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ABSTRACT
The phenomenal growth of the Android platform in the past few
years has made it a lucrative target of malicious application (app)
developers. There are numerous instances of malware apps that
send premium rate SMS messages, track users’ private data, or
apps that, even if not characterized as malware, conduct question-
able actions affecting the user’s privacy or costing them money. In
this paper, we investigate the feasibility of using both the permis-
sions an app requests, the category of the app, and what permissions
are requested by other apps in the same category to better inform
users whether the risks of installing an app is commensurate with
its expected benefit. Existing approaches consider only the risks
of the permissions requested by an app and ignore both the bene-
fits and what permissions are requested by other apps, thus having
a limited effect. We propose several risk signals that and evalu-
ate them using two datasets, one consists of 158,062 Android apps
from the Android Market, and another consists of 121 malicious
apps. We demonstrate the effectiveness of our proposal through
extensive data analysis.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection, Ac-
cess controls; K.6.5 [MANAGEMENT OF COMPUTING AND
INFORMATION SYSTEMS]: Security and Protection, Invasive
software

General Terms
Security, Measurement

Keywords
Android, Malware
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1. INTRODUCTION
As mobile devices become increasingly popular for personal and

business use it is becoming increasingly more important to provide
users with the ability to understand and control the benefit and risk
of running apps on these devices. Mobile devices contain both tra-
ditional types of private data, such as contacts, email, and credit
card numbers, and new types of resources, including accurate ge-
olocation, audio recording, and making phone calls or sending pre-
mium SMS messages, all while maintaining constant internet con-
nectivity on high speed wireless networks. Because of this shift in
computing, a compromise can lead to greater exposure of personal
information as well as direct financial impact. Mobile phones are
increasingly being used for authentication at banks, as credit cards,
e.g., Google Wallet, and to access corporate information remotely.
At the same time, users seem to ignore potential problems, choos-
ing to trust an app store to identify malware instead of evaluating
risk on their own.

The Android platform has emerged as the fastest growing smart-
phone operating system being used by about 200 million devices,
with around 700,000 devices being activated around the world
daily. An increasing number of applications (or apps) are avail-
able for Android. The Google Android Market recently crossed
more than 10 billion downloads. Such a wide user base coupled
with ease of developing and sharing applications with the help of
Android Market makes Android an attractive target for malicious
application developers that seek personal gain while costing users’
money and invading users’ privacy. Indeed, recent events indicate
an exponential increase in the number of malware for the Android
system. Most of these malware are trojans that along with overt
useful functionality perform covert malicious activities in the back-
ground. Examples of such malware activities include spyware that
track users’ private data and sending SMS to premium rate num-
bers.

To limit damages from security breaches, Google relies on the
“principle of least privilege” and requires that an application re-
quest only for the most restrictive set of permissions for perform-
ing the task at hand. Android’s current defense against malicious
apps is to warn the user about permissions an app requires before
an app is installed with the hope that the user will make the right
decision. Specifically, Google’s standard comment on malicious
apps is: “When installing an application, users see a screen that
explains clearly what information and system resources the appli-
cation has permission to access, such as a phone’s GPS location.
Users must explicitly approve this access in order to continue with
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the installation, and they may uninstall applications at any time.
They can also view ratings and reviews to help decide which ap-
plications they choose to install. We consistently advise users to
only install apps they trust." This approach, however, is ineffec-
tive. The vast majority of Android apps require multiple permis-
sions to execute. When a user sees essentially the same warning
for almost every app, warnings quickly lose any effectiveness as
the users are conditioned to ignore such warnings. There has been
recent research [16] that confirms this ineffectiveness in the case of
User Account Control (UAC), an attempt by Microsoft to protect
its users in the context of Windows Vista that in some ways is sim-
ilar to Android’s approach. Motiee et al. [16] reported that 69%
of the survey participants ignored the UAC dialog and proceeded
directly to use the administrator account. Microsoft itself concedes
that about 90% of the prompts are answered by “yes”, suggesting
that “users are responding out of habit due to the large number of
prompts rather than focusing on the critical prompts and making
confident decisions” [8].

Recently, risk signals based on the set of permissions an app re-
quests have been proposed [7] as a mechanism to improve the ex-
isting warning mechanism for apps. Specifically, in [7], several
rules that represent risky permissions are used to flag apps. How-
ever, such an approach is not very effective because it does not
take into account the intended functionality of an app, that is, what
the user expects the app to do, or what permissions are requested
by other apps with similar functionality. While the potential risk
of installing an app is best described by the set of permissions it
requests, an approach using only permissions is insufficient be-
cause it does not capture the benefit offered by the application, or
whether the risk is commensurate with the benefit. For example,
SEND_SMS is a critical permission, as it enables an app to send
out premium short messages, potentially costing the user money.
While the permission can be used maliciously, it is also legitimately
needed by certain communication applications—simply highlight-
ing the fact that an app needs the permission is not effective. On the
other hand, a game or a wallpaper app does not normally need to
send short messages. If such an app requests the permission, then
this represents an unusual risk not commensurate to its benefit.

In this paper, we focus on creating more effective risk signals
about apps. An effective risk signal is a signal that: (1) has a sim-
ple semantic meaning that is easy to understand by both the users
and the developers; (2) is triggered by a small percentage of apps;
and (3) is triggered by many malicious apps. When a user observes
that a risk signal is triggered by an app, understanding the reason
helps the user make the decision whether to use the app. When a
developer observes that her app triggered a risk signal, understand-
ing the reason helps the developer to decide whether the app can be
changed to not raise the signal.

