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ABSTRACT
One of Android’s main defense mechanisms against malicious apps
is a risk communication mechanism which, before a user installs an
app, warns the user about the permissions the app requires, trusting
that the user will make the right decision. This approach has been
shown to be ineffective as it presents the risk information of each
app in a “stand-alone” fashion and in a way that requires too much
technical knowledge and time to distill useful information.

We introduce the notion of risk scoring and risk ranking for
Android apps, to improve risk communication for Android apps,
and identify three desiderata for an effective risk scoring scheme.
We propose to use probabilistic generative models for risk scor-
ing schemes, and identify several such models, ranging from the
simple Naive Bayes, to advanced hierarchical mixture models. Ex-
perimental results conducted using real-world datasets show that
probabilistic general models significantly outperform existing ap-
proaches, and that Naive Bayes models give a promising risk scor-
ing approach.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security

Keywords
mobile, malware, data mining, risk

1. INTRODUCTION
As mobile devices become increasingly popular for personal and

business use they are increasingly targeted by malware. Mobile de-
vices are becoming ubiquitous, and they provide access to personal
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and sensitive information such as phone numbers, contact lists, ge-
olocation, and SMS messages, making their security an especially
important challenge. Compared with desktop and laptop comput-
ers, mobile devices have a different paradigm for installing new
applications. For computers, a typical user installs relatively few
applications, most of which are from reputable vendors with niche
applications increasingly being replaced by web-based or cloud ser-
vices. For mobile devices, one often downloads and uses many
applications (or apps) with limited functionality from multiple un-
known vendors. Therefore, the defense against malware must de-
pend to a large degree on decisions made by the users. Indeed
whether an app is malware or not may depend on the user’s pri-
vacy preference. Therefore, an important part of malware defense
on mobile devices is to communicate the risk of installing an app
to users, and to help them make the right decision about whether to
choose and install certain apps.

In this paper we study how to conduct effective risk communi-
cation for mobile devices. We focus on the Android platform. The
Android platform has emerged as one of the fastest growing oper-
ating systems. In June 2012, Google announced that 400 million
Android devices have been activated, with 1 million devices be-
ing activated daily. An increasing number of apps are available for
Android. The Google Play (formerly known as Android Market)
crossed more than 15 billion downloads in May of 2012, and was
adding about 1 billion downloads per month from Dec 2011 to May
2012. Such a wide user base coupled with ease of developing and
sharing applications makes Android an attractive target for mali-
cious application developers that seek personal gain while costing
users’ money and invading users’ privacy. Examples of malware
activities performed by malicious apps include stealing users’ pri-
vate data and sending SMS messages to premium rate numbers.

One of Android’s main defense mechanisms against malicious
apps is a risk communication mechanism which warns the user
about permissions an app requires before being installed, trusting
that the user will make the right decision. Google has made the fol-
lowing comment on malicious apps: “When installing an applica-
tion, users see a screen that explains clearly what information and
system resources the application has permission to access, such as
a phone’s GPS location. Users must explicitly approve this access
in order to continue with the installation, and they may uninstall
applications at any time. They can also view ratings and reviews to
help decide which applications they choose to install. We consis-
tently advise users to only install apps they trust.” This approach,



however, has been shown to be ineffective. The majority of An-
droid apps request multiple permissions. When a user sees what ap-
pears to be the same warning message for almost every app, warn-
ings quickly lose any effectiveness as the users are conditioned to
ignore such warnings.

Recently, risk signals based on the set of permissions an app re-
quests have been proposed as a mechanism to improve the existing
warning mechanism for apps. In [11], requesting certain permis-
sion or combinations of two or three permissions triggers a warning
that the app is risky. In [24], requesting a critical permission that is
rarely requested is viewed as a signal that the app is risky.

Rather than using a binary risk signal that marks an app as ei-
ther risky or not risky, we propose to develop risk scoring schemes
for Android apps based on the permissions that they request. We
believe that the main reason for the failure of the current Android
warning approach is that it presents the risk information of each app
in a “stand-alone” fashion and in a way that requires too much tech-
nical knowledge and time to distill useful information. We believe
a more effective approach is to present “comparative” risk infor-
mation, i.e., each app’s risk is presented in a context of comparing
it with other apps. We propose to use a risk scoring function that
assigns to each app a real number score so that apps with higher
risks have a higher score. Given this function, one can derive a
risk ranking for each app, identifying the percentile of the app in
terms of its risk score. This number has a well-defined and easy-to-
understand meaning. Users can appreciate the difference between
an app ranked in the top 1% group versus one in the bottom 50%.
This ranking can be presented in a more user-friendly fashion, e.g.,
translated into categorical values such as high risk, average risk,
and low risk. An important feature of the mobile app ecosystem
is that users often have choices and alternatives when choosing a
mobile app. If the user knows that one app is significantly more
risky than another for the same functionality, then that may cause
the user to choose the less risky one.

To be most effective, we propose the following desiderata for
the risk scoring function. First, it should be monotonic, in the sense
that for any app, removing a permission from its set of requested
permissions should reduce the risk score. This way, a developer
can reduce the risk score of an app by following the least-privilege
principle. Second, apps that are known to be malicious should in
general have high risk scores. Third, it is desired that the risk scor-
ing function is simple and relatively easy to understand.

We propose to use probabilistic generative models for risk scor-
ing. Probabilistic generative models [7] have been used exten-
sively in a variety of applications in machine learning, computer
vision, and computational biology, to model complex data. The
main strength is to model features in a large amount of unlabeled
data. Using these models, we assume that some parameterized ran-
dom process generates the app data and learn the model parameter
based on the data. Then we can compute the probability of each
app generated by the model. The risk score can be any function
that is inversely related to the probability, so that lower probability
translates into a higher score.

