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Abstract—Many multicast overlay networks maintain
application-specific performance goals by dynamically adapting
the overlay structure when the monitored performance becomes
inadequate. This adaptation results in an unstructured overlay
where no neighbor selection constraints are imposed. Although
such networks provide resilience to benign failures, they are
susceptible to attacks conducted by adversaries that compromise
overlay nodes. Previous defense solutions proposed to address
attacks against overlay networks rely on strong organizational
constraints and are not effective for unstructured overlays.
In this work, we identify, demonstrate and mitigate insider
attacks against measurement-based adaptation mechanisms in
unstructured multicast overlay networks. We propose techniques
to decrease the number of incorrect adaptations by using outlier
detection and limit the impact of malicious nodes by aggregating
local information to derive global reputation for each node.
We demonstrate the attacks and mitigation techniques through
real-life deployments of a mature overlay multicast system.

Index Terms—Adaptivity, Insider Attacks, Overlay Networks,
Security

I. INTRODUCTION

ULTICAST overlay networks were proposed as a vi-

able application level multicast architecture to over-
come the scarcity of native IP multicast deployments. The
approach moves buffering and relaying functionality from core
routers to end-systems.

Many multicast overlay networks optimize application-
specific performance goals such as bandwidth, latency, jitter,
and loss rate by dynamically adapting the overlay topology.
The adaptation improves suboptimal overlay meshes resulting
from random initial neighbor selection, aggressive partition
repair, group membership changes, and transient conditions
in the underlying physical network. To decrease the control
overhead, each node maintains only a set of neighbor nodes
and an upstream node. A node monitors its performance from
the multicast source and periodically probes its neighbor nodes
about their own performance. When the performance becomes
inadequate, a node changes its upstream node. We refer to this
process as adaptation and to the mechanisms used to achieve
it as adaptation mechanisms. There are no constraints in the
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selection of the neighbor set and no imposed constraints in the
resulting overlay. Such networks are referred to as unstruc-
tured overlay networks to differentiate them from structured
overlay networks [1], where the overlay topology offers pre-
defined bounds and organizational invariants by constraining
the set of nodes eligible to become neighbors of a given
node. Examples of multicast systems using structured overlay
networks include Scribe [2] and SplitStream [3]; examples of
multicast systems using unstructured overlays include ESM
[4], Nice [5], and Overcast [6].

While pushing functionality to end-systems allows overlay
networks to achieve better scalability, it also makes them
vulnerable as trust is pushed to the fringes of the Internet
where end-nodes are more likely to be compromised than
core routers [7]. Overlay networks are more susceptible to
insider attacks conducted by attackers that infiltrate the overlay
or compromise some of its nodes. One attack that does not
require significant work from the attacker is to exploit the
adaptation mechanisms by influencing the accurate interpreta-
tion of performance observations and the correctness of the
responses received from probed nodes. As a result, an at-
tacker can influence the overlay construction and maintenance,
controlling a significant part of the traffic. This facilitates
further attacks such as selective data forwarding, cheating,
traffic analysis, and overlay partitioning. Some attacks, such
as selective data forwarding, may ultimately be noticed by the
victim so they can be effectively addressed by deploying a
posteriori detection mechanisms. Other attacks, such as traffic
analysis, do not have immediately observable results. It is thus
critical to address the primary attacks that allow the adversary
to control the overlay structure maintenance.

Previous work addressing malicious attacks on overlay
networks focused on structured overlays [8], [9], [10], [11],
[12], [13] used for file sharing applications. The attacker may
control the file discovery by manipulating the control and data
messages routed within the overlay, poisoning the routing ta-
ble, or partitioning the network. The proposed mitigation tech-
niques leverage the strong organizational constraints imposed
on neighbor selection and the invariant relationships between
neighbors. While solutions for attacks in structured overlay
networks offer valuable insights into the problem space, they
are not appropriate for unstructured overlay multicast networks
where no structural constraints exist between neighbors.

In this paper, we focus on identifying, demonstrating, and
mitigating insider attacks in unstructured multicast overlay
networks. The attacks exploit adaptation mechanisms that



these networks use in order to maintain application-specific
performance. Current adaptation mechanisms assume that the
information reported by probed nodes is always correct and
fail to take into account the effects of malicious attackers on
their surrounding environment. Unlike previous work demon-
strating attacks exploiting adaptivity [14], [15], our work
considers the effects of insider adversaries in the context of
overlay networks. A subset of the attacks we identified may
also be conducted against unicast overlays, but they may be
less effective depending on the nature of the metric optimized
by the overlay.

We summarize our key contributions:
e We provide a characterization of the types of mechanisms
currently used to achieve adaptivity in overlay networks and
identify attacks against these mechanisms. We refer to the
attacks as attraction, repulsion, and disruption.
e We provide an analysis of the solution space for mitigating
insider attacks that exploit measurement-based adaptation:
preventing incorrect or unnecessary adaptations, increasing
stability by incorporating metrics that reflect stability into the
decision process, detecting observable malicious behavior such
as degradation of service, and isolating the malicious nodes.
e We propose techniques to reduce incorrect or unnecessary
adaptations by using spatial and temporal correlations to
perform context-sensitive outlier analysis. A key component of
our solution is based on the observation that several estimated
metrics are dependent variables and the overlay and multicast
logical networks share overlapping physical links.
e We propose techniques to isolate malicious nodes by ag-
gregating the local suspicious behavior derived using outlier
detection to build a global reputation for each overlay node.
e We demonstrate the effectiveness of the identified attacks
and the benefits of our defense mechanisms in the context
of a well-known and operationally deployed multicast system,
ESM [4], through experiments and emulations conducted on
the PlanetLab [16] and DETER [17] testbeds, respectively.

Roadmap: The rest of the paper is organized as follows.
We specify our system and attack models in Section II. We
discuss adaptation mechanisms employed by overlay networks
and identify attacks against them in Section III. We propose
defense mechanisms in Section IV. We present experimental
results demonstrating the attacks and the defense techniques
in Section V. We overview related work in Section VI and
conclude our work in Section VII.

II. SYSTEM AND ATTACKER MODEL

System Model: We focus on overlay networks providing
support for single-source broadcasting applications that are
high-bandwidth (hundreds of kilobits per second) and real-
time, but not interactive. The system consists of a set of nodes
and a data source node communicating via unicast links. All
nodes but the source have similar functionality. The nodes are
not only receivers of data, but also contribute to the routing
process. The source is assumed to be continually available.
The overlay construction is self-organized and distributed.
No node has complete knowledge of the dissemination topol-
ogy. Each node maintains a neighbor set, a routing table
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and the upstream node forwarding the data, referred to as
the node’s parent. The neighbor set represents only partial
topology information and consists of nodes that are currently
reachable in the overlay. This set is bootstrapped at join time
by contacting the source and is continually updated via a
membership protocol. There are no constraints placed on the
members of a node’s neighbor set, also referred as peers.
The routing table represents a set of nodes that the node is
responsible for routing data to, also referred to as children.
The size of this set is limited by a system characteristic called
saturation degree, representing the number of concurrent data
streams the node is able to support before saturating the
allocated bandwidth of the underlying physical network link.
Each node maintains a set of performance variables for
each member of its neighbor set. These variables consist of
bandwidth (throughput), latency (one-way delay), and RTT.
We focus on overlays using TCP as the data transport protocol,
thus loss rate is not considered. The variables are continuously
measured by using passive observation and active probes.
A node uses the collected performance metrics to select a
new parent from its neighbor set if the performance becomes
inadequate.
Attacker Model: We consider a constrained-collusion Byzan-
tine adversary model similar to that proposed in [11], with
a system size of N and a bounded percentage of malicious
nodes f (0 < f < 1) behaving arbitrarily. The set of malicious
nodes is partitioned into disjoint coalitions with intra-coalition
cooperation possible. We assume a malicious adversary has
access to all data at a node as any legitimate user would
(insider access), including cryptographic keys stored at a node.
This access can be the result of the adversary bypassing the
authentication mechanisms or compromising a node through
other means. Nodes cannot be completely trusted although
they are authenticated. We assume that data authentication
and integrity mechanisms are deployed and we focus only on
attacks directed at the adaptation mechanisms. We assume the
source is trusted and cannot be compromised. We refer to
correct nodes as benign nodes or non-malicious nodes to dis-
tinguish them from malicious nodes. Even if a malicious node
is dropping forwarded traffic, we assume that it legitimately
receives and uses the inbound data traffic.