Our approach takes into account both the benefit and the risk
present with installing an app to create a more effective risk sig-
nal. Specifically, we propose to capture the benefit of an app by
using the category and sub-category of the app. The Android Mar-
ket currently divides apps into “Games” and “Applications”, which
are further divided into 8 and 26 sub-categories, respectively. We
also propose a more effective way to capture risk by taking into
account the occurrence of the permissions across apps with similar
functionality. Our observation is that if a permission requested by
an app is also requested by a large number of applications with sim-
ilar functionality, then the permission is more likely to be needed
and the risk associated with installing the app is smaller. On the
other hand, if a permission requested by an app appears to be re-
quested by a very small number of applications with similar func-

tionality, then the risk of allowing the permission by installing the
app is higher.

As an example, one risk signal that we propose is what we
call the Category-based Rare Critical Permission signal, denoted
CRCP(θ). From Android’s current list of 122 permissions, we
choose 26 that we call critical permissions. For each app category,
we call any critical permission that is requested by less than θ per-
cent of apps in this category a θ-Rare Critical Permission (θ-RCP)
in this category. Any app that requests one of the θ-RCP’s in its
category triggers the CRCP(θ) risk signal. We also consider the
RCP(θ) signal, which is triggered when an app requests a critical
permission that is requested by less than θ percent of all apps, and
signals based on rare pair of permissions.

We envision such risk signals to be used as follows, using
CRCP(θ) as an example. The Android Market’s webpage for an
app can indicate whether the app triggers CRCP(θ) for some stan-
dard values of θ. We could present them with the ability to se-
lect a category for the app other than its assigned category before
installing it. This step of the user selecting the category is essen-
tially identifying the potential benefit of installing the app. We may
also give the user a choice to select a threshold for θ to display the
CRCP(θ) signal. For each choice of (θ), it is also displayed what
percentage of apps will trigger the signal for that (θ) so that the
user has a better understanding of how (in)frequently this signal is
triggered. Note that the CRCP(θ) signal is often triggered by more
than θ percent of apps, because there is often more than one θ-RCP
for a category, and requesting any one triggers the signal. The user
is then warned if the app triggers the signal. As typical users have
many apps to choose from for a certain task, users can choose to
avoid apps that trigger the signal if it is raised for a small percent-
age (e.g., less than 10%) of apps. If the user is unable to select
a category, then we can resort to the RCP(θ) signal. Such a risk
signal indicates to the user when an application may be over pro-
visioned, and thus represents excessive risk given the benefit they
expect to receive.

We point out that our idea of utilizing category of apps and rarity
of permissions can be deployed, even without the risk signal no-
tion. For example, rather than showing all permissions requested
by an app. The interface for showing permissions (both on An-
droid market webpage and on the permission warning page shown
to the user before the installation of an app) should sort the permis-
sions by their frequency within its category (or over all apps when
the category information is not available), list the least frequent
first, and include the frequency together with each permission. The
frequency can also be color coded, e.g., using red for the rarest per-
missions. Furthermore, the frequent permissions can be hidden by
default (and available with a “show all” button).

In summary, the contributions of this paper are as follows:

• We introduce the notion of risk signals combining risks with
benefits. This approach can provide a first line of defense
in the case of downloading apps on Android platforms. It is
applicable to other contexts such as Facebook applications
and Chrome extensions as well.

• We propose a general formulation of risk signals exploiting
rare critical permissions and rare pairs of critical permis-
sions, as well as the category information of an app.

• We evaluate the effectiveness of our proposed risk signals by
using two datasets. The first dataset consists of 158,062 An-
droid apps and it was collected from Android market website
in February 2011. The second dataset consists of 121 mali-
cious apps and it was obtained from the Contagio Malware
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Dump repository (http://www.contagiodump.blogspot.com).
We show that our proposed risk signals, especially CRCP, are
effective.

The rest of the paper is organized as follows. We present a de-
scription of the Android platform and the current warning mecha-
nism in Section 2. Section 3 discusses the date sets that we have
collected and certain characteristics about permissions in that data.
In Section 4 we discuss how this data can be used to measure the
risk that a certain app might introduce. We then present results of
our finds for these risk signals in Section 5. We finish by discussing
related work and concluding in Section 6 and 7.

2. ANDROID PLATFORM
In this section we provide an overview of the current defense

mechanism provided by the Android platform and discuss its limi-
tations.

2.1 Android Development Process
Android is an open source software stack for mobile devices that

includes an operating system, an application framework, and core
applications. The operating system relies on a kernel derived from
the Linux kernel. The application framework consists of the Dalvik
Virtual Machine that runs .dex files. Applications are written in
Java using the Android SDK, compiled into .dex (Dalvik Exe-
cutable), and packaged into .apk (Android package) archives for
installation.

To be able to submit applications to the Android Market, an An-
droid developer should obtain a publisher account. When submit-
ting an Android application to the Android Market, each .apk bi-
nary is assigned a webpage on the Android Market. This webpage
contains meta-information that keeps track of information pertain-
ing to the application (name, category, version, size, prices) and its
usage statistics (rating, number of installs, number of reviews).

2.2 Permissions in Android Platform
The current support provided by Android in addressing the prob-

lem of malware consist of sandboxing each application and warn-
ing the user about the permissions that the application requested.
Specifically, each application runs as a separate process on a vir-
tual machine of its own and by default does not have permissions
to carry out actions or access resources which might have an ad-
verse effect on the system or on other apps. For example, an appli-
cation cannot send SMS, read contacts, or change system settings
like Bluetooth, by default. However, an application can explicitly
request these privileges through permissions.