More specifically, we consider the following models in this pa-
per. In the Basic Naive Bayes (BNB) model, we use only the per-
mission information of the apps, and assume that each app is gen-
erated by M independent Bernoulli random variables, where M is
the number of permissions. Let θm be the probability that the m’th
permission is requested (which can be estimated by computing the
fraction of apps requesting that permission), then the probability
that an app requests a permission is computed by multiplying θi’s
if it requests the i’th permission and (1 − θi) if it does not re-
quest the i’th permission. If θm < 0.5 for every m, the model has

the monotonicity property. The BNB model treats all permissions
equally; however, some permissions are more critical than others.
To model this semantic knowledge about permissions, we also con-
sider Naive Bayes with informative Priors, which we use PNB to
denote. The effect of PNB model is to reduce θi when the i’th
permission is considered critical. While PNB is slightly more com-
plex than BNB, it has the advantage that requesting a more critical
permission results in higher risk than requesting a similarly rare but
less critical permission, making it more difficult for a malicious app
to reduce its risk by removing unnecessary permissions.

We also investigate several sophisticated generative models. In
the Mixture of Naive Bayes (MNB) model, we assume that the
dataset is generated by a number of hidden classes, each is param-
eterized by M independent Bernoulli random variables; these hid-
den classes are shared among all categories. Each category has a
different multinomial distribution describing how likely an app in
this category is from a given hidden class. We also develop a Hier-
archical Bayesian model, which we call the Hierarchical Mixture of
Naive Bayes (HMNB) model. This is a novel extension to the influ-
ential Latent Dirichlet Allocation (LDA) [8] model to binary obser-
vations that integrates categorical information with hidden classes
and allows permission information to be shared between categories.

We have conducted extensive experiments using three datasets:
Market2011, Market2012, and Malware. Market2011 consists of
157,856 apps available at Android Market in February 2011. Mar-
ket2012 consists of 324,658 apps available at Google Play in Febru-
ary/March 2012. Malware consists of 378 known malwares. Our
experiments show that in terms of assigning high risk scores to mal-
ware apps, all generative models significantly outperform existing
approaches [11, 24]. Furthermore, while PNB is simpler than MNB
and HMNB, its performance is almost the same as MNB, and very
close to the best-performing HMNB model. Based on these results,
we conclude that PNB is good risking scoring scheme.

In summary, the contributions of this paper are as follows:

• We introduce the notion of risk scoring and risk ranking for
Android apps, to improve risk communication for Android
apps, and identify three desiderata for an effective risk scor-
ing scheme.

• We propose to use probabilistic generative models for risk
scoring schemes, and identify several such models, ranging
from the simple Basic Naive Bayes (BNB), to advanced hi-
erarchical mixture models.

• We conduct extensive evaluations using real-world datasets.
Our experimental results show that probabilistic general
models significantly outperform existing approaches, and
PNB makes a promising risk scoring approach.

The rest of the paper is organized as follows. We present a de-
scription of the Android platform and the current warning mech-
anism in Section 2. Section 3 discusses the datasets that we have
collected. In Section 4 we discuss different generative models for
risk scoring. We then present experimental results in Section 5, and
discuss other findings in Section 6. We finish by discussing related
work in Section 7 and concluding in Section 8.

2. ANDROID PLATFORM
In this section we provide an overview of the current defense

mechanism provided by the Android platform and discuss its limi-
tations.



2.1 Platform Ecosystem
Android is an open source software stack for mobile devices that

includes an operating system, an application framework, and core
applications. The operating system relies on a kernel derived from
Linux. The application framework uses the Dalvik Virtual Ma-
chine. Applications are written in Java using the Android SDK,
compiled into Dalvik Executable files, and packaged into .apk
(Android package) archives for installation.

The app store hosted by Google is called Google Play (previ-
ously called Android Market). In order to submit applications to
Google Play, an Android developer first needs to obtain a publisher
account. After submission, each .apk file gets an entry on the mar-
ket in the form of a webpage, accessible to users through either the
Google Play homepage or the search interface. This webpage con-
tains meta-information that keeps track of information pertaining
to the application (e.g., name, category, version, size, prices) and
its usage statistics (e.g., rating, number of installs, user reviews).
This information is used by users when they are deciding to install
a new application.

Google recently started the Bouncer [3] service, which provides
automated scanning of applications on Google Play for potential
malware. Once an application is uploaded, the service immedi-
ately [3] starts analyzing it for known malware, spyware and tro-
jans. It also looks for behaviors that indicate an application might
be misbehaving, and compares it against previously analyzed apps
to detect possible red flags. Bouncer runs every application on their
cloud in an attempt to detect hidden, malicious behavior, and ana-
lyzes developer accounts to block malicious developers.

Bouncer does not fully solve the security and privacy prob-
lems of Android. First, the line between malicious apps and non-
malicious apps is very blurred. The behavior of many apps cannot
be classified as malicious, yet many users will find them risky and
intrusive. Bouncer has to be conservative when identifying apps
as malicious to prevent legitimate complaints from developers and
backlash from users for instrumenting a walled garden. Second,
details about Bouncer are fairly unknown to the security commu-
nity. At the time of writing this paper, except for the official blog
post by Google [3], there are no details about how Bouncer works
nor what algorithms it uses to detect malicious apps. Third, re-
searchers have found multiple ways to bypass Bouncer and upload
malware on Google Play. For example, a malicious app can try
to detect that it is running on Bouncer’s emulated Android device,
and refrain from performing any malicious activity, or malware can
perform malicious activities only when triggered by certain condi-
tions, such as time.

Other third party app websites exist, e.g., Amazon Appstore for
Android, GetJar, SlideMe Market, etc. Currently, these third-party
app stores have varying degrees of security associated with them.

2.2 In-Place Security and its Limitations
The Android system’s in-place defense against malware consists

of two parts: sandboxing each application and warning the user
about the permissions that the application is requesting. Specifi-
cally, each application runs with a separate user ID, as a separate
process in a virtual machine of its own, and by default does not
have permissions to carry out actions or access resources which
might have an adverse effect on the system or on other apps, and
have to explicitly request these privileges through permissions.

