
Scaling Secure Group Communication Systems: Beyond Peer-to-Peer

Yair Amir ∗ Cristina Nita-Rotaru ∗ Jonathan Stanton † Gene Tsudik ‡

Abstract

This paper proposes several integrated security architecture
designs for client-server group communication systems. In an
integrated architecture, security services are implemented in
servers, in contrast to a layered architecture where the same ser-
vices are implemented in clients. We discuss the performance
and accompanying trust issues of each proposed architecture and
present experimental results that demonstrate the superior scala-
bility of an integrated architecture.

1 Introduction

Many routine activities in modern, everyday life involve
the Internet: shopping for goods (such as books, cars, soft-
ware and even groceries), administering bank or credit card
accounts and making financial transfers, participating in
voice or video-conferences, or simply playing games. Most
such activities are in fact supported by collaborative ap-
plications running over an integrated software platform,
namely, a group communication system.

Group communication systems (GCSs) are essentially
application-level multicast techniques providing reliable
and ordered message delivery, as well as a group mem-
bership service. GCSs have been built around a number
of different architectural models, such as peer-to-peer li-
braries, 2- or 3-level middleware hierarchies, modular pro-
tocol stacks, and client-server. Prior research on such sys-
tems has tended to favor a client-server or a hierarchical
model in order to obtain good scalability. However, secu-
rity research for GCSs has focused mainly on peer-to-peer,
or abstract group models, by that diminishing the scalabil-
ity of the non-secure client-server systems.

Currently, the need for security in computing and com-
munications is widely recognized. Although not an in-
dependent service, security is an enabling feature without

∗Department of Computer Science, Johns Hopkins University, Balti-
more, MD 21218, USA. Email: {yairamir, crisn}@cs.jhu.edu

†Department of Computer Science, George Washington University,
Washington, DC 20052, USA. Email: jstanton@gwu.edu

‡Information and Computer Science Department, University of Cali-
fornia, Irvine Irvine, CA 92697-3425, USA. Email: {gts}@ics.uci.edu

which the actual end-services cannot be trusted or relied
upon. To this end, the research community has invested a
lot of effort in investigating and developing effective and ef-
ficient security services. Numerous algorithms, protocols,
frameworks and policy languages have been developed to
provide security services in general, and, in a group setting,
in particular. However, there has not been much research
into the integration of security techniques into GCSs, while
maintaining a reasonable level of performance.

This work tries to fill this gap, by designing practical
secure GCSs and investigating issues that arise in the course
of integration.

The minimal set of security services that should be pro-
vided by any GCS include:
• Client authentication: authenticate a client when it re-

quests access to the GCS, e.g., when it connects to a
GCS server.

• Access control: check if a given client is authorized
to access system resources. Typical group communi-
cation resources are: joining or leaving a group and
sending messages to a group.

• Group key management: generate a shared group key
that can be used to bootstrap other group services, i.e.,
data integrity and confidentiality.

• Integrity and confidentiality: protect the contents of
the communication both from eavesdropping as well
as undetected modification.

We distinguish among two basic approaches to integrate
security services into a client-server GCS. The first ap-
proach (referred to as the layered architecture) places secu-
rity services in a client library layered atop the GCS client
library. The second approach entails housing some (or all)
security services at the servers in order to obtain a more
scalable design (referred to as the integrated architecture).

To put this work into context, we briefly outline our ear-
lier efforts. Some of our recent results [2] demonstrate how
authentication and access control for a client-server GCS
can be efficiently addressed in the context of a particular
GCS, called Spread [3]. Another recent work proposes and
analyzes a layered architecture for Spread, focusing on ro-
bustness and correctness of group key agreement [4]. In
the present work, we propose scalable and efficient secure

1



architectures for Spread, focusing on providing authentica-
tion, data confidentiality and data integrity. Our specific
contributions are two-fold:
• A high-performance security architecture for Spread,

under two well-known group semantics: Virtual Syn-
chrony [5] and Extended Virtual Synchrony [6]. Both
models support network partitions and merges. Our
approach entails using contributory group key man-
agement in a light-weight/heavy-weight [5] group ar-
chitecture such that the cost of key management is
amortized over many groups, while each group has its
own unique key.

• Three variants of an integrated architecture that trade
off encryption cost for complexity and group commu-
nication model support. We discuss their performance
and security guarantees and compare them to a layered
approach, demonstrating the increased scalability.

The rest of the paper is organized as follows. In Sec-
tion 2 we survey notable prior work in designing secure
GCSs. We then describe Spread and the group communi-
cation semantics it supports. Next, we define our security
goals and propose three variants of an integrated security
architecture. We show the improved scalability of our in-
tegrated architecture and provide a discussion in Sections 5
and 6. Finally, we summarize this work and discuss some
potential future research directions.