When a user downloads an app through the Android Market, the
user is taken through two screens. The first screen has information
such as description, reviews, and screenshots of the app. The user
has to select “Download” to move to the next screen. The second
screen displays permissions requested by the application. Installing
the application means granting the application all the requested per-
missions. The permissions are displayed under various categories
to indicate their functionality. For example, permissions associated
with messaging like READ_SMS and WRITE_SMS are grouped
under the same category. A user can find out detailed informa-
tion about a permission by clicking or tapping on it. This helps
the user understand the potential risks of installing the application.
For example, “FINE_LOCATION”, a GPS-related permission, car-
ries the following description “Access fine location sources such as
the Global Positioning System on the phone, where available. Ma-
licious applications can use this to determine where you are, and
may consume additional battery power.”

2.3 Limitations
Android’s current permission warning approach has been very

ineffective in curbing malicious applications. This is partly because
the current mechanism of displaying permissions fails as an effec-
tive risk communication mechanism, as it warns the user about dan-
gerous permission on almost all permissions. Many applications
may have a legitimate need to access fine-grained GPS locations,
for example, an application for reporting local weather can provide
a benefit to the user by accessing their location. Many other appli-
cations use the FINE_LOCATION permission to provide a benefit
to the user, hence the user will see the same warning again and
again. Most of the time, the user will want to install the app despite
this warning. This conditions users to ignore such warnings. When
a malicious app comes along, a user has already been conditioned
to ignore such information and most likely does not even look at
the permissions.

Such effect has been discussed in the literature. In [13], Felt et
al. analyzed 100 paid and 856 free Android applications, and found
that “Nearly all applications (93% of free and 82% of paid) ask for
at least one ‘Dangerous’ permission, which indicates that users are
accustomed to installing applications with Dangerous permissions.
The INTERNET permission is so widely requested that users cannot
consider its warning anomalous. Security guidelines or anti-virus
programs that warn against installing applications with access to
both the Internet and personal information are likely to fail be-
cause almost all applications with personal information also have
INTERNET.”

Felt et al. argued “Warning science literature indicates that fre-
quent warnings de-sensitize users, especially if most warnings do
not lead to negative consequences [22, 15]. Users are therefore
not likely to pay attention to or gain information from install-time
permission prompts in these systems. Changes to these permission
systems are necessary to reduce the number of permission warnings
shown to users.”

There is a parallel between the Android Model and Windows
UAC prompt. Both are designed to inform the user of some poten-
tially harmful action that is about to occur, in UAC’s case that a pro-
cess is trying to elevate it privileges in some way, and in Android’s
case that you are installing an app that will have all these elevated
privileges. The difference is that UAC encourages the developer to
work with fewer privileges since this will lead to a smoother user
experience. However with Android there is no obvious feedback
loop to the developer. An application requires the same effort to
use if it requires one privilege or multiple, the only difference is
the length of the permission list which is difficult to see on a small
screen anyway.

While the ineffectiveness of the Android permission warning
mechanism has been recognized, no effective solution has been
proposed. In this paper, we aim at investigating how to improve
the current state of the art in communicating risky permissions to
the user.

3. DATASETS
In this section, we describe the two datasets we used in our study

of Android app permissions. Below we describe the datasets and
their characteristics.

3.1 Datasets Description
The “market dataset”. The first dataset consists of 158,062 An-
droid applications. We created this dataset during February 2011
by crawling the Android Market website and downloading the web-
pages for all the applications. We then extract the application pack-
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age name, the category of the application, and the list of permis-
sions that this application requests during installation. The An-
droid Market divides apps into “Games” and “Applications”, each
of which is further divided into sub-categories. Back in Febru-
ary 2011, there were 6 sub-categories under Games and 24 sub-
categories under “Applications”. Since February 2011, Android
market has created some new sub-categories, and currently the An-
droid market has 34 sub-categories in total.

This dataset is more comprehensive and significantly larger than
others that have been studied in the literature. For example, a
dataset of 311 apps was used in [7], 940 was used in [11], and 1,100
was used in [6]. We expect that the vast majority of the apps in the
market dataset to be benign; however, it may contain a very small
percentage of malicious apps, as well as some apps that may be
called grayware, as they may carry out questionable actions with-
out sufficient user notification or approval.

The “malware dataset”. The second dataset con-
sists of 121 apps that are known to be malicious. We
obtained this dataset from the Contagio Malware Dump
(http://www.contagiodump.blogspot.com) repository. We down-
loaded all samples of malicious Android apps from the website,
and obtained 180 Android Package (APK) files. However, there
are duplicates in this dataset. After removing the duplicates, we are
left with 121 samples. For each malware sample, we extracted the
permissions requested using the AndroidManifest.xml file present
inside the package file. For these malicious apps we do not have
their category information. We call this the “malware dataset”.
This dataset is larger than other malicious Android datasets in the
literature. As a comparison, 46 were used in [12], however these
include malware for iOS, Android and Symbian platforms.

3.2 Frequently Requested Permissions
Table 1 shows the top-20 most frequently requested permissions

by applications in the two datasets. We observe that overall ma-
licious apps request more permissions than those in the market
dataset. For some permissions, the percentages of malware apps
requesting them are much higher than those in the market dataset.
For example, SEND_SMS is requested by 64.46% of the mali-
cious apps, but only 4.83% in the market dataset. This is prob-
ably due to the fact that many malicious apps use premium SMS
messages to benefit financially. Also interesting is the fact that
READ_HISTORY_BOOKMARKS is requested by 42.12% of the
malicious apps, but none of the apps in our market dataset.