In tandem with the sandboxing approach is a risk communica-
tion mechanism that communicates the risks of installing an app to
a user, hoping/trusting that the user will make the right decision.
When a user downloads an app through the Google Play website,
the user is shown a screen that displays the permissions requested

by the application and the warnings about the potential damages
when these permissions are misused. These warnings are worded
with a high degree of seriousness (See Table 1 for Android’s warn-
ings of some permissions). This provides a final chance to verify
that the user is allowing the application access to the requested re-
sources. Installing the application means granting the application
all the requested permissions. A similar interface exists when a
user is browsing applications from a mobile device.

Despite its serious-wording, Android’s current permission warn-
ing approach has been largely ineffective. In [15], Felt et al. ana-
lyzed 100 paid and 856 free Android applications, and found that
“Nearly all applications (93% of free and 82% of paid) ask for at
least one ‘Dangerous’ permission, which indicates that users are
accustomed to installing applications with Dangerous permissions.
The INTERNET permission is so widely requested that users cannot
consider its warning anomalous. Security guidelines or anti-virus
programs that warn against installing applications with access to
both the Internet and personal information are likely to fail be-
cause almost all applications with personal information also have
INTERNET.”

Felt et al. argued “Warning science literature indicates that fre-
quent warnings de-sensitize users, especially if most warnings do
not lead to negative consequences [29, 17]. Users are therefore
not likely to pay attention to or gain information from install-time
permission prompts in these systems. Changes to these permission
systems are necessary to reduce the number of permission warnings
shown to users.”

While such ineffectiveness has been identified and criti-
cized [15, 29, 17], no alternative has been proposed. We argue
that a promising alternative is to present relative or comparative
risk information. This way, users can select apps based on easy-to-
consume risk information. Hopefully this will provides incentives
to developers to better follow the least-privilege principle and
request only necessary permissions.

Comparison with UAC: There is a parallel between Android’s
permission warning and Windows’ User Account Control (UAC).
Both are designed to inform the user of some potentially harmful
action that is about to occur. In UAC’s case, this happens when a
process is trying to elevate it’s privileges in some way, and in An-
droid’s case, this happens when a user is about to install an app that
will have all the requested permissions.

Recent research [19] suggests the ineffectiveness of UAC in en-
forcing security. Motiee et al. [19] reported that 69% of the sur-
vey participants ignored the UAC dialog and proceeded directly to
use the administrator account. Microsoft itself concedes that about
90% of the prompts are answered as “yes”, suggesting that “users
are responding out of habit due to the large number of prompts
rather than focusing on the critical prompts and making confident
decisions” [12].

According to [12] in the first several months after Vista was
available for use, people were experiencing a UAC prompt in 50%
of their “sessions” - a session is everything that happens from lo-
gon to logoff or within 24 hours. With Vista SP1 and over time,
this number has been reduced to about 30% of the sessions. This
suggests that UAC has been effective in incentivizing application
developers to write programs without elevated privileges unless
necessary. An effective risk communication approach for Android
could have similar effects.



3. DATASETS
In this section, we describe the two types of datasets we used

in our study of Android app permissions. Below we describe the
datasets and their characteristics.

3.1 Datasets Description
Market Datasets: We have collected two datasets from Google
Play spaced one year apart. Market2011, the first dataset, consists
of 157,856 apps available on Google Play in February 2011. Mar-
ket2012, the second dataset, consists of 324,658 apps and has been
collected in February 2012. For each app, we have the applica-
tion meta-information consisting of the developer name, its cate-
gory and the set of permissions that the app requests. We assume
that apps in these two datasets are mostly benign. While we believe
that a small number of malicious apps may be present in them, we
assume that these datasets are dominated by benign ones. We lever-
age the Market2011 dataset for our model generation and testing,
use Market2012 dataset for validation and market evolution analy-
sis.
Malware Dataset: Our malware dataset consists of 378 unique
.apk files that are known to be malicious. We obtained this dataset
from the authors of [31]. For each malware sample, we extract the
permissions requested using the AndroidManifest.xml file present
inside the package file. For these malicious apps we do not have
their category information.

3.2 Data Cleansing
In the two market datasets, we have observed the presence of

thousands of apps that have similar characteristics. This kind of
“duplication” can occur due to the following reasons:

• Slight Variations (R1): One developer may release hun-
dreds or even thousands of nearly identical apps that provide
the same functionality with slight variation. A few examples
include wallpaper apps, city or country specific travel apps,
weather apps, or themed apps (i.e., a new app with essentially
the same functionalities can be written for any celebrity, in-
terest group,etc.) such as the one presented in Table 1 in
Section 6.

• App Maker Tools (R2): There are a number of tools [1, 2]
that enable non-programmers to create Android apps. Often
times many apps that are generated by these tools have sim-
ilar app names and the same set of permissions. This occurs
when the developer just uses the default settings in the tool.

We decided to consolidate duplicate apps from the same devel-
oper (R1) into a single instance in the dataset to prevent any single
developer from having a large impact on the generated probabilistic
model. We detect apps due to R1 by looking for instances where
apps belonging to the same developer have the same set of per-
missions. This is a likely indication that developers are uploading
many applications with minor variations in the app content.

We decided to keep apps due to R2 unchanged in the datasets.
We do this because: (1) we observed instances where apps due to
R2 have different functionality and many developers using these
tools do modify the permissions given to their app and (2) the
line between such apps and all apps that use a specific ad-network
which require a certain set of permissions is blurry.

After cleansing is complete we have 71,331 apps in the 2011
market dataset, and 136,534 apps in the 2012 market dataset. This
represents a reduction of around 55%, and demonstrates the preva-
lence of apps that are slight variations of other apps, justifying our
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(a) The top 20 most used permissions in the datasets as a per-
cent of apps that request those permissions. Due to overlap in
the most used permissions, we need to show 26 permissions
to cover the most used in all datasets. 21st for Market 2012,
and last 5 for Malware.
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(b) The percent of apps that request a specific number of per-
missions for each dataset.
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Figure 1: Permission information for various data sets



decision to combine these so as not to allow one developer to overly
influence any model.