III. ATTACKS EXPLOITING MEASUREMENT-BASED
ADAPTATION IN OVERLAY NETWORKS

Any adaptive network protocol based on measurements
involves periodically observing and estimating the network
conditions, followed by making an adaptation decision. For
unstructured multicast overlays, the adaptation decision con-
sists of a node selecting a new parent based only on weighing
the associated costs versus benefits quantified through a utility
function [18].

Previous work studied the quality of the data observation
and estimation, as well as the ability of the metrics to
accurately reflect the state of the network. Examples of factors
that influence data quality include data freshness, variability
and noise. Mechanisms proposed to address these issues are
data sampling [19], data smoothing [20], metric construction
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[21], as well as data summarization and aggregation [22].
Previous work also studied instabilities [23], [24], [25], such
as the oscillatory behavior referred to as flapping, occurring
when nodes rapidly switch between seemingly equal alterna-
tives. New techniques such as utility discretization [25], [26],
randomization [25], [27], damping [24], and hysteresis [27],
[19] were deployed to mitigate these phenomena and provide
a tradeoff between responsiveness to change and instability.

None of the mechanisms described above take into account
adversarial environments. Compromised overlay nodes can
take advantage of the adaptation process to gain control over
overlay traffic by lying about their observed performance
metrics or artificially influencing the performance metrics
observed by other nodes to manipulate the path selection or
the overlay topology. We classify these attacks as attraction
attacks, repulsion attacks, and disruption attacks. More details
about each attack can be found in [28].

Attraction attacks are a form of “bait-and-switch” attacks,
where a malicious node manipulates the observed data in order
to present the network conditions as better than they are. The
attack can also target one particular node, in which case the
attacker persuades the victim to attach to a malicious parent in
the tree. The final goal of the attack can be manipulating data,
performing traffic analysis, performing man-in-the-middle at-
tacks, causing disruption for specific nodes by isolating them,
or selectively dropping packets for a particular destination.
The victim will make an incorrect change since the perceived
benefit does not reflect reality.

Repulsion attacks seek to reduce the attractiveness of other
nodes or misrepresent their ability, with the ultimate goal
of free-loading, traffic pattern manipulation, or augmenting
attraction attacks. As in the case of attraction attacks, repulsion
attacks can target one particular node. One way a malicious
node can conduct the attack is by lying about its performance.
For example, a malicious node may lie about route costs (i.e.,
hop count) in order to convince other nodes that it has a bad
connection and thus it should not be selected as a parent. The
malicious node will then obtain a reduced burden while still
taking advantage of the system.

Disruption attacks target the availability of the network by
using the adaptation process to turn the system against itself.
An attacker can create significant disruption in the overlay by
injecting or influencing the observation space metric data to
generate self-destructive responses as a result of unnecessary
adaptations. The ultimate goal of such attacks is to affect
the infrastructure that supports the overlay with the intent to
prevent or degrade service. These attacks can be classified as
a form of denial of service (DOS) and can result in jitter,
flapping, or partitioning the overlay.

IV. DEFENDING AGAINST ATTACKS IN ADAPTIVE
OVERLAY NETWORKS

In this section, we describe a comprehensive solution for
mitigating insider attacks that exploit adaptation in overlay net-
works. Since the attacks we are concerned with are performed
by compromised nodes controlled by adversaries, the solution
space components we describe below are complementary to
authentication and integrity mechanisms.

A. Solution Space

We identify four components that a framework designed to
address insider attacks against adaptivity mechanisms must in-
clude. Due to lack of space, we present a high-level description
of all of them and a detailed description of two components:
reducing incorrect adaptations and isolating malicious nodes.
More details about each component can be found in [29].

e (Al) Reducing incorrect adaptations: A node makes adapta-
tion decisions based on two types of information: the perfor-
mance from the source measured directly by each node and
the performance of the neighbor nodes obtained by probing a
random set. By blindly accepting the information reported by
the potentially malicious probed nodes, a benign node may
make incorrect decisions. We propose to prevent incorrect
adaptations by detecting and filtering out outliers in the metrics
reported by probed nodes. Our method evaluates temporal and
spatial correlations among data in the system.

e (A2) Increasing stability: Reducing the number of unnec-
essary adaptations may increase the stability and decrease
the incorrect adaptations, while reducing the overhead. We
propose to integrate stability metrics such as the time a node
was connected to his current parent, the frequency of changes,
or the degree of variance in metrics into the function that drives
the adaptation.

e (A3) Detecting observable malicious behavior: The methods
proposed above may still result in some incorrect adaptations.
As the attacks exploiting adaptation are often used to further
attack the multicast service, a node may observe a degrada-
tion of quality of service. This allows additional detection
mechanisms to be employed. Unlike (A1), which is focused
on preventing incorrect adaptations, this component reacts to
degradation of service resulting from incorrect adaptation. We
propose that every node uses the low-bandwidth, bidirectional
unicast link that it shares with the source to provide feedback
to the source about the received data. The link is also used
by the source to inform member nodes about the state of
the overlay structure to allow them to detect inconsistencies
in the metrics reported by peers. The structural information
can be trusted as it is sent by the source and protected
cryptographically from modifications.

o (A4) Isolating malicious nodes: Filtering malicious infor-
mation is not sufficient, as the malicious nodes may continue
to interfere with the system, unless further action is taken to
isolate them. We propose a gradual response where each node
of the overlay creates a local suspects list derived using outlier
detection. The local suspicious information is aggregated at the
trusted source by using a reputation system to derive a global
black list. The suspects list allows nodes to quickly make
corrective actions locally, while the global list allows nodes
to share information about malicious nodes in the system.

B. Reducing Incorrect Adaptations

The primary cause of the identified attacks is the ability of
the attacker to influence the adaptation process by manipulat-
ing the performance metrics. We propose to detect inconsistent
metrics by performing outlier analysis on the information
received from probed nodes and used in the decision process.



An outlier is a data point that is significantly different (greater
than a threshold) from the rest of the data in the observation
space based on a measure of distance.

Each node periodically performs a probe cycle, in which
it sends probe requests for system metrics to a random
subset of neighboring nodes and receives responses for a
fixed interval of time. The detection is performed locally by
each node at the end of the probe cycle using spatial and
temporal correlations. The spatial outlier detection compares
the reported metrics received from each node in the set of
probed nodes. The temporal outlier detection examines the
consistency in the metrics received from an individual probed
node over time. Our outlier detection does not affect the link
stress in the system, as it uses the metrics already reported
by nodes: latency, bandwidth and RTT. Both latency and
RTT are utilized because they are highly correlated metrics
collected in different manners (one is probed, while the other
is measured). In order to avoid being suspected by benign
nodes, a malicious node must insure that any lie it tells:
(1) is consistent with what the other peers are reporting
during a probe cycle about current network conditions, (2)
ensures consistency between the different dependent metrics
(bandwidth, latency, and RTT), and (3) is consistent with
metrics it reported in the past. The spatial outlier detection
targets the first and second aspects of consistency, while the
temporal outlier detection targets the second and third aspects.
Spatial and temporal data correlations have been previously
shown effective in detecting network attack scenarios [30].
Unlike the general approach in [30], our work does not look
for correlations but exploits the fact that they exist to detect
suspicious nodes.

The intuition behind our solution is that the dependency
existent in the measured variables requires attackers to make
sure the “fake” metrics vary in a consistent manner. This
dependency results from a fundamental characteristic of end-
system multicast systems — the distribution tree overlaps with
the routing infrastructure. Lying is made more difficult by the
fact that, in most cases, attackers can only make the RTT
worse, because it is a measured attribute, and yet, at the
same time, the RTT must remain consistent with both the
bandwidth and latency. Our solution also forces an attacker to
lie consistently with other peers. This is difficult to achieve as
an attacker does not have perfect knowledge of the observation
space, must accurately predict the random subset of nodes that
will be probed, and only has a finite amount of time (the probe
period) to coordinate with other attackers.