Another observation is that some permissions are requested by
such a high percentage of apps in the market that warning that an
app requests the permission is meaningless. We also observe that
one Android permission often controls several different types of
accesses, often with very different sensitivities. These observations
lead us to argue that some of the Android permissions should be
further divided. For example, it is clearly desirable to control the
SEND_SMS permission, however, it is requested by 4.83% of apps
in the market dataset. For apps in some categories, this ratio is
much higher, because many apps have legitimate need to send SMS
messages. We argue that premium-rate SMS messages should be
controlled by a separate permission, as such messages incur much
higher monetary costs to the user from normal SMS messages, and
very few apps have legitimate reasons to send premium-rate SMS
messages. For another example, the “READ_PHONE_STATE”
permission is requested by 24.99% of apps in the market dataset
and 80.99% in the malware dataset. This permission enables an
app to get several kinds of information: including the phone num-
ber, the serial number of this phone, whether a call is active, the

Permission Benign Malicious
INTERNET 68.50 (1) 93.38 [1]
ACCESS_NETWORK_STATE 30.97 (2) 42.98 [8]
READ_PHONE_STATE 24.99 (3) 80.99 [2]
WRITE_EXTERNAL_STORAGE 24.14 (4) 59.50 [4]
ACCESS_COARSE_LOCATION 18.17 (5) 43.80 [7]
ACCESS_FINE_LOCATION 17.22 (6) 35.53 [12]
WAKE_LOCK 13.07 (7) 23.14 [18]
VIBRATE 12.84 (8) 23.14 [19]
ACCESS_WIFI_STATE 8.09 (9) 28.92 [16]
RECEIVE_BOOT_COMPLETED 7.99 (10) 23.14 [20]
READ_CONTACTS 7.50 (11) 47.11 [6]
GET_TASKS 5.32 (12) 5.78 [30]
CALL_PHONE 5.10 (13) 31.40 [14]
SEND_SMS 4.83 (14) 64.46 [3]
SET_WALLPAPER 4.75 (15) 30.57 [15]
CAMERA 4.35 (16) 5.78 [30]
GET_ACCOUNTS 4.31 (17) 4.95 [31]
RECEIVE_SMS 4.29 (18) 40.49 [10]
WRITE_SETTINGS 3.90 (19) 7.44 [27]
PROCESS_OUTGOING_CALLS 3.64 (20) 4.13[36]
READ_SMS 3.43 (21) 47.11 [5]
READ_HISTORY_BOOKMARKS 0 (113) 42.14 [9]
WRITE_HISTORY_BOOKMARKS 0(113) 37.19 [11]
WRITE_CONTACTS 1.99 (23) 32.23 [13]
MOUNT_UNMOUNT_FILESYSTEMS 1.25 (28) 26.44 [17]

Table 1: Table showing the top 20 most used permissions in the
two datasets. 15 permissions occurred in both of top-20 lists.
A total of 25 permissions are included. Column 2 shows the
percentage (and ranking) of permissions in the market dataset,
and column 3 shows the percentage (and ranking) in the mali-
cious dataset.

number that call is connected to, and so on. It seems much more
natural to separate these into different permissions.

Android tries to limit the number of permissions because having
more of them simply lengthen the list of permission warning a user
is going to see, further decreasing the usability of something that
users are likely to ignore. However, with the risk signal approach
we investigate in this paper, having more permissions does not lead
to more meaningless warnings. In short, if one can devise effective
risk signals based on permissions, then finer-grained permissions
could be deployed, improving Android security.

4. RISK SIGNALS
In this section we describe the risk signals we propose for An-

droid applications based on the permissions they request.

4.1 Design Goals for Risk Signals
When designing a risk signal two relevant measures are the

warning rate which defines how often a user receives warnings
generated by the risk signal and the detection rate which defines
what percentage of malicious apps will trigger the signal. To avoid
over-exposing users to warnings generated by risk signals, it is de-
sirable that a risk signal has a low warning rate. To be effective
at detecting malicious applications a risk signal should have a high
detection rate. Moreover a risk signal should be easily understand-
able by end users.

Because there is no guarantee that the market data contains no
malware, a warning rate of close to 0 is not necessarily desirable.
At the same time the boundary between benign and malicious apps
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Risk Permission Permission Allows % market % malware

Privacy

ACCESS_COARSE_LOCATION access to coarse (e.g., Cell-ID, WiFi) location 18.17 43.80
ACCESS_FINE_LOCATION access to fine (e.g., GPS) location 17.22 35.53
PROCESS_OUTGOING_CALLS monitor, modify, or abort outgoing calls. 3.64 4.13
READ_CALENDAR read the user’s calendar data. 0.64 0.82
READ_CONTACTS read the user’s contacts data. 7.50 47.11
READ_HISTORY_BOOKMARKS read the user’s browsing history and bookmarks. 0 42.14
READ_PHONE_STATE read only access to phone state. 24.99 80.99
READ_SMS read SMS messages. 3.43 47.11
RECEIVE_MMS monitor, record, or process MMS msgs 0.18 5.78
RECEIVE_SMS monitor, record, or process SMS msgs 4.29 40.49
RECORD_AUDIO record audio 1.91 4.13
RECEIVE_WAP_PUSH monitor incoming WAP messages 0.063 4.13
READ_LOGS read low-level log msgs 0.76 8.26