For some experiments, we break up market dataset into three
sets. The intersection of the 2011 and 2012 data is called ‘over-
lap’, this contains 38,024 apps which have the same name and per-
missions in the two datasets. Then we have 2011-NoOverlap, the
2011 dataset with this overlap removed, containing 33,307 apps,
and 2012-NoOverlap, the 2012 dataset with this overlap removed,
containing 98,510 apps.

3.3 Dataset Discussion
The top 20 most frequently requested permissions in each

dataset are presented in Figure 1(a). There are 26 permissions
in this table, which represent the top 20 for all 3 datasets. AC-
CESS_LOCATION_EXTRA_COMMANDS was added for Mar-
ket2012, and the last 5 were added for the malware dataset. For
some permissions, the percentage of malware apps requesting a
specific permission is much higher than those in the market dataset.
For example, READ_SMS is requested by 59.78% of the malicious
apps, but only 2.33% from Market2011, and 1.98% from Mar-
ket2012. This might be due to the fact that a class of malware
apps attempt to intercept messages between a mobile phone and a
bank for out-of-band authentication.

Another observation from Figure 1(a) is that for almost every
permission a higher percent of apps in Market2012 request it when
compared to the Market2011 dataset. This shows a trend that pro-
portionally more applications are requesting sensitive permissions.
The one notable exception to this is related to SMS, where Mar-
ket2012 actually saw a slight decrease for all permissions related
to SMS.

Figure 1(b) shows the percent of apps that request different num-
bers of permissions. From this graph, we observe in general, ma-
licious apps are requesting more permissions than the ones in the
market datasets. However, there are many market dataset apps that
are requesting many permissions as well. Between Market2011 and
Market2012, we also see a confirmation that apps are requesting
a greater number of permissions on average. With proportionally
fewer apps requesting 0 or 1 permissions in Market2012, and then
for two permissions and greater, we see slight gains in the percent
of apps requesting permissions over Market2011. Overall, this in-
formation is an indication that the malicious apps are requesting
permissions in different ways then normal apps, and leads us to be-
lieve that looking at permission information is in fact promising. It
also shows that there may be a slow evolution in the market dataset.

Figure 1(c) shows a similar graph when we divide the datasets
into the overlap dataset and the two datasets with overlapping apps
removed. Interestingly, apps in the overlap dataset, which are the
“long-living” and stable apps generally request fewer permissions
than other apps.

4. MODELS
We aim at coming up with a risk score for apps based on their

requested permission sets and categories. Let the i’th app in the
dataset be represented by ai = (ci,xi = [xi,1, . . . , xi,M ]), where
ci ∈ C is the category of the i’th app, M is the number of per-
missions, and xi,m ∈ {0, 1} indicates whether the i’th app has
the m’th permission. Our goal is to come up with a risk function
rscore : C×{0, 1}M → R such that it satisfies the following three
desiderata. First, the risk function should be monotonic. This con-
dition requires that removing a permission always reduces the risk
value of an app, formalized by the following definition.

DEFINITION 1 (MONOTONICITY). We say that a risk scoring
function rscore is monotonic if and only if for any ci ∈ C and any
xi,xj such that

∃k (xi,k = 0 ∧ xj,k = 1 ∧ ∀m(m 6= k ⇒ xi,m = xj,m))
⇒ rscore(ci,xi) < rscore(ci,xj).

The second desideratum is that malicious apps generally have
high risk scores. And the third is that the risk scoring function is
simple to understand.

Given any risk function, we can assign a risk ranking for each
app relative to a set A of reference apps, which can be, e.g., the set
of all apps available in Google Play:

rrank(ai) =
|{a ∈ A | rscore(a) ≥ rscore(ai)}|

|A|

If an app has a risk ranking of 1%, this means that the app’s risk
score is among the highest 1 percent.

The above gives a risk ranking relative to all apps in all cate-
gories. An alternative is to rank apps in each category separately,
so that one has a risk ranking for an app relative to other apps in the
same category.

Probabilistic generative models. We propose to use probabilistic
generative models for risk scoring. That is, we assume that some
parameterized random process generates the app datasets and learn
the parameter value θ that best explain the data. Next, for each app
we compute p(ai|θ), the probability that the app’s data is generated
by the model.

The risk score of an app can be any function that is monoton-
ically decreasing with respect to the probability of an app being
generated, such that a lower probability means a higher risk score.
For example, using rscore(ai) = − ln p(ai|θ) satisfies the condi-
tion.

In the rest of this section we describe three generative models—
from simple Naive Bayesian models, to mixture of Naive Bayes
models and to novel hierarchical Bayesian models. We present es-
timation methods to learn the parameters for these models from the
data, and evaluate whether they satisfy our desiderata.

4.1 Naive Bayes Models
In the Naive Bayes models, we ignore the category information

ci; thus each app is given by xi = [xi,1, . . . , xi,M ]. We assume
that each xi is generated byM independent Bernoulli random vari-
ables, where M is the number of permissions:

p(xi) =
M∏
m=1

p(xi,m) =
M∏
m=1

θ
xi,m
m (1− θm)(1−xi,m) (1)

where θm ≡ p(xi,m = 1) is the Bernoulli parameter.
To avoid overfitting in our estimation (i.e., fitting the model to

noise), we use a Beta prior Beta(θm|a0, b0) over each Bernoulli
parameter θm. Using this prior, the Maximum a posteriori (MAP)
estimation is

θ̂m =

∑N
i xi,m + a0

N + a0 + b0
(2)

where N is the total number of apps for this Naive Bayes model
estimation.

The Basic Naive Bayes Model (BNB). In the Basic Naive Bayes
(BNB) mode, we use uninformative prior and set a0 = b0 = 1, so
that the Beta prior becomes a uniform distribution on [0,1]. With



such an uninformative prior, θ̂m is very close to the the frequency
of the m’th permission being requested in the dataset.