2 Related Work

Research in group communication systems has been
quite active in the last 15-20 years. Initially, high availabil-
ity and fault tolerance were the main goals. This resulted
in systems like ISIS [7], Horus [8], Transis [9], Totem [10],
and RMP [11].

With the increased use of GCSs over insecure open net-
works, some research interest shifted to securing GCSs.
Recall that the core of any GCS is its membership pro-
tocol. Some of the work in securing group communica-
tion focused on protecting the membership protocol in the
presence of byzantine faults. This includes systems such
as Rampart [12] and SecureRing [13]. Rampart builds its
group multicast over a secure group membership protocol
achieved by the means of two-party secure channels. The
SecureRing system protects the low-level ring protocol by
using digital signatures to authenticate each transmission of
the token and each data message received.

In addition to the membership service, GCSs provide re-
liable ordered message delivery within a group. To make
this secure, group members (senders) must be authenti-
cated and confidentiality and integrity of client data must
be guaranteed. One notable result in this area is the Ho-
rus/Ensemble work at Cornell [14, 15, 16]. In it, data confi-
dentiality is achieved by using a shared group key obtained

by means of group key distribution protocols, while authen-
tication is provided by using the popular PGP [17] method.
Moreover, the system allows application-dependent trust
models in the form of access control lists which are treated
as replicated data within a group.

A collaborative application can have its own spe-
cific security requirements and its own security pol-
icy. The Antigone policy [18] framework allows flexible
application-level group security policies in a more relaxed
model than the one usually provided by GCSs. Policy fla-
vors addressed by Antigone include: re-keying, member-
ship awareness, process failure and access control.

Unlike the aforementioned systems, our approach fo-
cuses on the use of contributory key agreement as a building
block for other security services in Spread [3]. We inves-
tigated the inter-relation between key agreement and group
communication system and designed and implemented the
first robust contributory group key agreement protocol.
Moreover, we designed several scalable integrated architec-
tures for client-server group communication systems that
support strong group communication semantics: Virtual
Synchrony and Extended Virtual Synchrony.

3 Spread

The work presented in this paper evolved from integrat-
ing security services into the Spread GCS. In this section
we provide an overview of Spread’s architecture and the
group communication models it supports.

3.1 Spread Architecture

Spread [3] is a general-purpose GCS for wide- and local-
area networks. It provides reliable and ordered delivery of
messages (FIFO, causal, total ordering) as well as a mem-
bership service.

The system consists of a server and a client library linked
with the application. The client and server memberships
follow the model of light-weight and heavy-weight groups
[19]. This architecture amortizes the cost of expensive dis-
tributed protocols, since these protocols are executed by a
relatively small number of servers, as opposed to having all
clients participating. A simple join or a leave of a client
process translates into a single message, instead of a full-
fledged membership change. Only network partitions 1 in-
cur the heavy cost of a full-fledged membership change.

Spread offers a many-to-many communication paradigm
where any group member can be both a sender and a re-
ceiver. Although designed to support small- to medium-
size groups, it can accommodate a large number of collab-
oration sessions, each spanning the Internet. Spread scales

1By a network partition we mean connectivity changes due to network-
ing hardware, routing, or a machine crash.

2



well with the number of groups used by the application
without imposing any overhead on network routers.

The Spread toolkit is publicly available and is being used
by several organizations in both research and production
settings. It supports cross-platform applications and has
been ported to several Unix platforms as well as to Win-
dows and Java environments.

3.2 Group Communication Services

Spread supports two well-known group communication
semantics, Virtual Synchrony (VS) [5, 20] and Extended
Virtual Synchrony (EVS) [6, 21] (see [22] for a compre-
hensive survey of group communication models). The VS
service is provided by a client library implemented on top
of the EVS semantics.

Both group semantics guarantee that group members see
the same set of messages between two sequential group
membership events and that the order of messages re-
quested by the application (such as FIFO, Causal, or To-
tal) is preserved. They also guarantee that all messages are
delivered in the same view. However, there is a major dif-
ference in this last aspect: while VS guarantees that mes-
sages are delivered to all recipients in the same view as the
sending application thought it was a member of at the time
it sent the message (also known as Sending View Deliv-
ery), EVS guarantees that messages will be delivered in the
same group view to connected members (also known as the
Same View Delivery property). Note that, in the EVS case,
the delivery view can be different from the sending view.

The VS service is easier to program and understand,
while the EVS service is more general and has better
performance. The VS service is slower, since it re-
quires application-level acknowledgments for every group
change. Moreover, it requires closed groups semantics, al-
lowing only current members of the group to send messages
to the group. EVS, in contrast, allows open groups where
non-member clients can send to a group.