Monetary
CALL_PHONE make a phone call w/o user’s confirmation. 5.10 31.40
INTERNET open network sockets. 68.50 93.38
SEND_SMS send SMS messages. 4.83 64.46

Other

MOUNT_UNMOUNT_FILESYSTEMS mount / unmount file sys for removable storage. 1.25 26.44
WRITE_CALENDAR write the user’s calendar data. 0.49 2.47
WRITE_CONTACTS write the user’s contacts data. 2.00 32.23
WRITE_HISTORY_BOOKMARKS write the user’s browsing history and bookmarks. 0 37.19
WRITE_SMS write SMS messages. 3.10 22.31

Damage
WRITE_EXTERNAL_STORAGE write to external storage 24.14 59.50
NFC perform I/O operations over NFC 0.006 0
GET_ACCOUNTS access the list of accounts in the Accounts Service 4.31 4.95
BLUETOOTH connect to paired bluetooth devices 0.57 4.95
BLUETOOTH_ADMIN discover and pair bluetooth devices 0.46 4.13

Table 2: Table displaying list of critical permissions

is blurred as many apps are unnecessarily over-privileged [11]. In
this sense, raising warnings for such over-privileged apps is not a
“false” positive; thus one should not equate the warning rate with
the false positive rate in intrusion detection. On the other hand,
an overly high warning rate is certainly undesirable because when
users frequently see a warning, it becomes less effective. If a risk
signal has a relative low warning rate (say, between 2% and 5%),
then among every 100 apps the user investigates, on average be-
tween 2 to 5 of them raise the warning. As this is rare enough,
and in the mobile platform market, a user often has choices among
multiple competing apps with similar functionalities, then the user
is likely to avoid these apps. In this paper, we generally restrict our
warning rate to be in the range of 1% to 10%.

While we desire higher detection rate, one should be careful to
assign too much weight when interpreting this rate in our analy-
sis results. We are using a dataset of 121 malware apps. While
this is the largest dataset in the literature we are aware of, it is
difficult to argue that they are representative of all malware apps.
More importantly, these malware apps were written when over-
provisioning permissions were not punished. If approaches pro-
posed in this paper are adopted in different forms, malware app au-
thors may choose to request only the permissions absolutely neces-
sary for the malicious task with the aim of avoiding detection. For
example, from Table 1, we observe that 42.14% malicious apps re-
quest READ_HISTORY_BOOKMARKS, while no app in the mar-
ket dataset does so. This leads to a trivial risk signal. However, it
is difficult to argue that this will be effective for detecting future
malware apps.

Rather than focusing only on the warning rate and the detection
rate, we want to design risk signals that are more principled, in
the sense that they could rule out apps with critical permissions
that could potentially be abused. At the same time, we desire risk

signals to have a relative low (between 1% and 10%) warning rate,
and a relative high detection rate. Another property that we desire
is that the risk signals should be easy for end users to understand.
After all, no risk signal can be used to stop the installation of an
app by itself. The ultimate decision lies with the end user. If the
user can understand why a warning is raised, then there is higher
chance that he can process the information accordingly.

Having an easy-to-understand risk signal also has the potential
to benefit the overall eco-system of Android apps. The risk sig-
nal can be displayed on Android websites. If a small percentage
of apps are identified as risky, and there is clear reason why, such
as requesting a rare permission, this gives developers incentives to
not request permissions the app can function without, since requir-
ing too many permissions now reflects badly on an app. This cre-
ates a positive feedback loops as apps requesting fewer permissions
will cause other apps that request many permissions to increasingly
“stand out”.

4.2 Permission Based Risk Signals
We consider two classes of risk signals: those that are created

with some knowledge of signature of malicious apps, and those
that do not use such knowledge.

Signals aware of malicious application signatures.
We consider risk signals that are constructed using the permis-

sions of apps from both benign and malicious apps. For example,
in our case the signals will be based on both the market and mali-
cious apps datasets. We expect that risk signals in this category
give the best tradeoffs between warning rate and detection rate.
However, they run the risk of over fitting our particular malware
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dataset, which may not be representative of other yet undiscovered
malware.

Support Vector Machines: Support Vector Machines
(SVMs) [26] have gained significant popularity in the research
community in the recent years. In its simplest linear form, an SVM
is a hyperplane that separates a set of positive examples from a set
of negative examples with maximum interclass distance, the mar-
gin. Our datasets, however, cause difficulty for the standard SVM
algorithm, because the size of the market dataset is several order of
magnitude larger than that of the malware dataset. There has been
recent research [4] that indicated that when the training data sets
with uneven class sizes were used, the standard support vector ma-
chine was undesirably biased towards the class with the large train-
ing size. Thus, we leverage the weighted variation of SVMs intro-
duced by Huang et al. [14] due to the uneven nature of our datasets.
Weighted SVMs can be expressed as an optimization problem:

minimize
w,b,ξ

1
2
||w||2 + C

l∑

i=1

siξi

subject to yi(w × φ(xi) + b) ≥ 1− ξi,

ξ ≥ 0, ∀ii = 1, 2, ˙..., l

where C is a parameter that is empirically selected and is taken
for each training sample without discrimination, si is a weighting
factor for the ith training sample. We leverage the SVM package
called LibSVM [3] to carry out our analysis using the Weighted
SVM variation and an RBF [23] kernel.

In order to run support vector machines we classify our data into
two categories with labels, -1 for benign apps and 1 for malicious
apps. Combining this data and using the permissions as features
of this data, we are then able to use SVM to train and classify our
datasets.