The BNB model is easy to explain, satisfying the third desider-
atum. Furthermore, if θm < 0.5 for every m, then the probability
provided by this model satisfies the monotonicity property. Chang-
ing any xi,m from 0 to 1 changes the probability by a factor of
θm

1−θm , which is less than 1 when θm < 0.5, and thus decreases
the probability and increases the risk score. As there is only one
permission, namely Internet, requested by over 50% of the apps,
removing the INTERNET permission from the feature set suffices
to ensure the monotonicity property. Finally, the BNB model intu-
itively satisfies the second desideratum, i.e., known malicious apps
generally have lower generated probabilities, because as we have
seen in Section 3.3, malicious apps generally request more permis-
sions.

NB with Informative Priors (PNB). BNB treats all permissions
equally, and a malicious app can reduce its risk by not request-
ing rare permissions that are not critically needed for carrying out
malicious activities. We thus consider a Naive Bayes model with
informative priors to incorporate semantic information of app per-
missions. Such approach is commonly used in Naive Bayes models
to model knowledge not available in the dataset. The desired goal is
to make requesting a more critical permission to increase risk more
than requesting a less critical one, even though the two permissions
have similar frequencies.

To identify critical permissions, we start from a list of 26 per-
missions identified in [24] as critical. We remove the INTERNET
permission, and add another that we believe is critical, namely IN-
STALL_PACKAGES. Furthermore, among the 26 permissions, we
manually selected 9 of them as very high risk permissions.1

To incorporate the semantic information in the Naive
Bayes models, we uenckse informative Beta prior distributions
Beta(θm|am, bm): for the most risky 9 permissions, we set am =
1, bm = 2N and N is the number of apps in our data set, discour-
aging the use of these permissions; for the other 17 risky permis-
sions, we set am = 1, bm = N with less penalty effect; and for the
remaining permissions, we set am = 1, bm = 1 as in BNB models.

When compared with BNB, PNB is slightly more complex than
BNB. However, it has the advantage that requesting a more critical
permission results in higher risk, when compared with requesting a
similarly rare but less critical permission. One key benefit of PNB
is that it is more difficult for malware apps to reduce their risks
by removing rare permissions that they do not need, since it likely
needs some of the critical permissions to carry out its malicious ac-
tivities. For this reason, we prefer PNB to BNB when other things
are equal.

4.2 Mixture of Naive Bayes (MNB) Models
The assumption in BNB and PNB that all apps follow a simple

factorized Bernoulli distribution does not appear to be very realis-
tic. Thus, we develop more sophisticated probabilistic generative
models and experimentally compare the effectiveness of BNB with
these models.

We improve the Naive Bayes model by assuming each app is
sampled from multiple—instead of only one—latent topics, each
of which follows a factorized Bernoulli distribution. Unlike the
Naive Bayes model, this mixture model allows us to use different
latent topics to capture different aspects of the apps. These topics

1They are ACCESS_COARSE_LOCATION, AC-
CESS_FINE_LOCATION, PROCESS_OUTGOING_CALLS,
CALL_PHONE, READ_CONTACTS, WRITE_CONTACTS,
READ_SMS, SEND_SMS, INSTALL_PACKAGES.

could describe fine grained classes of applications, such as geotag-
ging apps that request LOCATION, INTERNET, and CAMERA
permissions, or applications that leverage common frameworks.

Specifically, we use an unknown indicator variable z =
1, . . . ,K (K is the number of latent topics) to represent which
topic an app is sampled from. We assign an uninformative uni-
form prior over z and assume that the topic distribution is the same
as the Naive Bayes model conditioned on z; that is, p(xi|z,θz) =∏M
m=1 p(xi,m|z, θzm) is a factorized Bernoulli distribution where

θz = [θz1, . . . , θzM ]. Let Θ = [θ1, . . . ,θk] denote parameters for
the app distributions for all the topics. Then the probability of the
data is

p(x|Θ) =
∑
z

p(z)

N∏
i=1

p(xi|z,θz), (3)

which is a mixture of Naive Bayes models.
To obtain the MAP estimation of both assignments, we use an

expectation maximization approach that loops over two steps, Ex-
pectation (E) and Maximization (M) steps, until convergence. In
the E step, we compute the posterior of z given the current estimate
of Θ:

p(z = k|x,Θ) =

∏
m θ

∑N
i=1 xi,m

k,m (1− θk,m)N−
∑N

i=1 xi,m∑
k

∏
m θ

∑N
i=1 xi,m

k,m (1− θk,m)N−
∑N

i=1 xi,m

In the M step, we maximize the expected joint probability Q =∑N
i=1 Ez[ln p(xi|z,Θ) + ln p(z) + ln p(Θ)]. Note that we use the

updated p(z = k|x,Θ) in the E step to obtain the expectation. We
thus obtain

θkm =

∑N
i p(z = k|x,Θ)xi,m + a0∑N
i p(z = k|x,Θ) + a0 + b0

. (4)

MNB models, however, no longer guarantee the monotonicity
property. We have observed that the learned hidden topics can
request certain permissions with probability over 0.5, resulting in
the estimated θkm being greater than 0.5. When this happens, the
monotonicity property does not hold.

Mixture of Naive Bayes with Categories (MNBC). We also ex-
tend MNB to consider category information and call the result-
ing models Mixture of Naive Bayes with Categories (MNBC). In
MNBC, teh latent topics are shared among all categories, but each
category has a different multinomial distribution describing how
likely an app in this category is from a particular latent topic.

4.3 Hierarchical Mixture of Naive Bayes
(HMNB) Models

Finally, we develop Bayesian hierarchical mixture models that
we can train using apps across all categories and, at the same time,
account for the difference between categories. We still produce a
mixture model for each category. To share information between
categories we set the latent topics to be the same across categories
and sample the probabilities of choosing these topics from a com-
mon Dirichlet distribution—thus these probabilities (i.e., mixture
weights) are similar. Our model extends Latent Dirichlet Alloca-
tion (LDA) models [8], a popular document model, to the case of
binary vector observations (each app corresponds to a word in a
document and each category is a document in the latent Dirichlet
allocation models).

