
to a codebook [31]. The decision process checks if there are
a large number of nodes that are substantially far from their
historical centroid (temporal outliers). If there are, then an
adaptation does not occur during this probe cycle (artificial
influence of aversion repulsion attack). If not, then the decision
process continues. Next, the peer nodes are ranked according
to their spatial outlier distance from the centroid. Peer nodes
are then traversed moving from those nodes closest to the
centroid to those nodes farthest from the centroid. The node
that is closest to the centroid, is neither a spatial or horizontal
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Fig. 6. Nodes identified as outliers on an ESM deployment of 30nodes on
PlanetLab over a 90 minutes run using spatial outlier detection.

outlier, and has passed the utility function (made it to the short
list) is chosen as the new parent. At this point, the new parent
request is sent. If no peer is found which meets these criteria,
then no adaptation is performed during this probe cycle.

C. Experimental Results

In this section we demonstrate the effectiveness of each
outlier detection method proposed.

1) Testbed and Experiment Setup:We conducted our ex-
periments on the PlanetLab [8] and DETER [9] testbeds.
The experiments are similar to those presented in the Section
III-B, but this time our outlier detection mechanisms have
been added. There are several parameters that characterizeour
experiments. We use ESM deployments of 30 and 50 nodes as
specified. All experiments were run for 90 minutes. The node
join-leave pattern is a uniform join; all the nodes joined in
the beginning and stayed for an average of 80 to 85 minutes.
We use a degree saturation of 4 nodes. The source generates
a constant bit rate of 480 Kbps. The probe cycle was set to 7
seconds.

2) Spatial Outlier Detection:We first investigated the ef-
fectiveness of the Mahalanobis distance in identifying outliers.
The goal of the following experiment is to see if a malicious
node is perceived as an outlier by all nodes in the system,
when using spatial outlier detection. One random node was
chosen to be malicious on an overlay of 30 nodes deployed
on the PlanetLab testbed.

At the end of each probe cycle we calculated the centroid
from all the probe responses received during the probe cycle
and the distance of each probe response from the centroid.
Next, we calculated the average distance from the centroid
for each probe cycle for a single node. Finally, we calculated
the average distance across all the end-system nodes involved
in the experiment. This number is generated based on a total
of 539,739 probe responses that were received during 19,465
probe cycles. Figure 6 presents the average distance each node
was from the centroid across all the probe cycles and averaged
across all end systems. Several nodes are detected as outliers,
including the malicious node 4. The graph indicates that the
malicious node was seen as anomalous on average across all
the nodes in the system, despite the fact that their centroids
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TABLE II

AVERAGED BANDWIDTH, RTT, AND LATENCY AND AVERAGE DISTANCE

FROM THE AVERAGE CENTROID FOR A DEPLOYMENT OF30 NODES ON

PLANETLAB OVER A 90 MINUTES RUN.

Node RTT Bandwidth Latency Distance
4 109.83 480.00 0.00 1.05
10 2678.88 89.43 612.64 11.80
11 185.74 480.00 0.00 1.06
16 479.46 445.62 218.30 3.82
17 192.25 469.41 2.00 0.81
21 522.58 449.61 195.81 3.95
27 484.06 160.88 167.00 7.17
28 342.11 469.39 144.10 1.12

265.36 454.65 64.64

TABLE III

NUMBER OF UNIQUE HOSTS THAT EACH OF THE OUTLIER NODEID

APPEARED IN THE SHORT LIST BECAUSE THEY PASSED THE UTILITY

FUNCTION.

Node ID 4 10 11 16 17 21 27 28
# Short Lists 9 2 18 2 3 2 1 9

were independently developed. As a result, it demonstratesthe
utility of Mahalanobis distance for distinguishing outliers.

We now analyze the results in detail and show how, by
combining the utility function with the spatial outlier infor-
mation, the system can avoid making decisions influenced by
malicious adversaries. Table II presents the average values for
the probed metrics of RTT, bandwidth, and latency for all
noticeable outliers. The bottom row shows the average centroid
of all nodes for each of these metrics. The right-most column
shows the resulting distance between each outlier node and the
centroid. In addition, Table III presents the number of times
that outlier nodes in Figure 6 were considered as possible
candidates for a parent, based only on the utility decision
function.