Our approach uses the Mahalanobis [31] distance to detect
outliers. We selected this distance function because it has been
shown effective at detecting outliers with multiple attributes
[32], scales each variable based on its standard deviation
and covariance, and takes into account how the measured
attributes change in relation to each other. These features make
it appropriate for our environment where there is a dependency
between several of the attributes reported by each node.

Spatial outlier detection. The outlier detection is performed
by a node as follows. Each probe cycle, the node first computes
the centroid of the data over the three dimensional space
formed by the observation tuples from all probed nodes.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

An observation tuple is represented by bandwidth, latency,
and RTT. The node then computes the Mahalanobis distance
between the observation tuple from each probed node and the
centroid as follows [31]:

A7, §) = /(- HTC1(F 7)) Q
where & and ¥ are the feature vectors consisting of bandwidth,
latency, and RTT. & is the value from the probe response and
i/ is the average value that was calculated. C~! is the inverse
covariance matrix computed from the observation tuples. Any
node whose Mahalanobis distance is greater than k£ away from
the centroid is considered to be an outlier. If there are not
enough tuples during a probe cycle, the tuples are compared
with the most recent centroid. If there is no variance between
the received observation tuples, the Mahalanobis distance
cannot be computed since the determinant of the covariance
matrix becomes zero. In this case, a node is randomly selected
from that probe set of observation tuples and compared to the
most recent centroid. If no centroid is available, the decision
is postponed to the next probe cycle.

Spatial threshold selection. The threshold for our outlier
detection can be mathematically derived as in [33], [34],
assuming a multivariate Gaussian distribution for the metrics
vector. The contours of equal probability of this distribution
create a 3-dimensional ellipsoid and the outlier threshold
reflects the probability of a vector being within the ellipsoid
whose semi-axes are determined by k. The probability that
a random vector lies within the ellipsoid increases with the
value of k. Thus, for a given value of k the probability that a
probed tuple lies within the ellipsoid can be computed as:

1+2<1/k”2d> \/Ekk 2
R — R 62 —_ 762
V2r V21T Jo Y T

We initially selected a k of 2.37, creating a threshold which
half of the probes would successfully pass. Through testing
in over 539,739 probe responses during 19,465 probe cycles,
we found an ellipsoid determined by a threshold of &k equal
to 1.5 will contain approximately 80% of the nodes. Thus, we
selected a threshold of 1.5 for our experiments. This variation
from the mathematically derived value can be attributed to the
fact that the used metrics do not form a perfect normalized
distribution and have a smaller variance than assumed in
Equation 2. A node may select smaller threshold distances for
stronger security guarantees, with the drawback that it may
find itself isolated due to aggressive filtering.

Temporal outlier detection. We use temporal correlations
to detect inconsistencies in the performance metrics reported
over time by a node. We develop models for the peers of a
given node during the course of a multicast session by using
incremental learning. Our technique is based on the “simplified

Mahalanobis distance” presented in [31]:
n—1

d(z,9) =Y (o — 5:l/ (i + @)

i=0
where n is the number of metrics, three in our case (bandwidth,
latency, and RTT), &; is the standard deviation, and « is a
smoothing factor empirically set to .001 to help to avoid over-
fitting and reduce false positives [31]. We trade-off accuracy
of the distance function to minimize the amount of data a

P =

3)
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node must store by assuming that the metrics are statistically
independent. Thus, a node does not need to maintain the
whole history. Instead, a node maintains a temporal centroid
for each peer consisting of the mean, standard deviation, and
sample count computed from the observation tuples received
over time. The centroid for each peer is incrementally updated
with observations received during each probe cycle, as in [31],
using the technique Knuth described in [35]. At the end of
the probe cycle, the latest observation tuple for each peer is
compared with the corresponding temporal centroid using the
simplified Mahalanobis distance.

Temporal threshold selection. We used a threshold of 3.0
for our temporal outlier detection, to allow each of the three
features to vary within one standard deviation from their
temporally developed mean. The value was chosen based on
the formula of the simplified Mahalanobis distance as in [31].

Spatio-temporal outlier detection. We combine the two
outlier detection mechanisms described above by using a
codebook technique similar to [30]. The peer nodes are ranked
according to their spatial outlier distance from the spatial
centroid and traversed from the closest to the farthest node.
The node that is the closest to the spatial centroid and it is
not a spatial or temporal outlier is chosen as the new parent.
If no peer is found meeting these criteria or if there are a
large number of temporal outliers, no adaptation is performed
during that probe cycle.

C. Isolating Malicious Nodes

Once malicious nodes are detected, corrective measures
must be taken to isolate them and minimize their effect on the
overlay network. Without appropriate response mechanisms,
the overall system performance may suffer as the malicious
nodes continue to interfere with the system. We propose a
two-prong approach which uses local observed behavior to
generate an immediate local bias against misbehaving nodes
and subsequently allows the overlay to construct and share
global knowledge about the malicious nodes. Each node cre-
ates and maintains a local suspects list. The list is periodically
sent to the trusted source which uses the collected information
to construct a global list of nodes that must be banned due
to their malicious behavior. The source periodically sends the
generated global black list to all nodes in the overlay structure
via a gossip-based protocol. Building and disseminating the
global list has a higher cost than maintaining just the local list
at each node. However, it has the advantage that it allows the
overlay to quickly converge to a stable equilibrium point and
achieve higher throughput as malicious nodes are more quickly
removed from the overlay. This is because each node does not
have to experience the malicious nodes’ actions before being
able to avoid them. Nodes are informed through the global
black list and consequently are able to select beneficial parents.

1) Local Response: Each node takes immediate action
based on a local suspects list created by tracking the behavior
of neighbor nodes. This is achieved by recording any inconsis-
tent metrics detected when performing outlier analysis on the
information from the probed nodes. Every node computes a
suspicion value for each neighbor based upon how far away the

reported metrics were from the spatial and temporal centroids.
The computation of the suspicion value also takes into account
each node locally sharing information with the other nodes
about its suspects list.
U7, , g7

ov

qij + o )+ 5( )+ N, if j is outlier
3qij
2wy 1

4

i = .
otherwise

“)
The suspects list is updated at the end of each probe cycle

after the system has performed outlier detection. Equation 4
presents the computation of a single suspicion value during a
probe cycle: ¢;; is the suspicion value of node 4 for peer j,
U is the list containing the Mahalanobis distances measuring
spatial distance for ¢’s peers, V is the list containing the
temporal distance for i’s peers, U and V are the averages
of each list, oy and oy are the standard deviations of U
and V respectively, and N, is a counter representing how
many other nodes reported j as suspicious. Each measure is
weighted independently («, (3, and ) to allow the response to
be tailored to the application or network conditions. Intuitively,
our scheme assigns suspicion such that the greater the distance
between the observed data for a node and the centroid of the
entire data set, the greater the local suspicion value a node is
assigned. We also assign more weight to the direct observa-
tions (i.e. how far a node’s distance is from the centroid) than
to indirect observation (i.e. how many nodes reported a node
as suspicious). The suspicion value is increased every probe
cycle if the probed node is an outlier. Otherwise, as seen in
the second part of Equation 4, the suspicion values undergoes
decay to accommodate transient network conditions and allow
nodes to be removed from the suspects list, eventually enabling
a node that behaves well to be reconsidered as a parent.

Once a node is placed on the suspects list, it can be
displaced as a child node, it will not be chosen as a parent,
its gossiped information will not be propagated, and it may
eventually be reported to the source as being malicious. A
node will decide if it considers a neighbor node malicious by
comparing the suspicion value against a threshold, A. If the
value is higher than the threshold, then the node is reported
as malicious to the other nodes and the source.