When securing a GCS providing VS, it is both natural
and efficient to use a shared group key (securely refreshed
upon each membership change) for data confidentiality. A
message is guaranteed to be encrypted, delivered and de-
crypted in the same group view and, hence, with the same
current key. This property does not hold in EVS since a
message can be sent in one view and delivered in another,
and also because of the open groups support. Therefore, a
natural solution for EVS is to use two kinds of shared keys:
one shared between the client and the server it connects to,
and another – shared among the group of servers. The for-
mer is used to protect client-server communication, while
the latter – to protect server-server communication.

4 Secure Group Communication
Architecture

We now define our security goals, provide a brief
overview of the Spread layered architecture and then de-
scribe the new integrated architecture and its variants.

4.1 Security Goals

One of our main goals is to protect client data from being
eavesdropped by both passive and active adversaries that
are not current members of the group. Insider attacks are
not relevant for this work since the confidentiality of the
data relies on the secrecy of the group key, and any ma-
licious insider can always reveal the group key or its own
private key, thus compromising the communication.

The way the group key is computed is essential for the
security of the system. A group key agreement protocol
should provide: Key Independence, Perfect Forward Se-
crecy and Backward/Forward Secrecy. Informally, key in-
dependence means that a passive adversary who knows any
proper subset of group keys cannot discover any future or
previous group key. Forward Secrecy guarantees that a pas-
sive adversary who knows a subset of old group keys cannot
discover subsequent group keys, while Backward Secrecy
guarantees that a passive adversary who knows a subset of
group keys cannot discover preceding group keys. Perfect
Forward Secrecy means that a compromise of a member’s
long-term key cannot lead to the compromise of any short-
term group keys. For a more precise definition of the above
terminology, the reader is referred to [23], [24].

The key agreement protocol we use in our design is
called Tree-Based Group Diffie-Hellman [25] (TGDH). It
provides key independence and perfect forward secrecy;
it was also proven secure with respect to passive outside
(eavesdropping) adversaries [26]. In addition, active out-
sider attacks – consisting of injecting, deleting, delaying
and modifying protocol messages – that do not aim to cause
denial of service are prevented by the combined use of
timestamps, unique protocol message identifiers, and se-
quence numbers which identify the particular protocol ex-
ecution. Impersonation of group members is prevented by
the use of public key signatures: every protocol message is
signed by its sender and verified by all receivers. Attacks
aiming to cause denial-of-service are not considered.

4.2 Layered Architecture

In previous work we proposed a layered architecture for
Spread, focusing on key agreement robustness and correct-
ness. The result is a client library, Secure Spread [4, 27],
that provides data confidentiality and integrity. Secure
Spread is built on top of the VS Spread client library; it uses

3



Application

Secure Spread Library (VS)

Client
 Agreement 

Engine

Key Agreement Selector

Encryption Selector

Spread (Flush) Library (VS)

Spread Server (EVS)

Network

Encryption Collection

Key Agreement Collection

Algorithm 1

Algorithm n

Algorithm 1

Algorithm m

...

...

Figure 1. A layered architecture for Spread

Spread as its communication infrastructure and Cliques
[28] group key management library primitives for key man-
agement implementation. To make the present paper self-
contained and facilitate the discussion of different architec-
tures in Section 6, we briefly summarize Secure Spread.
For further details, we refer to [4, 27].

Figure 1 presents the layered architecture for Spread.
Recall that, the Sending View Delivery property of VS en-
ables the use of a shared view-specific key to encrypt client
data, since the receiver is guaranteed to have the same view
as the sender and, therefore, the same key. The core of Se-
cure Spread is the Client Agreement Engine that is notified
about group membership changes by the GCS. Whenever
the group membership changes, the Client Agreement En-
gine initiates an instance of the group key agreement pro-
tocol, ensuring its correct execution. When this protocol
terminates, a secure group membership change is delivered
to the application and a new group key is ready for use. Ap-
plications are not allowed to send any messages while the
key agreement protocol is executed.

The computation of a group key is group-specific. A
client can be a member of multiple groups, each group man-
aging keys with its own key agreement protocol. A Key
Agreement Selector and an Encryption Selector modules
are used to identify a group-specific key management and
encryption algorithms. Secure Spread currently supports
five key management protocols. One of them implements
centralized key distribution and is referred to as the Central-
ized Group Key Distribution (CKD). The other four are key
agreement protocols: Burmester-Desmedt (BD) [29], Steer
et al. (STR) [25], Group Diffie-Hellman (GDH) [24] and
Tree-Based Group Diffie-Hellman (TGDH) [27]. Each of
the latter four protocols are based on various group exten-
sions of the well-known (2-party) Diffie-Hellman key ex-
change [30]. For encryption, only one algorithm (Blowfish
[31]) is currently supported.

4.3 Integrated Architecture

Early GCSs were implemented as libraries, which meant
that all distributed protocols were performed between all
clients. A substantial increase in performance and scalabil-
ity was obtained by applying a client-server architecture to
this model: a smaller number of servers run the expensive
distributed protocols and, in turn, serve numerous clients.