As shown in Figure 6, there are 8 significant outliers. One
of them, node 11, is the trusted source and can therefore be
discarded from the outlier detection. Information provided in
Table II shows that nodes 10, 16, 21, and 27 are far away from
the centroid due to their poor performance. Thus, they will not
be selected in the short list as possible parents because they
will not pass the utility function. This is supported by Table III,
which shows that nodes 10, 16, 21, and 27 were considered
as potential parents for at most two nodes, which were most
likely nodes in the same respective LAN as the outlier. While
less dramatic, this is also the case with node 28, which had an
average RTT greater than twice the mean. Based on this data,
it is intuitive to see that it is possible to develop a threshold to
distinguish the aforementioned nodes, as well as 4 and 17, as
outliers. Empirically, we have found that an effective threshold
typically lies between 1 and 2, although this could be set based

TABLE IV

THE EFFECTIVENESS OF SPATIAL OUTLIER DETECTION AT IMPROVING

PARENT SELECTION ON A DEPLOYMENT OF50 NODES ONPLANETLAB

OVER 90 MINUTE RUNS.

Malicious Selected Total Percentage
No lying 8 427 1.61%
Lying 649 1122 57.84%
Spatial 84 519 16.18 %
Spatial/Temp 22 282 7.80 %

on the security requirements of each node. Because they were
flagged as outliers, these nodes would not have been chosen
as parents. This avoids selecting the malicious node, 4, as a
parent.

Note that the experiment also shows that a node could be
identified as an outlier because its performance is much worse
than the performance of the other peers in the probe set, much
better than other nodes in the probe set, or simply inconsistent.
Regardless of the cause, by not choosing outliers the system
achieves increased stability.

To demonstrate the effectiveness of spatial correlation and
the Mahalanobis distance function at improving the parent
selection process and the stability of the system, we repeated
the same experiment as above for a deployment of 50 nodes
and recorded the number of parent changes that took place
for the duration of the experiment. The outcome of these
experiments is shown in Table IV. The numbers in the table
are summed across the 50 nodes in the experiment. The
results indicate that using our outlier detection scheme has
dramatically reduced the likelihood of choosing the malicious
node as a new parent. Our method also dramatically improved
the stability of the network, as measured by a decrease in
parent changes, in spite of the presence of the malicious
node. In fact, the number of adaptations is comparable to the
number of adaptations that would occur with no malicious
nodes present in the network.

As previously stated, the method does not completely elim-
inate bad adaptations. However, we believe this indicates the
need to augment better decision techniques with an ability to
detect and recover from the inevitable bad adaptations thatwill
still occur. Our solution is therefore only one major piece of
the final solution.

3) Temporal Outlier Detection:To demonstrate the effec-
tiveness of temporal correlation and the “simplified Maha-
lanobis distance” function at detecting outliers, we conducted
the following experiment on the PlanetLab testbed. An overlay
of 50 nodes was deployed, and a random node was chosen
to act maliciously by sending false reports about its metrics.
Figure 7 presents the distance function as measured by a non-
malicious node in the experiment. During our experiments the
threshold for the simplified distance function was set to 3,
which intuitively means that each metric can differ at least
one standard deviation from its mean value. The graph presents
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Fig. 7. The effectiveness of detecting temporal outliers ona 50 node ESM
deployment on PlanetLab

the first 24 of the 90 minutes of the experiment, focusing on
details around the point when the node begins to lie. In the first
9 minutes we see a number of ephemeral fluctuations, which
is typical as the correlation begins to improve its model over
time. The non-malicious node first detects that the malicious
node has started lying at 593 seconds, the initial distance
being measured at 4.85 from the centroid. Then 7 out of
the next 8 measured distances are above the threshold value
as the malicious node continues to lie. This lasts for about
200 seconds before the observation tuple begins to be seen as
normal as the centroid has adapted to these falsified values.
After this point we see that the model begins to converge
again. This effect on convergence demonstrates also why a
complete solution must include the ability to respond and
neutralize malicious nodes. It may also be possible for a node
to try and create a high variance in the metrics it reports in
order to manipulate the distance function. This type of activity
motivates the need for including metrics that reflect stability
in the decision process, since a node with extreme variations
in metrics is undesirable from a stability perspective.

4) Utility Driven Spatio-Temporal Fusion:An example of
how the decision process works can be seen in Figure 8. The
data used is based off the information provided in Figure
6. Remember that node 4 was the lying node. The subset
of nodes that responded to the probe request are ordered in
increasing distance from the centroid. Now in order to choose
if a new parent will be selected and who that parent will be the
performance agent traverses the list beginning at those nodes
closest to the centroid. The first node encountered that is on
the short list (the performance agent previously selected as
potential parent) and is not a temporal or spatial outlier is
selected as the new parent. In Figure 8, node 1 is rejected
for being a temporal outlier, node 3 is rejected for not being
a suitable parent, node 5 is rejected for not being a suitable
parent and a temporal outlier, and finally node 8 is selected as
the new parent. The performance agent ceases traversing the
list once it reaches the spatial threshold.