Malicious nodes may collude and send false information
causing non-malicious nodes to incorrectly suspect their peers.
To prevent this, even if node ¢ has a positive suspicion value
for node j, ¢ will not report a negative reputation for j to the
source unless ¢ has directly experienced suspicious/malicious
behavior from j. This approach still allows honest nodes to
build up a strong negative reputation through indirect obser-
vations, but holds global-response at bay until the malicious
node directly treats the honest node badly. Even if a node
is marked as suspicious, it will still receive service from the
overlay and will remain a member of the topology. In this
manner an honest node cannot be isolated from the overlay
unless every overlay node peer it attempts to use as a parent
is malicious and drops all traffic to the honest node.

2) Global Response: Our global response mechanism cre-
ates a global representation of the trust in each node in the
overlay by using a reputation system to aggregate the individ-
ual suspicion values from the local suspects list at the source.
The nodes with a trust value below a specified threshold are



added to a global black list disseminated to all nodes. We
adapt a well-known distributed reputation system, EigenTrust
[36], to the trust model of our application in which the source
node is trusted. We selected the EigenTrust algorithm because
its trust value aggregation method is robust to malicious
nodes and coalitions. We make several modifications to the
EigenTrust algorithm to tailor it to our application.

The intuition behind EigenTrust is that a node ¢ forms a
broader trust value (¢;;) in node k by asking its neighbors to
report their trust in k£ and weighting those opinions by ¢’s trust
in its neighbor: t;;, = > j CigCiks where ¢;; is the normalized
local trust value of node % in node j. The value c;; is calculated

as follows:
cij = { Zj max(si;,0)
Dj otherwise

where s;; represents the non-normalized local trust value at
node ¢ in node j and p; represents the default trust value for
the node j. As the only trusted node for our application is
the source, p; = 1 if the node is the source and p; = O,
otherwise. A node will have a local trust value of zero with
all nodes it has not interacted with and initially only trust the
source. When a node ¢ first interacts with another node 7,
it forms a new non-zero local trust value, s;;, based on the
“goodness” of the interaction.

max(si;,0)

T 5,0)>0
if >, max(si;, 0) > )

Algorithm 1: Basic EigenTrust Algorithm

0 =g

while 6 > ¢ do
= o7k,
L = (1 — N+ AR,
§ = [t — )]

end

Using the basic EigenTrust Algorithm presented in [36]
and reproduced in Algorithm 1, the idea of transitive trust
can be extended to formulate a system wide trust ranking
by formulating the summation of local trust values as a
matrix multiplication. Through each iteration of multiplying
the global trust vector ¢ by the aggregated local trust values
contained in C, the algorithm intuitively represents asking
successively further nodes opinions of their neighbors. After
each iteration, each of the trust values stored at source in tis
normalized to guarantee that meaningful comparisons between
values can be performed, but not that all trust values add
up to one. The calculation continues until the convergence
of § = Ht_(’““) — f(k)H < €, where € is empirically set to
.0001. To guarantee that the calculation will converge, the pre-
trusted nodes trust vector, p, is used as the starting vector
(t° = p). To mitigate the effects of malicious coalitions
of nodes cooperating to subvert the reputation system, the
pre-trusted nodes are favored with a certain weight, A, after
each iteration. Since the source is the only trusted node in
the system, it is the only node to start out with a positive
reputation. The source’s pre-trusted weight, A, was empirically
set at 0.3 to minimize the convergence time of the EigenTrust
algorithm while still providing valuable feedback. Once the
trust values drop below a specified threshold, W, the system
will consider the identified node as being malicious.
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In addition to tailoring the EigenTrust algorithm to our
environment, we also take into account that while EigenTrust
was designed to use and create positive reputation, our outlier
detection produces only negative reputation about a node. We
convert the local suspicion values into a positive form suitable
for the EigenTrust algorithm.

V. EXPERIMENTAL RESULTS

We demonstrate through experimental results the identified
attacks and our outlier detection and response techniques
in the context of the ESM overlay multicast system. We
selected ESM because of its maturity, extensive deployment,
and the advanced set of adaptation techniques it employs. Our
experiments show that, although ESM employs an advanced
set of adaptation mechanisms, it is unable to mitigate the
attacks posed by a malicious adversary. Our outlier detection
and response mechanisms were able to reduce the impact of
malicious nodes without adding to the link stress in the system
or requiring significant storage.

A. Overview of ESM

ESM [4] is a multicast system mainly used for broadcasting
live events such as academic conferences. We provide a high-
level description below. For further details, the reader is
referred to [29]. ESM forms a peer-to-peer overlay tree for
distributing multicast content. A node changes its parent in
the overlay to maintain and improve application performance.
Both passive observation and probing are used to collect
data used to make the adaptation decision. ESM uses data
sampling and data smoothing to address variations in the
metrics considered: available bandwidth, latency, and RTT.
ESM also employs a number of combined metrics, damping,
randomization, hysteresis and three utility functions to address
instabilities in the observed data. The three utility functions are
based on: bandwidth, latency, and a combination of bandwidth
and latency. A damping factor is used to induce stability and
a randomization technique is used to avoid the case where
several nodes try to change to the same parent.

The parent selection algorithm is presented in Algorithm 2.
In order to select a new parent, a node first computes a list
of potential candidates from its neighbor set. Nodes which
are currently saturated, descendants, or did not respond when
recently probed are not considered. If there is no utility gain,
no node is selected and the process will be repeated next
cycle. If several nodes are candidates, then the first candidate
is selected as the new parent. The selection process uses
hysteresis to generate a negative bias against nodes that have
performed poorly in the past.

B. Testbed and Experiment Setup

To study the attacks and defense mechanisms under real-
world conditions, we conducted our experiments on the Planet-
Lab [16] Internet testbed. In addition, for repulsion and disrup-
tion attacks that could have been disruptive to PlanetLab, we
used DETER [17], a testbed that provides a stable, controllable
emulation environment for network security research.
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Algorithm 2: Parent Selection Algorithm Used in ESM

Input: Set of probe responses tuples (<bandwidth, latency, RTT>)
Output: New Parent Node

1 Create list of potential parent candidates, PC'L, excluding nodes: 1)
currently saturated, 2) descendant of this node, and 3) unresponsive

2 foreach rnode in PC'L do

// Combined Metrics Component

3 if (utilityGain(throughput, latency) > currentUtility*1.1) then
4 ‘ keep rnode in PCL;
5 else
6 ‘ remove rnode from PCL;
7 end
8 end
9 foreach rnode in PCL do
// Hysteresis Component
10 if (rnode has performed well in the past) then
// Dampening Component
11 if (local node has not switched parents recently) then
// Randomization Component
12 if (node switch probability > rand()) then
13 Select rnode as next parent;
14 return rnode
15 end
16 end
17 end
18 end

[o

9 return no change

The PlanetLab Internet testbed is explicitly designed to
provide a research platform for large scale distributed experi-
mentation of peer-to-peer systems [37]. In order to mitigate
the possible limitations of using a testbed, such as those
addressed in [37], experiments were run at different times of
the day and different days of the week, nodes were randomly
chosen to validate the statistical significance of results, and
sets of nodes were chosen which spanned multiple operational
and administrative domains. We use 60 minute long ESM
deployments of 100 nodes in which the nodes join after the
experiment begins and leave before it ends, with an average
participation time of fifty-five minutes. As in previous ESM
deployments [38], nodes are probed every seven seconds,
the saturation degree of benign nodes is six, and the source
constant bit rate is 480 Kbps. All experiments use these
parameters unless otherwise noted.

C. Attack Effectiveness

1) Attraction Attacks: We demonstrate the effect that a
single coalition of one malicious node, who exploits the
adaptive nature of ESM, has on the multicast tree construction,
maintenance, and stability. One randomly selected node per-
forms an attraction attack in which it lies every probe cycle
about having the best bandwidth (480Kbps), latency (Oms),
and no saturation. When the node is honest, it is selected only
5 times as a parent by other nodes. However, when the node
is malicious, it is selected 172 times, or almost 35 times more
often. The malicious node also causes the overlay to become
more unstable as can be seen in the 24% increase in total
parent changes. This increased instability can be attributed to
the fact that the new child will eventually realize the bait-and-
switch and change its parent again.