Group key agreement protocols are, by nature, dis-
tributed and represent the most expensive security building
block. Therefore, to improve the performance of the system
in settings with multiple groups (or many clients) we amor-
tize the cost of key management by placing the key agree-
ment at the servers and having the servers generating client
group keys . This follows the integrated architecture model
where security services are implemented at the server.

Since the server population is smaller and more stable
than that of clients, server-based key agreement is both
faster and less frequent. Specifically, the servers’ shared
secret key is refreshed only when network connectivity
changes, and not when some client group changes. This re-
sults in fewer costly key refreshes in contrast to client-based
key agreement because network connectivity changes are
far less frequent than normal client group changes. Note
that the shared server key can be vulnerable if it changes
very infrequently and a security policy should impose ad-
ditional refreshing operations, triggered, for example, by
maximum elapsed time between successive key changes
(time-out) or maximum volume of data exchanged (data-
out).

Generating client group keys is much less costly in the
integrated architecture, since, if no change occurs in the
servers configuration, the cost of generating a new key for a
group amounts to one keyed MAC (HMAC [1]) operation.
When network connectivity does change (and so does the
membership of the servers’ group), the group key shared by

4



Application

Secure Spread 
Server (EVS)

Servers
 Agreement

Engine

Servers Encryption Selector

Key Agreement Selector

Spread Library (EVS)

Client− Server Encryption

Client− Server Encryption

Encryption Collection

Key Agreement Collection

Algorithm 1

Algorithm n

Algorithm 1

Algorithm m

Network

...

...

Figure 2. A Three-Step Client-Server architecture for Spread

the servers is refreshed using a full-blown group key agree-
ment protocol. For this, we use the TGDH [25] protocol
because of its superior performance.

The use of encryption for bulk data confidentiality re-
sults in decreased system throughput due to the extra con-
sumption of CPU resources. Regardless of the location and
particulars of the key management, bulk data encryption
can be done by either clients or servers. In the following,
we describe three integrated architecture variants that trade
off encryption cost for complexity and group communica-
tion model support. We discuss their different performance
and security guarantees and then compare them to the lay-
ered approach.

4.3.1 Three-Step Client-Server

We start with an architecture that provides EVS semantics
at the expense of decreased (due to encryption) throughput.
We refer to it as Three-Step Client-Server.

This architecture is based on the client-server model
of the group communication system. We distinguish be-
tween two communication channels: client-server and
intra-servers. A remote client connects to a server us-
ing a two-party secure communication protocol, such as
SSL/TLS [32]. If a client connects to a server running on
the same machine, the architecture uses IPC. In this case, no
data protection is needed and client-server communication
is not encrypted. The intra-server communication channel
is protected by a shared group key multicast encryption pro-
tocol that we developed.

Figure 2 presents such an architecture. The Servers
Agreement Engine detects changes in the server group con-
nectivity and for each connectivity change performs a key
management protocol. In addition, time-based or data-
based key refresh can be enforced. As mentioned above,
we use the TGDH [25] protocol for key management.

One of the challenges with integrating a key agreement
protocol into a GCS is the interactions between the former
and the membership protocol. Until the membership proto-
col completes, the key agreement protocol cannot run, since
there is no fixed group of servers among which to perform
key agreement. While the membership protocol is running,
the set of known servers may change again (referred to as
cascaded membership), and basic communication services
between them may become unavailable.

To cope with this issue, the group key is provided only
when the server group membership is stable and while the
GCS membership protocol is not executing. This allows
the key agreement protocol to run with its normal assump-
tions once the membership protocol completes, yet prior to
notifying the client applications about the change. Thus,
applications do not experience any change in semantics or
the APIs (such as a new key message) but do experience
an additional delay during each server membership change.
(This is in order for the key agreement protocol to execute
following the completion of the membership protocol.)

The membership protocol can be secured by using pub-
lic key cryptography to encrypt and sign all membership
messages, since the shared key is not available during its
execution. The small number of messages sent during the
membership algorithm and their small size, ensures that the
overhead of public-private encryption can be tolerated.

The Three-Step Client-Server architecture allows indi-
vidual policies for rekeying the server group key and the
per-client SSL keys, as each is handled separately.

Once the master server group key is generated, the
servers communication is protected by encryption using
a key derived from it. The default protocol to encrypt
communication between servers is Blowfish in CBC mode;
however, the system supports any encryption algorithm in
the OpenSSL [33] library, including AES [34].

The total end-to-end cost of sending an encrypted data

5



Application

Secure Spread Server (EVS)

Servers Agreement
Engine

Encryption Selector

Key Agreement 
Selector

Spread (Flush) Library (VS)

Group Keys Engine

Secure Spread Library (VS)

Encryption Collection

Key Agreement Collection

Algorithm 1

Algorithm n

Algorithm 1

Algorithm m

Network

...

...