Let us succinctly denote the permissions of app i in category
c by xci, the parameter in the multinomial topic distribution for
category c by ψc, the topic assignment variable for each each app i
in category c by zci, and the hyparameter of the Dirichlet prior on



the topic distribution by α. Then formally speaking, we have the
following stochastic data generation process:

1. For each topic k and permission m, draw the app probabili-
ties θk,m ∼ Beta(a0, b0).

2. For each category c, sample the parameter for topic distribu-
tions ψc ∼ Dir(α).

3. For each app i in category c,

(a) Sample the topic assignment zci ∼ Multi(ψc).

(b) Generate the permissions via the factorized Bernoulli
distribution (let zci = k)

xk ∼
∏
m θ

∑N
i=1 xim

k,m (1− θk,m)N−
∑N

i=1 xim .

To estimate this Bayesian model, we develop a variational algo-
rithm. It enables us to accurately approximate the exact Bayesian
posterior distributions of the model parameters with a low compu-
tational cost. We give the detailed variational updates in the Ap-
pendix.

5. EXPERIMENTAL RESULTS
In the experiments we aim at understanding how well the dif-

ferent models satisfy the second desideratum, namely, able to as-
signing high risks to known malware apps, and compare them to
methods in the literature [11, 24].

Methodology. Most of our experiments are conducted with the
2011 dataset, with 10 fold cross validation. We divide the 2011
dataset randomly into ten groups. In each of the 10 rounds, we
choose one different group as the test dataset, and the remaining 9
groups as the training dataset. The models are trained on the train-
ing set, the generated model is used to compute the probabilities
of apps in the testing set and the malware dataset, and rank them
together.

When reporting the results, we use ROC curves, which plot the
true positive rate against false positive rate if one chooses a par-
ticular risk value as indicative of malicious app. We use Area Un-
der Curve (AOC) to quantify the quality of the ROC curves for a
method. Here, AUC is the probability that a randomly selected ma-
licious application will have a higher risk score than a randomly
selected benign application. When reporting AUC values resulted
from 10-fold cross validation, we plot the mean and stand error of
the AUCs of the ten rounds.

Parameter Selection. Both MNB and HMNB can be used with
different parameters, and we need to select the best parameters for
them to compare with other methods. One parameter is the number
of hidden topics. Another parameter is how to use category infor-
mation. This is needed because malware apps do not have category
information. Thus when we compute the probability of apps in the
test dataset, we also strip their category information.

To estimate an app’s likelihood using the MNB model, there are
a few ways to choose when we do not know its category informa-
tion. The first method, called ‘max’, is to compute the probability
of the app for every category and choose the maximum probability,
that is the category in which the app fits the best, and assume that
the app was in that category. The second method, called ‘mean’,
is to compute the app’s probability for every category and take the
weighted average of all probabilities. For HMNB model, in addi-
tion to the previous two methods, we can also use the mean of our
Dirichlet prior as the topic distribution to compute the probability.
This method is called ‘prior’ method.

Figure 2 shows the AUC values for choosing different param-
eters for MNB and HMNB. From our experiments, we find that

the maximum mean of AUC for MNB model is achieved by using
‘max’ method with 5 hidden classes. And the maximum for HMNB
is achieved by using ‘mean’ method with 80 hidden classes. We use
these parameters when comparing with other methods.

Comparing Different Methods. In Figure 3, we compare the gen-
erative models with other approaches in the literature. Figure 3(a)
shows the ROC curves. Because several curves are clustered to-
gether, we use Figure 3(b) to show a close-up of the ROC curves
for x axis of up to 0.1. Figure 3(c) show the AUC values.

The methods we compare against include Kirin, RCP, and RPCP.
Kirin [11] identifies 9 rules for apps to be considered risky. As
Kirin is represented by a single decision point, we only illustrate
it as a point in Figure 3(a), and has no AUC value. It can iden-
tify close to 39% malware apps at 4% false positive rate. RCP and
RPCP are proposed in [24]; they rely on the rarity of critical per-
missions and the rarity of pairs of critical permissions.

We note that all generative models have AUC values of over
0.94; they significantly outperform RCP and RPCP. The results
clearly show that HMNB is best performing, with MNB, BNB, and
PNB close behind and almost the same. We note that even a dif-
ference of 0.01 is statistically significant given the small standard
deviation. And the difference between the generative models and
other methods is clearly seen in the ROC curves.

Permissions vs. Risk Scores. The fact that HMNB has the high-
est AUC makes it somewhat attractive as a risk scoring method. We
know that it is not guaranteed to have the monotonicity property;
however, it is possible that it preserves the property in most cases.
To check whether this is the case, in Figure 4 we plot the average
number of permissions for each percentile of the apps in the mar-
ket2011 dataset, when they are ranked by the risk value according
to the PNB model and to the HMNB model. It is clearly seen that in
the PNB model the average number of permissions is almost non-
decreasing as the risk goes up. On the other hand, in the HMNB
model we observe apps with large number of permissions that have
low risk. This suggests that HMNB flatly fails the monotonicity
requirement.

Model Stability. Finally, we conducted experiments to check
whether models trained on one dataset can be used without retrain-
ing to compute the risk scoring on a new dataset. For this purpose,
we use the divided datasets described in Section 3. That is the over-
lap data between 2011 and 2012, and the 2011 dataset with overlap
removed and 2012 dataset with overlap removed.

For each of the six possible ordered pairs, we train on one dataset
and then test on the other together with the malware dataset. Fig-
ure 5 shows the result. Somewhat interestingly, when testing on
the overlap dataset, training either on the 2011-NoOverlap dataset
or the 2012-NoOverlap dataset gives excellent result. However us-
ing any other combination leads to results that perform worse. This
is to some degree to be expected from Figure 1(c). As the “over-
lap” apps generally request fewer permissions than the other two
datasets. The other apps appear to be more varied and require train-
ing using part of them to get good results.