We next consider the effect on the benign nodes when
a percentage of randomly selected malicious nodes perform
attraction attacks. Metrics we investigate are: the percentage
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Fig. 2. An example of a repulsif)n) attack against an ESM overlay in a
controlled experiment on DETER. (a) represents the overlay and the multicast
tree before attack while (b), (c) and (d) are the topology changes in the
multicast tree as a result of the attack. Node E is manipulated by the attacker
to attach to malicious node D, although this causes E to be three hops away
from the source, instead of just one. (e) The average bandwidth with topology
changes denoted by the solid and dashed impulses representing good and
malicious parent changes respectively.

of nodes that have at least one malicious node on their path
from the source, the percentage of nodes that have a malicious
node as a parent at some point during the experiment, and the
number of parent change decisions that resulted in selecting a
malicious node. The results of the experiment, summarized in
Fig. 1, demonstrate that even a small percentage of malicious
nodes will affect the majority of benign nodes in the overlay.
Fluctuations in the general trends of the curves result from
the use of real-world experimentation and randomly selected
malicious nodes. The greater the number of malicious nodes
located near the source in the overlay topology, the greater the
effect will be on the overall system.

2) Repulsion Attacks: While performing experiments, we
noticed that nodes with very good performance, such as those
directly attached to the source, could not be easily fooled
by lying nodes. We demonstrate a repulsion attack where an
attacker affects the partially observable link state estimation in
order to make a node incorrectly believe that the performance
from the current parent is inadequate. While there are many
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possible attack methodologies, this method of attack was
chosen for demonstrative purposes because it has been used
against other types of adaptative protocols [15], [14], [19].

Fig. 2 presents a star topology composed of six nodes, all
of which are connected with 100 Mbps links to switch S1. For
demonstrative purposes, ESM is configured to use a saturation
degree of two. In our example, node A is the source and nodes
B through F are end-systems in the overlay. Nodes B and F
collude with D. During the attack, nodes B and F generate
traffic to augment the attack of malicious node D which lies
about its bandwidth (480Kbps), latency (Oms), and saturation
(none). The traffic generated by nodes B and F causes the
malicious node D to appear far better than the nodes burdened
by the extraneous traffic.

The overlay initially converges to the stable structure seen in
Fig. 2(a), at which point the mean bandwidth is approximately
480 Kbps. Topology changes occur at the impulses seen in
Fig. 2(e). The attack begins at 115 seconds when nodes B
and F begin flooding for 30 seconds towards the source, node
A. The attack is able to generate several changes in the tree,
with the final result that node E detaches from the source and,
instead of choosing node C, chooses the malicious node D,
as its parent in Fig. 2(d). Note that node E was previously
directly connected to the source but it is now connected three
hops away. The changes after 200 seconds are due to nodes
leaving the experiment.

The effort incurred to cause such an attack consists of
saturating the 100 Mbps link with a short 30 second burst of
traffic. In real Internet deployments, this will be substantially
less since links will typically have a lower capacity.

3) Disruption Attacks: Fig. 3 demonstrates an example
of a disruption attack where the attacker exerts an artificial
influence (extraneous traffic) towards the switch S1 in the
overlay topology. The switch S1 is a focal point in the overlay
topology, handling all of the network traffic for the targeted
section of the network. The main difference from previous
attacks is that the artificial influence is done periodically in
order to destabilize the infrastructure. In the experiment in
Fig. 3, the attacker sends 5 second bursts of traffic every 30
seconds. It should be noted that the attack actually targets the
medium a node shares with its parent, making it difficult to de-
tect through traditional methods. This is similar to the attacks
performed in [14], [15] which targeted the TCP congestion
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control. Fig. 3 shows that by using this technique, the attacker
can keep the system in a constant churn as it keeps trying
to stabilize itself. Despite the fact that the attacker was using
only 5 second bursts of traffic, parent changes occurred in the
overlay at almost every probe cycle.

D. Effect of Malicious Nodes on Average Bandwidth

We studied the effect multiple malicious nodes can have
on the overlay topology if they decide to selectively drop
data. In Fig. 4, we demonstrate the impact malicious nodes
that use their position in the tree can exert on the bandwidth
of benign nodes. The graphs plot the bandwidth averaged
over all receivers as a function of time. Malicious nodes start
dropping 100% of the data traffic received through the data
dissemination tree fifteen minutes after they joined the overlay.
We vary the percentage of malicious nodes to 10%, 30%,
and 50% of the overlay size to demonstrate the performance
degradation that results when more nodes behave maliciously.

We define the relative strength of a particular attack as:
Bnorm - Badv (6)
Bnorm x N, adv
where Byorm and B,g, represent the average throughput in
the absence and presence of adversaries respectively, and N g,
is the number of adversaries. Intuitively, 7 represents the
amount of damage an attack created in the system. The greater
the performance degradation observed in the system between
when the malicious nodes are passive and active (the difference
between By, ,rm and B,g,), the higher the value of 7 and the
more damage an attack inflicts on the overlay.

Fig. 5 depicts 7 varying over the percentage of the traffic
dropped. As it can be seen, the greater the amount of data
traffic a malicious node drops, the greater the effect it has
on the system. The drop in the effectiveness of the attacks as
the malicious nodes drop high percentages of data (100%) is
due to ESM categorizing the malicious nodes as unstable links
based on past experienced bandwidth and having a bias against
choosing them as parents. Fig. 5 also shows the intuitive
notion that the greater the number of malicious nodes, the
greater effect there is on the system. It can be noted that just
10% malicious nodes have a significant effect on the average
bandwidth. We believe this is because a percentage of 10%
malicious nodes is enough to obtain advantageous positions
in the vulnerable tree structure which has no path redundancy.

T =

E. Effectiveness of Outlier Detection

To demonstrate the effectiveness of our outlier detection at
improving the parent selection process and the stability of the
system, we considered one malicious attacker and recorded
the number of parent changes that took place for the duration
of the experiment considering two cases, one when only the
spatial outlier is used, and one when the temporal-spatial
outlier is enabled. The outcome of these experiments is shown
in Table I. The results indicate that using the spatial outlier
detection scheme has dramatically reduced the likelihood of
choosing a malicious parent since the number of times the
malicious node was selected as a new parent is reduced from
172 to 70. The addition of the temporal outlier detection
further reduces this to only 35 times.
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TABLE I
THE EFFECTIVENESS OF OUTLIER DETECTION AT IMPROVING PARENT
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Our method also dramatically improved the stability of the
overlay in spite of the presence of the malicious node, as
measured by the decrease in total parent changes denoted in
third column of Table I. In fact, the number of adaptations
is comparable to the number of adaptations that would occur
when no malicious nodes are present in the overlay.

F. Coalitions of Attackers and Spatial Outlier Detection

The previous experiment demonstrated the effectiveness of
the spatial correlation for detecting outliers produced by a
single coalition containing one attacker. We now consider the
constrained collusion model presented in Section II in which
all faulty nodes are part of the same coalition. A coalition of
colluding attackers may attempt to bypass the outlier detection
mechanism itself by shifting the centroid so they are not
perceived as outliers anymore. As a result, one of the members

of the malicious coalition will be selected as the parent.
We considered three colluding cases requiring different

degrees of coordination between the attackers. In the first case,
referred to as “Optimum BW, Latency”, the malicious nodes
can only lie about the latency and bandwidth and not the
RTT. The second case, referred to as “Optimum BW, Latency,
RTT”, the malicious nodes agree to lie consistently on a set
of predefined values: RTT of 0, latency of 0, and bandwidth

0O 10 20 30 40 50 60 70 80 90 100
Percentage of Colluding Nodes in Probe Set
Fig. 6. Number of colluding nodes necessary to influence parent selection.

The goal is for a colluding node to be ranked first and chosen as a parent.

of 480 Kbps. Note that in order to influence the RTT, this
case requires that one malicious node indeed has an RTT of 0
with the victim and it can intercept all the RTTs of the other
nodes in the coalition. The third case, referred to as “Mean”,
assumes that the attackers have the ability to share their
observed performance and compute and report the average of
their real metrics, again only bandwidth and latency. This case
requires strong coordination between the attackers, which may
not always be possible during a probe cycle without creating
inconsistencies in measured probe times. We compare these
cases with the normal case, when no nodes are lying.