Figure 3. An Integrated VS architecture for Spread

message from one client to another (both are connected to
the Spread server remotely) includes six encryption and de-
cryption operations: client encrypts the message and sends
it over SSL to the server; server decrypts it and then re-
encrypts using the server group key; servers that receive
this message decrypt it and then re-encrypt it again using
SSL for the receiving client; finally, each receiving client
decrypts the message.

Note that the receiving servers need to encrypt the mes-
sage separately for each remote client who needs to receive
it. This is potentially a large number since each server can
support about 1, 000 client connections. Thus, if more than
one receiver is connected remotely on the same server, the
load on the server will increase linearly with each remote
receiver, since each remote receiver receives the same mes-
sage encrypted separately on its own SSL connection. Lo-
cal receivers do not require client-server encryption.

If two clients (sender and receiver) are executing on
the same machine as the server that they connect to, then
the cost of encryption under the Three-Step Client Server
model reduces to one encryption by the sending server and
one decryption by the receiving server.

4.3.2 Integrated VS

The second variant, referred to as Integrated VS, supports
the VS group communication model and is similar to the
layered architecture in that encryption and decryption are
performed by clients only. The client groups are closed, i.e.,
a client needs to be a member of a group in order to send
messages to that group. This design requires client groups
keys. However, unlike the layered architecture where the
key agreement was performed individually by each group,
in this case, group keys are generated by servers without

involving costly key agreement protocols.
Figure 3 depicts the Integrated VS architecture. The

Servers Agreement Engine (SAE) initiates a key agree-
ment protocol between the servers whenever it detects a
change in server group connectivity. The Group Keys En-
gine (GKE) generates, for each group, a shared key when-
ever group membership changes. In case of a network con-
nectivity change, the SAE is invoked first, followed by the
GKE. (The latter refreshes the key for each group that suf-
fered changes in membership due to a change in server con-
nectivity.) The new group key is attached to the member-
ship notification and delivered to the group. Client group
keys are generated by the servers based on three values:

1. server group shared key Ks,
2. group name, and
3. unique number that identifies the group view (list of

members at a certain time)

The group key for group g in view i uniquely identified
by view id(g, i) is Kg,i = HMAC(Ks, g‖view id(g, i)).

The shared server group key is computed in a manner
identical with the one used by the Three-Step Client-Server
architecture and can be refreshed as needed. The client
group key is changed whenever a group event (join, leave,
etc.) occurs. The new key is delivered within the secure
membership message informing the clients about the group
change. All client group members receive the same key for
the same membership as a result of the VS semantics. If a
key change is required because of the security policy (not
caused by an underlying group membership change), the
key refresh notification is delivered as an “artificial” group
membership change. This is needed to preserve the seman-
tic guarantees of VS that messages encrypted by a client
with one key will be received by everyone while they also
have that same key.

6



Application

Secure Spread Server (EVS)

Servers Agreement
Engine

Encryption Selector

Key Agreement 
Selector

Group Keys Engine

Secure Spread Library (EVS)

EVS Fix Messages Encryption Collection

Key Agreement Collection

Algorithm 1

Algorithm n

Algorithm 1

Algorithm m

Network

...

...

Figure 4. An Optimized EVS architecture for Spread

The encryption and decryption costs for Integrated VS
consist of one encryption by the sender and multiple de-
cryptions, one for each receiver. The worse case is when
all receivers are situated on the same machine, whereas, the
best case is when all receivers are running on distinct ma-
chines. In the latter case, decryption takes place in parallel.
Once again, Blowfish is the preferred encryption algorithm.

4.3.3 Optimized EVS

Out of the architecture variants presented thus far, only
Three-Step Client-Server supports the EVS model and open
groups. As discussed in Section 3.2, EVS is faster, thus, it is
desirable to have a secure GCS supporting this model. The
Three-Step Client-Server serves this purpose, but incurs a
heavy encryption overhead when clients connect remotely.

One method to alleviate this large number of encryption
operations, is to have clients encrypt with a shared per-view
group key. However, EVS does not guarantee that all mes-
sages are delivered to receivers in the same view in which
they were sent. Therefore, there might be messages that
group members will not be able to decrypt as they do not
have the key used to encrypt that message in the first place.
Our next architecture variant addresses this issue.

In order to support EVS semantics and client message
encryption, we developed an architecture that relies on the
servers not only to generate client group keys, but also
to “adjust” messages that are not encrypted with the cur-
rent group key. Figure 4 presents this architecture, re-
ferred to as Optimized EVS. The Servers Agreement Engine
and Group Keys Engine perform key management of the
servers’ shared secret and client group keys, respectively.
The method of generating client group keys is the same as
the Integrated VS variant. The main change is that we add a
new EVS-Fix-Messages module, that detects when a mes-
sage for a certain group is encrypted with a key which is
no longer valid. Each such message is decrypted and then

re-encrypted with the current group key before delivery to
the clients. The clients, in turn, decrypt all group messages
normally. TGDH is used as the server group key agreement
protocol and Blowfish is used for data encryption.