As we have seen in Figure 1 the permission data has changed
over time. Therefore, if a system like this were to be implemented,
the models should be periodically regenerated to achieve the best
results and to keep up to date with the trends that are occurring
within the market.

6. DISCUSSION
In the introduction, we mention that while Windows UAC may

not be very effective in helping the users make more secure deci-
sions, one of its advantages is that it encouraged developers to make
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Figure 2: Parameter selection for different number of hidden classes. Mean, Max and Sum represent different methods to relate the
malicious applications, which don’t contain category information, into a system which utilizes category information.
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Figure 4: Average number of permissions for every 1% percent division of apps, sorted in descending order on the basis of likelihood.
The points represents the average number of permissions requested, and the error bars indicate the min and max at that percentile

conservative decisions in order to improve the user experience by
avoiding UAC prompts. One possible positive result of assigning a
risk to each application is that it generates a feedback mechanism
for the developers which could encourage them to reduce the risk
that an app introduces to a mobile device. In essence, an effective
risk score mechanism may lead to different decisions by users, cre-
ating an economic motivation for developers to reduce the risk of
an application. It is also possible that this mechanism could drive
additional revenue through application markets since if users are
concerned enough to use lower risk applications, then they might
be willing to purchase different apps as a low risk alternative.

The goal of creating a simple feedback mechanism is the motiva-
tion behind our recommendation for the PNB model as an effective
risk communication mechanism. This model, with the monotonic
property, gives direct feedback to a developer who wishes to lower
the risk score of an app. This is demonstrated in Figure 4(a), where
the number of permissions directly correlates to the relative risk of
an app. There is some variation in this figure because some permis-
sions introduce more risk then others; however, the mathematical
properties of PND is such that removing a permission from a set of
permissions always reduces the risk score, and adding one permis-
sion always increases the risk score.

In the rest of this section, we discuss a particularly interesting
app. The application presented in Table 1 represents more than a

thousand applications by the same developer with different key-
words. This set of apps intercepts all text messages and displays
the message on the screen with a new background based on the
keyword. Looking at the app’s decompiled code it does not appear
to be performing any obviously malicious tasks; however, depend-
ing on a user’s definition of privacy, it could be considered a risky
application. One major reason for the high permission count is
that this app contains several different ad networks, each of which
requests different permissions to achieve their data collection re-
quirements to show relevant adds. The ad networks along with the
general functionality of the app leads to 17 different permissions,
many of which could have serious privacy issues if misused. Send-
ing and receiving SMS messages is part of the core functionality of
the app, however, the ability to read the contact list is used in or-
der to extract names of contacts given the phone number. The app
also extracts the user’s phone number in order to send a test text
message. Additionally, the app collects the email address of the
user to notify them that a new app for a specific keyword has been
generated. While there is no obvious data leakage beyond what
one would expect, there is data leakage over time. That is to say,
they are not collecting and exfiltrating all of this information off
the phone the first time the app runs, but over time, they are able to
paint a picture of the user when they activate different functionality.

The application also has 2 permissions that are requested but un-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
iti
ve

R
at
e

ROC

HMNB
MNB
BNB
PNB
RCP
RPCP
kirin

(a) ROC for the best performing parameters for each
method.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

 

 
HMNB
MNB
BNB
PNB
RCP
RPCP

(b) Close up of Figure 3(a) to capture performance differ-
ences in the first 10% false positives

HMNB MNB BNB PNB RCP RPCP
0.84

0.86

0.88

0.9

0.92

0.94

0.96

M
ea

n 
O

f A
U

C

(c) AUC for ROC curves presented in Figure 3a

Figure 3: Comparison of different models using the best per-
forming parameters for each models

Figure 5: Comparison of 2011 and 2012 Data for PNB and
HMNB models. ‘no’ = no overlap, ‘over’ = only overlap.
‘first/second’ means the first dataset was used to train, and the
second dataset was used to test along with the malware. Then
the AUC was generated and generated.

used, one of these is the permission to intercept phone calls. While
most of the other permissions can be justified by some functional-
ity in the app, either from the app itself or the related ad networks,
this one cannot be justified. We note that even though an app may
not use this permission in the current version, the fact that it has
requested this permission still introduces some risk to the user. The
reason for the risk is that during an update, if a new version of the
app contains the same permissions as the previous version, then
the app update can occur silently. Whereas if the app requests new
permissions, then the user is notified that the app is changing its
requested permissions. So just requesting a permission, even if it is
not used, does increase the overall potential risk of the app in this
sense.

7. RELATED WORK
Felt et al. [13] use static analysis to determine whether an An-

droid application is overprivileged. It classified an application as
overprivileged if the application requested a permission which it
never actually used. They apply their techniques to a set of 940
applications and find that about one-third are overprivileged. Their
key observation was that developers are trying to follow least privi-
lege but sometimes fail due to insufficient API documentation. An-
other work by Felt et al. [14] surveys applications (free and paid)
from the Android Market. Their key observation was that 93% of
free apps and 82% of paid apps request permissions that they deem
as “dangerous”. While this does not reveal much out of context, it
demonstrates that users are accustomed to granting dangerous per-
missions to apps without much concern. Neither of these works
actually attempt to detect or categorize malicious software.

Enck et al. [10] make an effort to decompile and analyze the
source of applications to detect further leaks and usage of data. An-
other work by Enck et al. [11] developed a system that examined
risky permission combinations for determining whether the permis-
sions declared by an application satisfy a certain global safety pol-
icy. This work manually specifies permission combinations such
as WRITE_SMS and SEND_SMS, or FINE_LOCATION and IN-



App Name Justin Bieber SMS-G
Description View photos when you receive a message! These

pictures are selected using the keyword “Justin
Bieber”, so they change whenever you receive a
message. You will find the photo best for you!