The effectiveness of this method can be also seen in the last
row in Table IV. The row presents the results of combining
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Fig. 9. This graph demonstrates the ability of the utility driven spatio-
temporal fusion mechanism to mitigate the effects seen in Figure 4 where one
malicious node manages to maintain a high position in the tree while dropping
100% of the traffic. As in Figure 4, the attack begins at 1400 seconds. The
experiment was conducted on PlanetLab with an overlay of 50 nodes.

the temporal and spatial correlation in the utility driven spatio-
temporal fusion. In these experiments the threshold for spatial
outlier detection was set at a conservative 1.5 and the threshold
for temporal outlier detection was set to 3. From the resultswe
can see that the combined technique has dramatically reduced
the number of times the malicious node was chosen as a
parent. With our outlier detection mechanisms enabled only
7.80% of the changes made during the experiment were to a
malicious parent. In comparison, 57.84% changes to malicious
parents occurred when the Narada protocol was run without
our mechanisms. In addition, the combination of spatial and
temporal outlier detection reduced the total number of changes
that were made during the 90 minute experiment. Our method
resulted in 66.04% of the total number of changes made during
the experiment with no malicious nodes. Despite this reduction
in the number of changes, there was no noticeable degradation
on average bandwidth, indicating that our method inhibited
potentially unnecessary adaptations.

The ability of the utility driven spatio-temporal fusion to
mitigate threats can be seen in Figure 9 which depicts the
same experiment as in Figure 4, but with the utility driven
spatio-temporal fusion enabled. Remember that in Figure 4,
one duplicitous node was able to have a significant impact on
the average performance of the overlay multicast tree for an
extended period of time by ascertaining a powerful postion
in the tree and dropping 100% of the traffic. As it can be
seen in Figure 9, our attack mitigation mechanism is able to
prevent the malicious node from obtaining and maintaining
the powerful position in the tree and thus the node is unable
to inflict the previously described damage on the system as a
whole.

D. Overhead

We present the overhead of our defense techniques by ana-
lyzing bandwidth, memory, and CPU utilization. Our methods
do not introduce any extra bandwidth utilization since theyuse
information that is already being exchanged between nodes.
In fact, as an artifact of reducing the number of adaptations
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Fig. 8. This is an example of how the utility driven spatio-temporal fusion is performed during a probe cycle based on datafrom Figure 6. The 15 nodes
represent a possible probe set. In this example Node 4 was thelying node and node 8 was chosen as the new parent

the amount of control traffic being sent is also reduced. The
memory utilization for spatial correlation only lasts for the
span of a probe cycle and requires maintaining the observation
tuple associated with each of the nodes in the probe set. This
requires storing three additional values in the route tablefor
the peer set maintained by each node. In order to perform the
temporal correlation we modify the route table entries to store
nine additional values: mean, standard deviation, and count for
each of the three metrics.

Additional CPU utilization occurs only when the perfor-
mance agent has selected a short list of possible parents. If
the utility function does not find any suitable parents then
no additional computations are performed during that probe
cycle. The computational complexity is bound by the number
of nodes in the probe set which is constant. The computation of
the temporal outliers is a constant time calculation performed
for each of the nodes in the probe set. The calculation of the
spatial correlation is also computed in constant time.

V. RELATED WORK

Our work focuses on adaptivity attacks from trusted com-
promised nodes (insiders) in the context of overlay networks
and our solution uses concepts borrowed from anomaly detec-
tion. Below we review related work in several areas related to
our work.

Attacks exploiting adaptivity.Previous research has shown
the vulnerability of the TCP adaptivity mechanisms, i.e. the
congestion control mechanism, to attacks from malicious
outsiders [6]. The authors showed that by manipulating the
end-system’s perception of network congestion, the adaptivity
mechanism could be used to perform a low-rate DOS attack
with severe effects on TCP throughput.

In [7], the authors generalize the attack against TCP [6] as a
form of low-rate ROQ attack targeting adaptive control loops
that drive resource allocation and affect perceived service of a
system (bandwidth, jitter, etc). The authors model the problem
analytically by using control theoretic models. They cast the
adaptivity as an optimization process where multiple control
loops adaptively converge to a stable operating point. The
analysis focuses on attacks that create noisy feedback for the
controllers where the mechanisms being used by the attacker
are short bursts of traffic (square wave pattern). Simulations
and experiments demonstrate the validity of models for these

attacks on active queue management (AQM) techniques and
TCP’s AIMD rules for congestion control. The work points
out the interesting observation that the more aggressivelyor
greedily a protocol attempts to optimize the more susceptible
it becomes to these attacks.