Signals oblivious of malicious application signatures.
Risk signals based only on apps from the Android market are

more robust as they are not tuned to detect malicious apps in our
particular dataset, and aim only at detecting apps that request too
many permissions. Furthermore, we want a principled approach
where the signals use only critical permissions so that such signals
are more difficult to evade.

From Android’s current list of 122 permissions, we choose 26
permissions that we call critical permissions. They are listed in
Table 2. These 26 permissions were chosen because we believe
they are critical for the security and privacy of end users. These
permissions allow an app to infringe upon the privacy, cause mon-
etary loss or damage otherwise. They were chosen before we
conducted any experiments with the malware dataset. After con-
ducting experiments, we realized that two of 26 permissions were
very helpful in identifying malware apps in our dataset. They are
READ_HISTORY_BOOKMARKS (requested by 42.14% of mal-
ware apps) and WRITE_HISTORY_BOOKMARKS (requested by
37.19% of malware apps); both are not requested at all in the mar-
ket dataset. We feel that using these two permissions inflated our
results. To avoid such a positive bias, in most experiments we re-
move these two from the critical set, and use the remaining 24 per-
missions. When we compare results from these two sets of critical
permissions, we use P26 and P24 to differentiate them.

Rare Critical Permissions (#RCP(x) ≥ θ). The first risk signal
we consider is whether an app has a rare critical permission. We
say that a critical permission is rare with respect to a threshold x if
it occurs in less than x% of the Android Market applications. This
signal is triggered by an app if it requests one or more rare criti-

cal permissions. One advantage of this signal is that the semantic
meaning is very simple and easy to understand.

Rare Pairs of Critical Permissions (#RPCP (y) ≥ θ). We
consider a pair of critical permissions to be rare with respect to
a threshold y if the individual permission’s frequency is above
threshold y but the frequency of occurrence of the two permissions
as a pair is below y, and we define this as #RPCP(y). That is, we
consider a pair of critical permissions to be rare if the permissions
involved in the pair are themselves not rare (above threshold x) but
their occurrence together in an app is rare (below threshold y).

Combination of RCP and RPCP (#RCP (x) + w ∗
#RPCP (y) ≥ θ). In this signal we use a linear combina-
tion of #RCP(x) and #RPCP(y) to calculate a risk score, and then
chose a threshold θ to determine whether the signal should classify
an app as risky for our experiments. The value w can be viewed
as representing the importance of rare pairs of critical permissions
relative to rare critical permissions. We point out that while this
is more general than the signal “#RCP(x) ≥ θ” and may give
better results, it is more complicated for users to understand and
for developers to take actions to avoid triggering the signal.

4.3 Permission and Benefit Based Risk Signal
We believe that taking into account the intended functionality or

benefit provided by an app should result in an effective risk sig-
nal. We use category of an app to determine the intended bene-
fit, because we hypothesize that apps in different categories often
request different kinds of permissions. To test this hypothesis, we
studied the percentages of applications requesting the SEND_SMS,
FINE_LOCATION and READ_CONTACTS permission across the
30 categories in the market dataset, which is shown in Figure 1. As
expected SEND_SMS and READ_CONTACTS are used the most
in the Communication category, while FINE_LOCATION is used
most frequently in Transportation, Travel, and Weather. The result-
ing graph supports our hypothesis.

We propose the Category-based Rare Critical Permission
(CRCP) signal. We use CRCP(θ) to denote this signal, and it is
defined as follows. For each category, we call any critical permis-
sion that is requested by less than θ percent of apps in this category
a θ-Rare Critical Permission (θ-RCP) in this category. Any app that
requests one of the θ-RCP’s in its category triggers the CRCP(θ)
risk signal. Similarly, we define the RCP(θ) signal to be triggered
when an app requests a critical permission that is requested by less
than θ percent of all apps.

The central idea behind the CRCP signal can be summarized as
comparing the intended functionality of an app (inferred from its
category) with its actual functionality (obtained from its permission
set) and reporting if there is any mismatch between the two.

5. EXPERIMENTAL RESULTS
We evaluate the risk signals introduced in Section 4.2 using the

market dataset and malware dataset and report the results here.

Analysis of Permission Based Risk signals. In order to get a
baseline we first apply the only other mechanism that has been
published to identify risk based on permissions, namely Kirin [7].
Kirin has several rules that dictate when an app is considered risky.
We considered only 7 of the 9 rules in Kirin, because the other 2
rules refer to permissions that are no longer supported. Table 3
shows the result. It shows that at a 6.53% warning rate, Kirin has
a 32.2% detection rate. We consider the warning rate acceptable;
however, its ability to warn a user for malware in our dataset is low.
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Figure 1: Graph showing percentage of applications using SEND_SMS, READ_CONTACTS and FINE_LOCATION across 30
categories

Rule % malicious
apps

% Android
Market apps

SET_DEBUG_APP 0 0.01
READ_PHONE_STATE, RECORD_AUDIO, INTERNET 4.13 (5/121) 1.03
PROCESS_OUTGOING_CALLS, RECORD_AUDIO, INTERNET 0 0.08
ACCESS_FINE_LOCATION, INTERNET, RECEIVE_BOOT_COMPLETED 9.91 (12/121) 4.50
ACCESS_COARSE_LOCATION , INTERNET, RECEIVE_BOOT_COMPLETED 11.57 (14/121) 4.53
RECEIVE_SMS, WRITE_SMS 19 (23/121) 2.76
SEND_SMS, WRITE_SMS 20.66 (25/121) 2.87
Failing at least one rule 32.23 (39/121) 6.53

Table 3: Kirin results. The table shows for each rule in Kirin, the percent of malicious apps (out of 121) that fail the rule, and the
percent of Android Market apps that fail it. The last row shows the percent of apps in each dataset failing at least one rule.