We summarize our findings for an ESM overlay of 118
nodes on PlanetLab in Fig. 6. This graph depicts the highest
rank of a member of the malicious coalition as a function
of the percentage of malicious nodes. Note that it took a
malicious coalition of 80% of the nodes in a probe set in the
first case and 60% of the nodes in a probe set in the second
case before a malicious node is chosen as the next parent. This
demonstrates the effectiveness of the spatial outlier detection
since both the number and type of metrics used by the outlier



TABLE II
SYSTEM SETTINGS FOR THE RESPONSE MECHANISM

Variable Description Value
o Spatial (Horizontal) Outlier Weighting 10
I¢] Temporal (Vertical) Outlier Weighting 7

¥ Gossip Response Weighting 1

A Local Reporting Threshold 14
N4 Global Trust Value Threshold Variable

detection defense make it difficult for the attackers to maintain
consistency. In the “Mean” case, 47% of the nodes needed to
be in a coalition before they could deterministically guarantee
that a malicious node would be chosen. This demonstrates
that if the attackers have more information, then they can
reduce the amount of work necessary for subverting the
spatial outlier detection mechanism. When compared with the
normal case in which no node exhibits malicious behavior,
the “coalition” would only need to contain 40% of the nodes.
Thus, lying about metrics, even with sophisticated coordina-
tion techniques, is no longer an effective attack technique. The
spatial outlier technique we describe constrains the behavior
of attackers and reduces their ability to artificially augment
their influence on the system.

G. Effectiveness of Response Mechanisms

Algorithm 3: Procedure to exclude malicious nodes as
possible parents. The code is invoked after line 8 in
the ESM parent selection pseudo-code presented in Al-
gorithm 2

Input: Potential Parent Candidates List (PCL)
Output: Updated PCL
1 foreach rnode in PCL do

// Ignore Known Malicious Nodes
// Resulted from Global Response
2 if (rnode is on BlackList) then
3 ‘ remove rnode from PCL;
4 else
5 ‘ keep rnode in PCL;
6 end
// Detect Malicious Behavior
// Resulted from Local Response
7 if (outlierDetection(rnode) == false) then
8 | keep rnode in PCL;
9 else
10 | remove rnode from PCL;
11 end
12 end

To demonstrate the effectiveness of our response mecha-
nisms at mitigating the effects of malicious nodes and sus-
taining the average bandwidth of the system, we conducted
experiments in which a percentage of the nodes were malicious
and recorded the average bandwidth for the duration of the
experiment. The system was using both spatial and temporal
outlier detection to generate the local suspicion values. The
additional steps which occur during the the parent selection
process to mitigate the effects of malicious nodes are presented
in Algorithm 3, which is executed between lines 8 and 9 of the
original parent selection algorithm presented in Algorithm 2.

Fig. 7(a) and Fig. 7(b) present results for the local and
global response mechanisms when 30% of the nodes are
malicious. Each malicious node joins the network and lies
about having the best bandwidth (480Kbps), latency (Oms),
and no saturation. Once the malicious nodes have had a
chance to optimize their position in the overlay, fifteen minutes
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after they joined the overlay, they start dropping 90% of the
data traffic received through the data dissemination tree. We
also present as a reference the average bandwidth under non-
attack conditions, with the response mechanisms enabled in
Fig. 7(c). Fig. 7(a) shows that using only a local response
does decrease the effect of the malicious nodes. However,
the average bandwidth of the system converges to a value
below the one obtained in the absence of malicious nodes
and the system takes longer to stabilize. Next, we explored
the effect of the global response mechanism on the bandwidth
and system stability. Fig. 7(b) demonstrates that the addition
of the global response mechanism further decreases the effect
of the malicious nodes, bringing the average bandwidth of the
system close to the value when no malicious nodes exist in
the system. When using only the local response, over one third
of the identified malicious nodes were actually false positives.
By using the global reputation system, we were able to reduce
the number of false positives to zero. We also evaluated the
use of only the global response mechanism, which resulted
in performance similar to the combination of the local and
global response mechanisms but showed greater variation in
bandwidth. Due to lack of space, we present the results for
the combination of both.

The system settings for the response mechanism can be
found in Table II. Intuitively, the settings were designed to
place more weight on being consistent with the current state of
the system as measured by the spatial outlier while allowing
nodes to have small inconsistencies in reported metrics and
not be considered malicious. Each value was determined
empirically through experimentation. As shown in Fig. 7(b),
even a very conservative response mechanism greatly increases
the resiliency of the network to a large percentage of malicious
attackers. While the conservative approach was only able to
black list approximately one third of the malicious nodes
(no non-malicious nodes were black listed), the remaining
malicious nodes were pushed towards the fringes of the over-
lay, allowing the system to sustain near-optimal bandwidth.
As the response mechanism is tuned to the application and
network conditions, it is able to identify and quarantine higher
percentages of malicious nodes. It was identified during testing
that the local suspects list could be optimized to only include
nodes that had been considered as a parent. This allowed each
node to track a much smaller set of suspicious nodes and
resulted in a homogenous set of suspicion values at the source.
We were able to set cutoff thresholds much tighter without
black listing poor performing non-malicious nodes, thereby
improving the effectiveness of our response mechanism.

Fig. 8 presents the effect of the response mechanisms on
the relative strength of the attacks, 7, as defined in Eqn. 6. It
confirms the intuition that when the response mechanisms act
quickly, the strength of the attack will be diminished as the
malicious nodes are more quickly eliminated from the list of
potential parents. As expected, the local response mechanism
can partially mitigate the effects of the attackers, while the
faster convergence of the global mechanism results in a smaller
damage on the overall system. The higher the cut-off threshold,
the smaller the damage on the system.

Fig. 9 presents the effectiveness of the response mechanisms



WALTERS et al.: A FRAMEWORK FOR MITIGATING ATTACKS AGAINST MEASUREMENT-BASED ADAPTATION MECHANISMS IN UNSTRUCTURED MULTICAST OVERLAY NETWORKS

Average Bandwith as a Function of Time

Average Bandwidth as a Function of Time

Average Bandwidth as a Function of Time

600 : ; 600
50 4 ‘HL[ : “\,h H“J\ 500 ||, ‘\ | JLL ‘
. o et o _ _ Trpdrehpe
2 a0l ‘ 2 2 a0} 1
< < <
£ 300 ‘ S £ 3007
3 = n 3
§ 200 I h JWHI“MM E a0
aQ @ No response aQ
100 | Md. Parent Change 100 |f Global Threshold of .9 100 i
Average Bandwidth ———  Global Threshold of .92 0% Malicious Nodes ———
o Source Rate | Global Threshold of .94 ol _Source Rate -
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time (seconds) Time (seconds) Time (seconds)
i @ o () (©) .
Fig. 7. (a) The effectiveness of local response in mitigating attacks on an ESM overlay of 100 nodes on PlanetLab for a duration of 30 minutes. (b) The

effectiveness of global response in mitigating attacks on an ESM overlay of 100 nodes on PlanetLab for a duration of 30 minutes. (c) The average bandwidth
over time for an ESM overlay of 100 nodes on PlanetLab for a duration of 30 using both response mechanisms under non-attack conditions.

Attack Effectiveness Against Various Response Mechanisms
0.009 T T T T T
0.008 [

0.007 [
0.006 [
0.005 [
0.004 [
0.003 [
0.002 [
0.001 [
0

Tau

None
Local

Psi of .9
Psi of .92
Psi of .94

Response Mechanism

Fig. 8. Attack effectiveness against different response mechanisms on an
ESM overlay of 100 nodes. Tau represents the amount of damage an attack
created in the system as described in Section V-D

Malcious Node Location Under Various Response Mechanisms
30 T T T

No Response

25

[ Global Respone Threshold .92
[A Global Respone Threshold .94

]
A

Numer of Malicious Nodes
\
AT
(TS

,

0

=

=

LeafNodes NumberBanned

InteriorNodes

Malicious Node Location in the Multicast Tree

Fig. 9. Malicious node location for an ESM overlay of 100 nodes with 30%
malicious nodes on PlanetLab under different response mechanisms

at moving the malicious nodes towards the fringes of the tree
to locations of less influence. Without a response mechanism,
the majority of malicious nodes (18 out of 30) occupy interior
positions in the multicast tree, with the rest being leaves in
the tree. The greater the number of interior positions the
malicious nodes control, the greater the effect they will have
on the system performance since they can affect all nodes
downstream of them. By utilizing the local response only, the
system is able to push more of the malicious nodes towards
the fringe of the network, with only 11 being interior nodes
and 19 now being leaf nodes. Note that the local response does
not ban nodes from the network since they can only be banned
when the global mechanism is activated. With the addition of
the global response and the ability to remove malicious nodes
from the network, the system is more effective in responding
to the malicious nodes. For example, with a global response
threshold of .92, only 4 malicious nodes are interior nodes,
6 nodes are leaf nodes, and the remaining 20 are removed

from the network entirely. By removing malicious nodes from
locations of influence, our solution is able to maintain the
performance of the system.