The first problem is addressed by having the sender in-
clude in each message a unique Key id of the group key
that was used to encrypt it. This Key id is independently
and randomly computed each time a new key is generated
(it is also distributed along with each new client group key).
However, since it does not provide integrity, but merely
identifies the client group key, the Key id can be relatively
short, e. g., 32 bits. It is transported in the un-encrypted
portion of the message header.

To detect messages encrypted with an “old” key, the
server stores each client group along with its Key id. The
server also tags one key as the “current” key for each client
group. The current key is the key that matches the last
membership (or key refresh) delivered to the group mem-
bers. Then, before delivering a message to a client, it
checks if the Key id on the message matches that of the
current key. If so, the message is immediately delivered.
Otherwise, the message is decrypted with the appropriate
stored “old” key and re-encrypted under the current key.
Since the message stream delivered to each client is a reli-
able FIFO channel, the client eventually receives the mes-
sage in the same view that the server expects it to.

Accumulating old keys and Key ids ad infinitum is not
a viable solution. Thus, old keys have to be periodically
flushed from by each server. Two different expiration met-
rics can be used either alone or in concert: time-outs and
key-outs. A time-out occurs when no message encrypted
under a given key has been received for a certain length of
time. A key-out takes place when some pre-set maximum
number of keys-per-group is exceeded. Many combinations
and variations on the theme are clearly possible.

The choice of a key expiration methodology can affect
the risk of a message being “undecipherable” even when

7



0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

T
im

e 
(m

se
c)

Group size (#members)

Join

Layered Architecture - TGDH
Integrated Architecture

(a) Join

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

T
im

e 
(m

se
c)

Group size (#members)

Leave

Layered Architecture - TGDH
Integrated Architecture

(b) Leave

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

T
im

e 
(m

se
c)

Group size (#members)

Merge

Layered Architecture - TGDH
Integrated Architecture - TGDH

(c) Merge

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

T
im

e 
(m

se
c)

Group size (#members)

Partition

Layered Architecture - TGDH
Integrated Architecture - TGDH

(d) Partition

Figure 5. The cost of key agreement - layered architecture vs. integrated architecture

the server, in theory, could have kept the required key.

5 Experimental Results

In this section we present experimental results for
the group key management and data encryption building
blocks. The experiments cover all architecture variants de-
scribed in Section 4 measured in a local-area network envi-
ronment and show the superior scalability of an integrated,
over that of a layered, architecture.

5.1 Group Key Management

We now compare the cost of establishing a shared group
key in a layered architecture and in an integrated architec-
ture. For the layered architecture we chose the most effi-
cient key agreement protocol that we have experience with,
TGDH [35]. For the integrated architecture we also chose
TGDH as a key agreement protocol between the servers.

We used an experimental testbed consisting of a cluster
of thirteen 667 MHz Pentium III dual-processor PCs run-
ning Linux. Each machine runs a Spread server. Clients are
uniformly distributed on the thirteen machines. Therefore,
more than one process can be running on a single machine
(which is frequent in many collaborative applications).

For the most common group changes, join and leave, the
cost of establishing a new group key is reduced to almost
the cost of the group communication membership protocol,
since the servers can compute a new group key without per-
forming any other key agreement protocol, just one HMAC
operation is needed per group change. The results presented
in Figure 5(a) and Figure 5(b) for the integrated architecture
are for a VS group membership protocol. This is because
the cost of the VS group membership protocol is in some
sense the worst case: VS uses closed groups and it requires
acknowledgments from each group member before chang-
ing the group membership. In the EVS case, the numbers
for the integrated architecture will be much smaller.

In Figure 5(c) and Figure 5(d) we present the cost of

8



50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

T
im

e 
(m

se
c)

Number of groups (groups size is 13 members)

Merge

Layered Architecture - TGDH
Integrated Architecture - TGDH

(a) Merge

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

T
im

e 
(m

se
c)

Number of groups (groups size is 13 members)

Partition

Layered Architecture - TGDH
Integrated Architecture - TGDH

(b) Partition

Figure 6. Scalability with number of groups

establishing a secure membership for merge and partition.
Remember that such a group event is triggered by a net-
work connectivity change which determines a modification
in the servers configuration change, or by a server crash. In
this case, a new key needs to be computed by the servers,
and only then the group keys are computed. In Figure 5(c)
and Figure 5(d) we present the cost of establishing a secure
group membership for a test scenario where the servers are
partitioned in half and then brought back together.