Permissions 17 in total, some are listed below
ACCESS OTHER GOOGLE SERVICES:
Allows apps to sign in to unspecified Google ser-
vices using the account(s) stored on this Android
device.
VIEW CONFIGURED ACCOUNTS:
Allows apps to see the usernames (email addresses)
of the Google account(s) you have configured.
SEND SMS MESSAGES:
Allows the app to send SMS messages. Malicious
apps may cost you money by sending messages
without your confirmation.
READ CONTACT DATA:
Allows the app to read all of the contact (address)
data stored on your tablet. Malicious apps may use
this to send your data to other people.
INTERCEPT OUTGOING CALLS:
Allows the app to process outgoing calls and
change the number to be dialed. Malicious apps
may monitor, redirect, or prevent outgoing calls.

Table 1: An App available on Google Play

TERNET, that could be used by malicious apps, and then performs
analysis on a dataset of apps to identify potentially malicious apps
within that set. Sarma et al. [24] take another approach which uses
only permissions to evaluate the risk of an app by examining how
rare permissions are for certain apps in specific categories.

Barrera et al. [6] present a methodology for the empirical anal-
ysis of permission-based security models using self-organizing
maps. They apply their methodology to analyze the permission
distribution of close to one thousand applications. Their key ob-
servations were (i) the INTERNET permission is the most popular
and hypothesized that most developers request this to request ad-
vertisements from remote servers, (ii) Location-based permissions
are usually requested in pairs i.e. access to both fine and coarse
locations is requested by applications in a majority of cases by de-
velopers and (iii) there are some categories of applications such as
tools and messaging category where pairs of permissions are re-
quested.

Au et al. [5] survey the permission systems of several popular
smartphone operating systems and taxonomize them by the amount
of control they give users, the amount of information they convey
to users and the level of interactivity they require from users.
Further, they discuss several problems associated with extracting
permissions-based information from Android applications.

Dynamic Analysis: Another research direction in Android security
is to use dynamic analysis. Portokalidis [22] propose a security so-
lution where security checks are applied on remote security servers
that host exact replicas of the phones in virtual environments. In
their work, the servers are not subject to the constraints faced by
smartphones and hence this allows multiple detection techniques to
be used simultaneously. They implemented a prototype and show
the low data transfer requirements of their application.

Enck et al. [9] perform dynamic taint tracking of data in
Android, and reveal to a user when an application may be trying
to send sensitive data off the phone. This can handle privacy

violations since it can determine when a privacy violation is most
likely occurring while allowing benign access to that same data.
However, there is a whole class of malicious apps that this will not
defend against, namely security and monetary focused malware
which send out spam or create premium SMS messages without
accessing private information.

Security & Access Control: Research in this direction is geared
towards furthering usable security associated with mobile phones
by improving the fundamental security and access control mod-
els currently in use. This type of research entails introducing
developer-centric tools [30] that enforce principle of least privi-
lege, extending permission models and defining user-defined run-
time constraints [20, 21] to limit application access and detecting
applications with a malicious intent [9, 23].

Nauman et al. [20] present a policy enforcement framework for
Android that allows a user to selectively grant permissions to ap-
plications as well as impose constraints on the usage of resources.
They design an extended package installer that allows the user
to set constraints dynamically at runtime. Ongtang [21] present
an infrastructure that governs install-time permission assignment
and their run-time use as dictated by application provider policy.
Their system provides necessary utility for applications to assert
and control the security decisions on the platform. Vidas [30]
presents a tool that aids developers in specifying a minimum set
of permissions required for a given mobile application. Their
tool analyzes application source code and automatically infers the
minimal set of permissions required to run the application.

Machine Learning in Security: Naive Bayes has been extensively
used both in the context of spam detection [25, 18, 16, 28] and
anomaly detection [26, 4] in network traffic flows. In the con-
text of Android, however, there has been limited work. Shabtai
et al. [27] presents a behavioral-based detection framework for
Android that realizes a host-based intrusion detection system that
monitors events originating from the device and classifies them as
normal or abnormal. Our work differs in that we use machine learn-
ing for the purpose of risk communication.

8. CONCLUSIONS
We have discussed the importance of effectively communicating

the risk of an application to users, and propose several methods to
rate this risk. We test these methods on large real-world datasets to
understand each method’s ability to assign risk to applications. One
particular valuable method is the PNB model which has several ad-
vantages. It is monotonic, and can provide feedback as to why risk
is high for a specific app and how a developer could reduce that risk.
It performs well in identifying most current malware apps as high
risk, close to the sophisticated HMNB model. And it can differen-
tiate between critical permissions and less-critical ones, making it
more difficult to evade when compared with the BNB model.
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APPENDIX

The posterior distribution of the hidden variables is

p(ψ, z|x, α, θ) =
p(ψ, z, x|α, θ)
p(x|α, θ) (5)

The computation of the exact posterior distribution is, however, in-
tractable. Thus, we approximate the posterior distribution by

q(ψ, z|β, r) =

C∏
c=1

q(ψc|βc)
Nc∏
n=1

q(zc,n|rc,n) (6)

To obtain an accurate approximation, we use a variational Bayes
approach. Specifically, we minimize the KL divergence of p and q
via the following iterative variational updates.

Update r:

ρc,n,k = exp{z(βc,k)−z(

K∑
k=1

βc,k)}
M∏
m=0

θ
xc,n,l

k,l (1−θk,l)1−xc,n,l

(7)

rc,n,k =
ρc,n,k∑K
k=1 ρc,n,k

(8)

Update β:

βc,k = αk +

Nc∑
n=1

rc,n,k (9)

Update θ:

θk,m =
a0k,l +

∑C
c=1

∑Nc
n=1 rc,n,kxc,n,m

a0k,l + b0k,l +
∑C
c=1

∑Nc
n=1 rc,n,k

(10)

Update α via Newton’s method:

gk = C[z(

K∑
k=1

αk)−z(αk)]+

C∑
c=1

[z(

K∑
k=1

βc,k)−z(βc,k)] (11)

qk = −Cz′(αk) (12)

z = Cz′(
K∑
k=1

αk) (13)

b =

∑K
k=1 gk/qk

1/z +
∑K
k=1 1/qk

(14)

αnewk = αoldk −
gk − b
qk

(15)

The z(.) denotes the digamma function.