H. Overhead and System Performance

Our outlier detection does not introduce any extra link stress
since it uses information that is already being exchanged
between nodes. The memory utilization for spatial correla-
tion only lasts for the span of a probe cycle and requires
maintaining the observation tuple associated with each of the
probed nodes, while the storage requirements consist of three
additional values in the route table for the peer set maintained
by each node. In the case of the temporal outlier detection, the
memory usage consists of maintaining the temporal centroid.
By incrementally updating the centroid, nodes do not need to
maintain the entire history for each probed node. The temporal
outlier detection also requires modifying the route table entries
to store nine additional values: mean, standard deviation, and
count for each of the three metrics.

Our response mechanisms introduce minimal link stress
since the reputation information for each individual node is
combined with the pre-existing membership protocol. Addi-
tional messages are required to disseminate the global black
list to member nodes through the multicast tree and suspect
information from each member node to the source. On average,
the source receives an extra 83(%) Bytes of network traffic
per second, where N is the size of the overlay and ¢ is the
reporting interval. In our experiments, ¢ was set to 20 seconds,
resulting in the source receiving approximately 413 Bytes of
suspect data per second. Every node in the tree receives 4B
Bytes of black list information every ¢ seconds, where B is
the number of nodes on the black list. The memory utilization
per node is up to 8N Bytes for the suspects list and up to 4N
for the black list. The difference is due to each node storing
a local reputation for every other node on the suspects list.

VI. RELATED WORK
Our work focuses on attacks exploiting measurement-based
adaptation in overlay networks and our solution uses concepts
borrowed from anomaly detection and reputation systems.
Below we review work in several areas related to our research.
Attacks exploiting adaptivity. Previous work showed the
vulnerability of the TCP adaptation mechanisms, i.e. the
congestion control mechanism, to malicious attacks [14].
The authors showed that by manipulating the end-system’s



perception of network congestion, the adaptivity mechanism
could be used to perform a low-rate DOS attack with severe
effects on TCP throughput. The attack was generalized in
[15], as a form of low-rate ROQ attack targeting point-to-
point adaptive control loops that drive resource allocation and
affect perceived service of a system (bandwidth, jitter, etc).
Our work assumes a stronger adversarial model in an overlay
network. The nature of the attacks, application and deployment
environment allows us to use a context sensitive observation
space and correlated information associated with the same
information that drives the adaptation to detect and limit the
effect of malicious behavior.

Anomaly detection and Mahalanobis distance. Recently the
benefits of the Mahalanobis distance for statistical anomaly
detection have been demonstrated in the context of network
intrusion detection [31], [39]. In [39] the authors present a
comparative study of detection schemes based on data mining
techniques for network based intrusion detection. In [31]
the authors discuss an unsupervised, payload-based network
anomaly detector based on the Mahalanobis distance which
was used to detect attacks like worms.

Use of spatial and temporal correlations. Spatial and tempo-
ral correlations were previously used in the context of network
security. A notable work in this aspect is [30] where the
authors use temporal and spatial correlations to trace back
attacks and detect attack scenarios, using a large amount of
information from intrusion detection systems, firewalls, and
different software logs. Unlike the approach in [30], which
was more general, our work focuses on overlay networks and
does not look for correlations, but exploits the fact that they
exist to detect inconsistent metrics and find suspicious nodes.

Correlations have also been used in sensor network and ad-
hoc networks for the detection of malicious nodes [40], [41].
Most of this research focused on the evaluation of off-line
data developed in a simulator. In our work, the correlation is
actually incorporated in-line with the protocol as it tries to
adapt. Analysis is performed on the Internet with real data
while fusing multiple correlations to improve our predictive
abilities. The work in [41] shows how to augment a sensor
network with spatio-temporal correlation to detect misinfor-
mation being injected into the sensor streams. In our research,
we are concerned with an attacker manipulating the control
information in order to influence system adaptation.

Malicious behavior in overlay networks. The problem of
malicious attackers was previously studied in the context of
structured overlay networks. A subset of these types of attacks,
referred to as Eclipse attacks [12], [13], was subsequently
studied in optimized structured file sharing overlays. The
solution enforces degree constraint invariants associated with
neighbors, supported by anonymous auditing, and takes advan-
tage of strong organizational neighbor constraints existent in
such networks. As unstructured overlay networks do not have
such constraints, the proposed solutions are not applicable.

To the best of our knowledge, the problem of malicious
insider attacks was not studied in the context of unstructured
overlay networks. An attack performed by selfish attackers
(i.e. nodes that want to obtain an advantage but do not have
destructive goals) was shown through simulations in [42]. Our
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work is different in the fact that it considers malicious attackers
and presents results in the context of a real system in real
deployments over the Internet.

Reputation systems. A considerable amount of research has
focused on the development of trust and reputation systems
for peer-to-peer systems [43], [36] and ad hoc networks [44],
which help users make beneficial decisions assuming the
existence of detection mechanisms for malicious behavior. It
has been shown in [45], [46], [47] that these systems provide
an effective way to mitigate the effects of malicious nodes in a
decentralized distributed system. In [48], the authors provide
techniques for improving the security of reputation systems
which could be used in conjunction with our approach. Our
work presents concrete solutions for the detection mechanisms
that reputation can be built on.

To the best of our knowledge, our work is one of the few
implementations of a reputation system in overlay applications
that has been tested in a operational system over the Internet
and not just simulated. Credence [49] is one other system that
we are aware of which uses a reputation system to deal with
the file pollution problem in a file-sharing application. Unlike
Credence, we focus on multicast applications and consider
malicious insiders. Although our work has the advantage of
having a point of trust (i.e. the source), it faces the challenge
that it can not rely on human interaction to generate reputation.
Instead, it achieves its goals in an autonomic fashion.

VII. CONCLUSIONS

In this paper we identified insider attacks that exploit
measurement-based adaptation mechanisms in multicast over-
lay networks. We discussed a comprehensive defense frame-
work and presented an in-depth solution to two critical aspects
of the problem: preventing poor adaptation decisions and
taking corrective measures to isolate and minimize the effect of
the identified attackers. We showed the importance of tightly
coupling the detection space and the control space. By incor-
porating context sensitive anomaly detection into the protocol,
our detection mechanisms had the semantic understanding to
improve the adaptive decision process. We demonstrated the
effectiveness of the newly identified attacks and the benefits of
using our detection and response mechanisms in the context
of ESM, a well-known adaptive multicast overlay network.
Our experiments conducted in real-life deployments and em-
ulations, showed that although ESM employs an advanced set
of adaptation mechanisms it was unable to mitigate the attacks
posed by a malicious adversary. Our experiments demonstrated
that our techniques improved the adaptation process and the
overall stability of the system while limiting the effect of
malicious nodes.

REFERENCES

[1] M. Castro, M. Costa, and A. Rowstron, “Should we build Gnutella on
a structured overlay?,” in HotNets, 2003.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications (JSAC), vol. 20,
no. 8, pp. 1489-1499, 2002.

M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: high-bandwidth multicast in cooperative envi-
ronments,” in Proc. of SOSP, 2003.

Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast
(keynote address),” in SIGMETRICS, 2000.