As it can be seen in Figures 5(c) and 5(d) the cost of the
key management for the integrated architecture is slightly
higher than in the case of join and leave because of the cost
of the key agreement protocol performed between servers.
However, since the number of servers is much smaller than
the number of clients, the impact of the key agreement pro-
tocol is less significant. The cost of the secure membership
decreases from about 220 milliseconds, to about 90 mil-
liseconds where the size of the group after partition is 100
users, in case of a merge and from about 680 milliseconds
to about 60 milliseconds for a partition, where the size of
the group before partition is about 100 members.

The above results are for a scenario when only one group
exists in the system. In practice, this is not the case. When
more than one group exists in the system and a change in
the servers’ configuration that affects more than one group
occurs, the layered architecture performs a key agreement
protocol for each of the existing groups affected by the
change. For the integrated architecture, there is only one
small scale key agreement performed between servers, and
then a number of HMAC operations equal with the number
of groups affected by the change. Figure 6 shows the aver-
age cost of recomputing a shared key for all groups, when
more than one group exists in the system. All the groups
have the same number of clients 13. We chose this num-
ber, because this is also the number of the servers in our

configuration. Even in this favorable setup for the layered
architecture (small size groups), the integrated architecture
scales much better than the layered architecture when the
number of groups in the system increases. Based on the
results we present in Figure 6 we estimate that even with
a very small group size (13 in our case), it will take more
than 4 seconds to refresh the key for 200 groups in a lay-
ered architecture, while it will take about 50 times less to
perform the same operation for an integrated architecture.

5.2 Data Encryption

Another important building block in the architecture of
secure group communication is the encryption module. In
Figure 7 we present the data throughput for three different
setups: the Layered Architecture, the Integrated VS and the
Three-Step Client-Server, in a local area network. We con-
sider a scenario where clients connect to servers running
locally, so in the Three-Step Client-Server setup, encryp-
tion is performed only between servers. As expected, the
results for the Integrated VS are similar with the results for
the Layered Architecture, because in both models encryp-
tion and decryption are performed by the clients.

The results for the Three-Step Client-Server are about
0.66 of the throughput achieved in the other two models.
The major reason for this decrease is due to the fact that
both headers and data are encrypted and the message de-
livery protocol employed by our system can not detect if it
needs to process a message further or not, without first de-
crypting it. In addition, since the maximum message size
exchanged by the servers is about the size of an Ethernet
frame (minus the UDP protocol header), a message of large
size that gets encrypted in a client in only one encryption
operation, translates into a number of encryption operations
in the server. We note that since the encryption operation

9



0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Message size (bytes)

Throughput as a function of message size (Blowfish)

Integrated VS
Layered Architecture

Three-Step Client-Server

Figure 7. Data throughput

takes place at the data link layer, the servers encrypt not
only client data, but also control information, so this model
provides a stronger service than the other two models.

This experiment only had one sender and that server was
the bottleneck. In cases where several servers are sending
messages, this cost will be amortized and the throughput
will considerably increase (by a bit less than a factor of 2).

We did not include results for the Three-Step Client
Server architecture when clients connect remotely, but from
the results in Figure 7 we can extrapolate that the achieved
throughput in this case will be much smaller, and therefore
unacceptable. The Optimized EVS architecture throughput
will be similar to the Integrated VS throughput if no servers
membership occurs, and will degrade when membership
changes occur, since some messages will need to be de-
crypted and re-encrypted under new keys. The Three-Step
Client-Server architecture performance should be worse in
all cases.

Note that the drop in throughput for all of the methods
(as seen in Figure 7) at a message size of around 700 bytes
is actually a positive thing. Up to 700 bytes, Spread is able
to pack multiple messages into one network packet, thus
paying less per packet and increasing throughput consid-
erably. Above 700 bytes, that optimization cannot be em-
ployed because of the Ethernet maximum packet size.

6 Discussion

The layered and each the new proposed integrated archi-
tectures have benefits and limitations. We compare them by
investigating the following aspects: trust, encryption over-
head, key management overhead, impact of the compro-
mise of the shared secret, complexity and supported group
communication model.

Table 1 summarizes the architectures we proposed. The
layered architecture has the advantage that no trust is put
into anything outside of the end user’s control with respect

to protecting the client’s data. The client needs to trust the
servers with respect to the membership service and ordered
and reliable delivery, but these are outside the scope of our
security goals for this work. The compromise of a group
key does not affect the security of the rest of the groups in
the system, since each group is running its own protocol and
computes its shared key independently of the other groups.
In addition, this architecture is less complex and easier to
develop, allowing us to explore the inter-relationship be-
tween key agreement and group communication 2. How-
ever, this model, due to the security- strong, but expensive
key agreement protocols we used, has limited scalability, to
no more than 100 members for the best protocol.

All of the integrated architectures we proposed over-
come the key management scalability problem by using a
secret key shared by the servers, and thus, putting more
trust in the servers. This architecture is also appropriate for
providing other security services such as client authentica-
tion upon connection and access control to perform group-
specific operations. A security policy can be easily config-
ured and enforced by an administrator controlling a server
configuration file.