Figure 2 shows the ROC curves of using weighted SVM and
seven other risk signals using rare critical permissions and rare
pair of critical permissions. As can be seen, the SVM method
unsurprisingly gives the best result. It is followed by the signal
#RCP (2) +#RPCP (1) ≥ θ. Table 5 shows the numerical val-
ues of several data points for #RCP(θ) ≥ 1, the simplest signal
among the seven, and #RCP (2) + #RPCP (1) ≥ θ, the best
performing one.

In the SVM method, we use 10-fold cross validation, which ran-
domly selects parts of the data for training and the rest for testing,
repeating this 10 times to get a reasonable result. We modified the
standard libSVM code to also extract warning rate and detection
rate for a given test. Due to the nature of our data we used weighted
SVM, varying the weights for the malicious data set so that it had
more significance in the training, adjusting these weights led to dif-
ferent trade-offs between the warning rate and the detection rate.
For a very low warning rate of .05% we can can identify 50% per-
cent of the malware. Using a different weight when training results
in 71% detection rate and 2.4% warning rate.

We point out that while SVM outperforms other methods, this is
expected for several reasons. First, SVM uses all permissions in its
feature selection, as opposed to only the risky permissions, while
all other signals use P24. Second, SVM is also trained on malware
data. Finally, SVM is a sophisticated machine learning model. We
view the sophistication of SVM as also its major disadvantage, as
it is very difficult to explain to a user why a warning is raised, or to
a developer how to avoid the warning signal.

In the first row in Table 5, we observe that for a θ of 2%, RCP
has a warning rate of 6.36%, and a 52.90% detection rate, easily
outperforming Kirin. That is, 6.26% apps in the market dataset
request a critical permission (in P24) that is requested by less than
2% apps, and 52.90% of apps in the malware dataset does so.

The second row of Table 5 demonstrates the results of this ap-
proach for #RCP (2) + #RPCP (1) ≥ θ. Note that for θ = 2,
that is, the signal is raised is the when an app either requests a
2%-rare critical permission, or a pair of critical permissions that
is 1%-rare, this method identifies 66.94% of malicious apps with
relatively low warning rate of 7.62%.
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Figure 2: ROC curves for seven risk signals plus the SVM method. The X-axis is the warning rate, and the Y-axis is the detection
rate.

Android Market apps Malicious apps (total 121)
Own category All 30 cat. At least 27 cat. At least 25 cat. At least 18 cat. At least 1 cat.

P26 / P24 P26 P24 P26 P24 P26 P24 P26 P24 P26 / P24
θ = 1% 2.32 49.59 4.13 47.11 14.05 55.37 41.32 68.60 57.85 86.78
θ = 2% 4.90 60.33 30.57 62.81 51.23 66.11 55.38 74.38 68.59 88.42
θ = 3% 6.34 66.12 37.19 66.94 56.20 68.60 62.81 83.47 83.47 88.42
θ = 4% 8.12 71.07 44.62 70.24 60.33 80.99 80.99 83.47 83.47 88.42
θ = 5% 9.17 75.20 44.62 77.69 77.69 80.99 80.99 84.29 84.29 88.42

Table 4: Percentages of apps triggering the CRCP(θ) signal in their own category. It also shows the percentages of malware that
trigger the signal for different number of categories.

Results for Benefit Adjusted Risk Signals.
The Benefit Adjusted Risk Signal works by taking into account

the category of an app. Since the malicious apps did not come with
a category we count the number of categories a malicious app is
marked as risky in.

Table 4 shows the evaluation results of the CRCP(θ) signal,
which is raised when an app requests a critical permission that is
requested by less than θ% apps in the category. The table has one
row for each threshold. The second column shows the warning rate
for Android Market Dataset apps. The remaining columns show
the numbers of malware that trigger the risk signal in all 30, at least
27, at least 25, at least 18, and at least 1 categories of the Android
Market. The label P26 indicates that the analysis results is using 26
critical permissions and P24 indicates usage of 24. A label “P26
/ P24” indicates that the results of using either set of permissions
are the same. We consider the percentages of malware classified as
risky in at least 25 categories as an indicator of how successful the
Benefit Adjusted Risk Signal would be in case we could determine
the category of the malware accurately. We see a warning rate of
6.34% with a corresponding detection rate of 62.81%, which is an
improvement over RCP’s 6.36% warning rate and 52.89 detection
rate, but is similar to the best non-category based risk signals. We
also see a warning rate of 8.12% corresponds to a 80.99% detection

rate. This seems to suggest that at a slightly higher warning rate,
this risk signal performs really well.

Discussion. There are several reasons why the distribution of a
malware may be affected if it raises a risk signal for some cate-
gories, but not others. First, many malware apps try to impersonate
a popular app, such as Angry Bird, which belongs to a particular
category. Hence the category of these malware apps are limited to
be the same as the original app, especially when users are asked
to select the category. Second, to speed up propagation a malware
may be uploaded in more than one categories. For many of these
categories, a warning may be raised.