The fundamental difference between the work in [7] and
our work lies in the adversarial model: We consider Byzantine
adversaries, which can cause stronger attacks without using a
significant computational effort. The attacks identified in[7],
are more general and the transients created by the attack are
similar to those experienced in normal conditions. As a result,
it makes it difficult for the resource to realize it is under attack
since it would have to monitor a large range of times scales.
In our case, the nature of the attacks and of the application
and deployment environment allows us to go one step further
than [7] and propose a solution. We have demonstrated that
detection is possible by using context sensitive observation
spaces and correlated information associated with the same
information that drives the adaptation.

Anomaly detection.Anomaly detection has been previously
leveraged to address insider threats in distributed protocols.
For example, the benefits of using statistical anomaly detection
to detect insider attacks against link-state routing protocols
has been demonstrated in [32]. The proposed method uses
intrusion detection systems which do not require changes to
the protocol but passively monitor the network looking for
perturbations in the observation space. In our work, we use
context sensitive anomaly detection that is incorporated into
the protocol so it has the semantic understanding of the data.
The major advantage of our approach is that the observation
space of the detection mechanism and adaptation mechanisms
are tightly coupled allowing application centric semantically
rich detection. This tight coupling is necessary in autonomic
systems and also reduces it susceptibility to classic obfuscation
attacks on intrusion detection [33].

Recently the benefits of the Mahalanobis distance for statis-
tical anomaly detection have been demonstrated in the context
of network intrusion detection [28], [34]. In [34] the authors
present a comparative study of detection schemes based on
data mining techniques for network based intrusion detection.
In [28] the authors discuss an unsupervised payload based
network anomaly detector based on the Mahalanobis distance
and used to detect attacks like worms.
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In our work we focus on reducing the likelihood of making
unnecessary or unnatural adaptations as opposed to letting
them happen and then trying to detect them. Recently, similar
work has been done in the context of inter-domain routing
messages for BGP. In [35] the authors use these techniques
to reduce the likelihood of a router accepting invalid routes.
Anomaly detection is used to detect inconsistencies in the
topology information and geographical location data. A so-
lution proposed for the multiple origin AS conflicts in BGP
also makes use of similar techniques [26].

Use of spatial and temporal correlations.Spatial and tem-
poral correlations were previously used in the context of
network security. A notable work in this aspect is [31] where
authors use temporal and spatial correlations to trace back
attacks and detect attack scenarios, using a large amount
of information available from intrusion detection systems,
firewalls, and different software logs. Unlike the approachin
[31], which was more general, our work focuses on overlay
networks and does not look for correlations, but exploits the
fact that they exist to detect inconsistent metrics and find
suspicious nodes.

Selfish behavior in overlay networks.To the best of our
knowledge the problem of malicious insider attacks was not
studied in the context of overlay networks. The problem of
selfish adversarial behavior in the context of overlay was
studied in [23]. The authors showed through simulation that
selfish nodes (i.e. nodes that want to obtain advantage over
other nodes, but do not have destructive goals as malicious
nodes) can selfishly improve their performance by manipulat-
ing distance measurements and cheating as independent end-
systems. Our work is different in the fact that considers a
malicious attacker and presents results in the context of a real
system in real deployments over the Internet.

VI. CONCLUSIONS

In this work we provided a characterization of the mecha-
nisms currently used to achieve adaptivity in overlay networks
and identified insider attacks against these mechanisms. We
believe that the attacks are relevant also in other contexts, as
adaptivity mechanisms are used also in the design of sensor
and wireless networks. The attacks are successful because
adaptivity mechanisms are often not designed to handle de-
generate inputs.

We demonstrated the effectiveness of the newly identi-
fied attacks against a well-known adaptive multicast overlay
network, ESM [1]. Our experiments conducted in real-life
deployments and emulations, demonstrate that although ESM
employs an advanced set of adaptivity mechanisms it is unable
to mitigate the attacks posed by a malicious adversary.

We provided an initial analysis of how such attacks can be
mitigated and prevented throughout the life-cycle of the over-
lay, and an in-depth solution to a critical aspect of the problem:
preventing poor adaptation decisions in networks influenced by
attackers. Our solution lies in performing spatial and temporal
outlier analysis on primary (measured) and secondary (probed)

metrics to allow an honest node to make better use of available
information before making an adaptation decision.

We demonstrated the benefits of using our outlier detec-
tion mechanisms to improve the adaptation process and the
overall stability of the system in the context of ESM, through
experiments conducted in real deployments. Our techniques
must be combined with a detection and response mechanism
to eliminate the malicious nodes. In future work we would like
to address this aspect, which will also allow us to experiment
with a larger number of malicious nodes under a diverse attack
pattern. In addition, we would like to investigate in depth how
to decrease even further the number of unnecessary changes
by integrating metrics of stability in the function that drives
the adaptation.
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