[2]

[3]

[4]



WALTERS et al.: A FRAMEWORK FOR MITIGATING ATTACKS AGAINST MEASUREMENT-BASED ADAPTATION MECHANISMS IN UNSTRUCTURED MULTICAST OVERLAY NETWORKS 13

[5]
[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]
[14]
[15]
[16]
(17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27)

(28]

[29]

(30]
[31]

[32]

[33]

[34]

[35]

[36]

S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in SIGCOMM, 2002.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, Jr., “Overcast: Reliable multicasting with an overlay network,”
in USENIX OSDI, 2000.

“2005 e-crime watch survey -
http://www.cert.org/archive/pdf/ecrimesurvey05.pdf.
D. S. Wallach, “A survey of peer-to-peer security issues,” in Interna-
tional Symposium on Software Security, 2002.

W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, “Feasibility of a
serverless distributed file system deployed on an existing set of desktop
PCs,” in SIGMETRICS, 2000.

E. Sit and R. Morris, “Security considerations for peer-to-peer dis-
tributed hash tables,” in IPTPS, 2002.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, “Se-
cure routing for structured peer-to-peer overlay networks,” in USENIX
0SDI, 2002.

A. Singh, M. Castro, A. Rowstron, and P. Druschel, “Defending against
eclipse attacks on overlay networks,” in ACM SIGOPS European Work-
shop, 2004.

A. Singh, T.-W. Ngan, P. Druschel, and D. Wallach, “Eclipse attacks on
overlay networks: Threats and defenses,” in INFOCOM, 2006.

A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted DOS
attacks: the shrew vs. the mice and elephants,” in SIGCOMM, 2003.
M. Guirguis, A. Bestavros, and 1. Matta, “Exploiting the transients of
adaptation for RoQ attacks on internet resources,” in ICNP, 2004.
“Planetlab.” http://www.planet-lab.org/.

“Deter.” http://www.isi.edu/deter/.

J. F. Nash, “The Bargain Problem,” Econometrica, vol. 18, pp. 155-162,
1950.

D. G. Andersen, “Resilient overlay networks,” Master’s thesis, Depart-
ment of EECS, MIT, 2001. http://nms.lcs.mit.edu/projects/ron/.

D. Bauer, S. Rooney, P. Scotton, S. Buchegger, and 1. Iliadis, “The
performance of measurement-based overlay networks,” in QofIS, p.
2002.

Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the internet using an overlay multicast architecture,” in
ACM SIGCOMM, 2001.

Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP 4).” Internet
Engineering Task Force: RFC 1771, March 1995.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 293—
306, 2001.

Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route flap
damping exacerbates internet routing convergence,” in SIGCOMM, 2002.
M. Seshadri and R. H. Katz, “Dynamics of simultaneous overlay net-
work routing,” Tech. Rep. UCB//CSD-03-1291, University of California,
Berkeley, November 2003.

C. Tang and C. Ward, “GoCast: Gossip-enhanced overlay multicast for
fast and dependable group communication,” in DSN, 2005.

B. Y. Zhao, L. Huang, J. D. Kubiatowicz, and A. D. Joseph, “Exploiting
routing redundancy using a wide-area overlay,” Tech. Rep. CSD-02-
1215, U. C. Berkeley, Nov 2002.

A. Walters, D. Zage, and C. Nita-Rotaru, “Mitigating attacks against
measurement-based adaptation mechanisms in unstructured multicast
overlay networks,” in ICNP, 2006.

A. Walters, “Mitigating attacks against adaptation mechanisms
in overlay networks,” Master’s thesis, Purdue University, 2006.
http://projects.cerias.purdue.edu/ds2/papers/aaron_walters_thesis.pdf.

G. Jiang and G. Cybenko, “Temporal and spatial distributed event
correlation for network security,” in American Control Conference, 2004.
K. Wang and S. J. Stolfo, “Anomalous Payload-based Network Intrusion
Detection,” in RAID, 2004.

C. Lu, D. Chen, and Y. Kou, “Multivariate spatial outlier detection,”
International Journal on Artificial Intelligence Tools, World Scientific,
vol. 13, pp. 801-812, December 2004.

R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” IJRR, vol. 5, no. 4, pp. 56-68, 1986.

M. 1. Ribeiro, “Gaussian probability density functions: Properties and
error characterization,” Tech. Rep. 1049-001, Instituto Superior Tcnico,
Lisboa, Portugal, 2004.

D. E. Knuth, The Art of Computer Programming, 2nd Ed. (Addison-
Wesley Series in Computer Science and Information. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1978.

S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The Eigentrust algo-
rithm for reputation management in P2P networks,” in Proc. of WWW,
2003.

survey results.”

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[40]

[47]

[48]

[49]

N. Spring, L. Peterson, A. Bavier, and V. Pait, “Using PlanetLab for
network research: myths, realities, and best practices,” ACM SIGOPS
Operating Systems Review, vol. 40, no. 1, pp. 17-24, 2006.

Y. Chu, A. Ganjam, T. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan, and
H. Zhang, “Early experience with an internet broadcast system based on
overlay multicast,” in USENIX Annual Technical Conference, General
Track, 2004.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in SIAM International Conference on Data Mining, 2003.
Y. an Huang, W. Fan, W. Lee, and P. S. Yu, “Cross-feature analysis for
detecting ad-hoc routing anomalies,” in /CDCS, 2003.

S. Tanachaiwiwat and A. Helmy, “Correlation analysis for alleviating
effects of inserted data in wireless sensor networks,” in MobiQuitous,
2005.

L. Mathy, N. Blundell, V. Roca, and A. El-Sayed, “Impact of simple
cheating in application-level multicast,” in INFOCOM, 2004.

R. Aringhieri, E. Damiani, S. Di Vimercati, S. Paraboschi, and P. Sama-
rati, “Fuzzy Techniques for Trust and Reputation Management in Anony-
mous Peer-to-Peer Systems,” Journal Of The Am. Soc. For Information
Science And Technology, vol. 57, no. 4, pp. 528-537, 2006.

S. Buchegger and J. Le Boudec, “A robust reputation system for mobile
ad hoc networks,” in Proceedings of P2PEcon, 2004.

K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in Proc. of IKE, 2001.

E. Damiani, S. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante,
“A reputation—based approach for choosing reliable resources in peer—
to—peer networks,” in ACM CCS, 2002.

L. Xiong and L. Liu, “A reputation-based trust model for peer-to-peer
ecommerce communities,” in JEEE CEC, 2003.

M. Srivatsa, L. Xiong, and L. Liu, “TrustGuard: countering vulnerabil-
ities in reputation management for decentralized overlay networks,” in
Proc. of WWW, 2005.

K. Walsh and E. G. Sirer, “Experience with an Object Reputation System
for Peer-to-Peer Filesharing,” in NSDI, 2006.

AAron Walters is a founding member of 4tphi
Research. While a member of CERIAS and the the
Dependable and Secure Distributed Systems Labo-
ratory, he earned a MS in Computer Science from
Purdue in 2006. He received a BS in Computer
Engineering from the University of Notre Dame
in 2001. His research interests include distributed
systems, anomaly detection, digital forensics, and
multi-sensor data fusion.

David Zage (S06, ACMO06) is a third year PhD
student in the Computer Science Department at
Purdue University under the supervision of Professor
Cristina Nita-Rotaru. He obtained his Bachelor of
Science from Purdue in 2004. He is a member
of the Dependable and Secure Distributed Systems
Laboratory. His research interests include distributed
systems, fault tolerance, and security.

Cristina Nita-Rotaru (5’02, M’03, ACM’03) is
an Assistant Professor in the Computer Science
department of the Purdue University. She leads the
Dependable and Secure Distributed Systems Lab-
oratory. She received the BS and MS degrees in
Computer Science from Politechnica University of
Bucharest, Romania, in 1995 and 1996, and a PhD
degree in Computer Science from The Johns Hop-
kins University in 2003. She served on the technical
program committee of numerous conferences such
as INFOCOM, ICDCS, ICNP, MOBIHOC. She re-

ceived the National Science Foundation CAREER award in 2006. Her research
interests include secure distributed systems, network security protocols in
wired and wireless networks.