Moreover, even though the results of category based approach
are comparable to the category-independent signals using permis-
sion pairs, it has the advantage of being simpler, and easier to com-
prehend for both users and developers as to why an app triggers
the signal. Taking all the above mentioned points we believe that
CRCP approach is the most promising one in practice.

6. RELATED WORK
For malware detection, a detailed knowledge of application’s

characteristics is essential. To achieve this, static analysis involves
various binary forensic techniques, including decompilation, de-
cryption, pattern matching [24] and static system call analysis [21].
The common ground for all these techniques is that the code be-
ing analyzed is not executed. Hence, malware are generally filtered
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Risk Signal θ AM% Mal% θ AM% Mal% θ AM% Mal% θ AM% Mal%
#RCP(θ) ≥ 1 5 12.93 83.47 2 6.36 52.89 1 2.05 20.66 0.5 1.12 12.40
#RCP(2) + #RPCP(1)≥ θ 1 7.62 66.94 2 2.70 57.02 3 1.33 43.80 4 0.802 38.84

Table 5: Table showing the effect of various risk signals. The first column gives the description of the risk signal: #RCP(x) is whether
an app requests a critical permission that is requested by no more than x% of Android Market apps. The second row shows percent
of apps having risk scores above threshold θ using #RCP(2) + #RPCP(1)≥ θ to calculate risk score. In the table AM refers to the
Android Market apps and Mal refers to malicious apps

through signatures. While this is a popular approach amongst many
anti-virus vendors, this method cannot detect new malware whose
signature does not exist in the database i.e. malicious code patterns
have to be known in advance.

Felt et al. [9] use static analysis to determine whether an Android
application is overprivileged. It classified an application as over-
privileged if the application requested a permission which it never
actually used. They apply their techniques to a set of 940 appli-
cations and find that about one-third are overprivileged. Their key
observation was that developers are trying to follow least privilege
but sometimes fail due to insufficient API documentation. Another
work by the by Felt et al. [10] surveys applications (free and paid)
from the Android Market. Their key observation was that 93% of
free apps and 82% of paid apps request permissions that they deem
as “dangerous”. While this does not reveal much out of context, it
demonstrates that users are accustomed to granting dangerous per-
missions to apps without much concern. Neither of these works
actually attempt to detect or categorize malicious software.

Enck et al. [7] developed a system that examined risky per-
mission combinations for determining whether the permissions
declared by an application satisfy a certain global safety policy.
This work manually specifies permission combinations such as
WRITE_SMS and SEND_SMS, or FINE_LOCATION and IN-
TERNET, that could be used by malicious apps, and then performs
analysis on a dataset of apps to identify potentially malicious apps
within that set. Another work by Enck et al. [6] makes an effort to
decompile and analyze the source of applications to detect further
leaks and usage of data.

Barrera et al. [2] present a methodology for the empirical anal-
ysis of permission-based security models using self-organizing
maps. They apply their methodology to analyze the permission
distribution of close to thousand applications. Their key observa-
tions were (i) the INTERNET permission is the most popular and
hypothesized that most developers request this to request adver-
tisements from remote servers, (ii) Location-based permissions are
usually requested in pairs i.e. access to both fine and coarse loca-
tions is requested by applications in a majority of cases by develop-
ers and (iii) there are some categories of applications such as tools
and messaging category where pairs of permissions are requested.

Au et al. [1] survey the permission systems of several popular
smartphone operating systems and taxonimize them by the amount
of control they give users, the amount of information they convey
to users and the level of interactivity they require from users.
Further, they discuss several problems associated with extracting
permissions-based information from Android applications.

Dynamic Analysis: Another research direction in Android security
is to use dynamic analysis. Portokalidis [19] propose a security so-
lution where security checks are applied on remote security servers
that host exact replicas of the phones in virtual environments. In
their work, the servers are not subject to the constraints faced by
smartphones and hence this allows multiple detection techniques to

be used simultaneously. They implemented a prototype and show
the low data transfer requirements of their application.

Enck et al. [5] perform dynamic taint tracking of data in
Android, and reveal to a user when an application may be trying
to send sensitive data off the phone. This can handle privacy
violations since it can determine when a privacy violation is most
likely occurring while allowing benign access to that same data.
However, there is a whole class of malicious apps that this will not
defend against, namely security and monetary focused malware
which send out spam or create premium SMS messages without
accessing private information.

Security & Access Control: Research in this direction is geared
towards furthering usable security associated with mobile phones
by improving the fundamental security and access control mod-
els currently in use. This type of research entails introducing
developer-centric tools [25] that enforce principle of least privi-
lege, extending permission models and defining user-defined run-
time constraints [17, 18] to limit application access and detecting
applications with a malicious intent [5, 20].

Nauman et al. [17] present a policy enforcement framework for
Android that allows a user to selectively grant permissions to ap-
plications as well as impose constraints on the usage of resources.
They design an extended package installer that allows the user to
set constraints dynamically at runtime. Ongtang [18] present an
infrastructure that governs install-time permission assignment and
their run-time use as dictated by application provider policy. Their
system provides necessary utility for applications to assert and con-
trol the security decisions on the platform. Vidas [25] present a
tool that aids developers in specifying a minimum set of permis-
sions required for a given mobile application. Their tool analyzes
application source code and automatically infers the minimal set of
permissions required to run the application.

7. CONCLUSIONS
We have proposed the notion of using effective signals to im-

prove Android security, and introduced risk signals combining in-
formation about the permissions requested by an app, the function
category of an app, as well as what permissions other apps request.
Through evaluation using two datasets, we demonstrate the effec-
tiveness of our approach.
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