The Three-Step Client-Server approach does not use
client group keys, but requires a client to share a key with
the server it connects to. Although it uses a less complex
key management mechanism, this approach is expensive in
encryption and decryption operations when clients connect
to servers remotely. If clients connect to servers locally,
this is the best architecture since theoretically it only re-
quires one encryption/decryption of each message and it
can easily protect not only client data, but also the con-
trol information exchanged by the servers, something the
layered architecture can not provide. Note, that depending
on the implementation, even when clients connect locally,
more than one encryption/decryption of each message can

2For example, we used this architecture to design robust contributory
protocols, resilient to any sequence of group changes, possibly cascading.

10



Group Keys Servers Key Encryption Group Comm. Model
Secure Spread Library Client None Client-Clients VS

VS Integrated Architecture Server Yes Client-Clients VS
Three-Step Client-Server None Yes Client-Server, Server-Server VS and EVS

Optimized EVS Server Yes Client-Clients mostly EVS

Table 1. Secure group communication architectures

take place at the sender as discussed in Section 5.2.
Both the VS Integrated solution and the Optimized EVS

solution use client group keys generated by servers. Our ex-
perimental results in Section 5 show that the scalability is
group size is improved substantially with respect to the lay-
ered architecture. However, the security of the groups relies
on the security of the servers’ shared key, which is used in
generating the group keys. If the servers’ key is compro-
mised, the security of all the groups in the system is com-
promised, as opposed to the layered model where the com-
promise of a group key, does not affect the security of the
rest of the groups in the system. The encryption overhead is
smaller that of the Three-Step Client-Server approach. The
VS Integrated approach has the same encryption overhead
as the layered architecture. The Optimized EVS solution
has almost the same encryption cost as the layered archi-
tecture, for the messages not delivered in the membership
they were sent in, four additional encryption/decryption op-
erations per message are performed.

Although protecting the control messages exchanged by
the servers is out of the scope of this paper, we note that the
Three-Step Client-Server solution also provides confiden-
tiality and integrity for the servers’ control messages. The
rest of the approaches are confidentiality client-driven so
they do not. This can be corrected by addressing the con-
trol data flow at the servers’ level: integrity, confidentiality
and, if needed, non-repudiation by signing the messages.

Choosing the most appropriate architecture depends on
the desired scalability and trust guarantees. An integrated
approach scales better, but the security of all groups relies
on one key; a layered architecture scales worse, but the se-
curity of a group is independent of the security of the rest
of the groups and gives more control to the client.

7 Conclusions and Future Work

This paper presented several secure integrated architec-
tures for client-server GCS, discussing their different per-
formance and security guarantees. The experimental re-
sults we present demonstrate the increased scalability of
integrated approaches over layered approaches, without a
significant decrease in throughput performance.

The work presented in this paper focuses on strong se-
mantics (e.g. membership) and security services that have

a significant impact on computational overhead and scala-
bility. Some applications might need in fact weaker service
semantics. We intend to explore the security aspects of sys-
tems providing communication to groups, but with looser
semantics.

8 Acknowledgments

This work was supported by grant F30602-00-2-0526
from the Defense Advanced Research Projects Agency.

We would like to thank to Giuseppe Ateniese and Fabian
Monrose for helpful discussions about modes of provid-
ing confidentiality and integrity. We thank Yongdae Kim,
one of the authors of the TGDH protocol, for discussions
that helped us designing an effective integration of TGDH
with Spread. We also thank John Schultz, the author of
the Flush library, the client library that provides Virtual
Synchrony semantics for Spread, for numerous discussions
about group communication semantics and his help in de-
signing Secure Spread.

References

[1] The Keyed-Hash Message Authentication Code
(HMAC). No. FIPS 198, National Institute
for Standards and Technology (NIST), 2002.
http://csrc.nist.gov/publications/fips/index.html.

[2] Y. Amir, C. Nita-Rotaru, and J. Stanton, “Framework for au-
thentication and access control of client-server group com-
munication systems,” in 3rd International Workshop on Net-
worked Group Communication, (London, UK), November
2001.

[3] Y. Amir and J. Stanton, “The Spread wide area group
communication system,” Tech. Rep. 98-4, Johns Hopkins
University, Center of Networking and Distributed Systems,
1998.

[4] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,
and G. Tsudik, “Exploring robustness in group key agree-
ment,” in Proceedings of the 21th IEEE International Con-
ference on Distributed Computing Systems,, pp. 399–408,
IEEE Computer Society Press, April 2001.

[5] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and
using a partitionable group communication service,” in Pro-
ceedings of the 16th annual ACM Symposium on Principles

11



of Distributed Computing, (Santa Barbara, CA), pp. 53–62,
August 1997.

[6] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal, “Extended virtual synchrony,” in Proceedings of the
IEEE 14th International Conference on Distributed Com-
puting Systems, pp. 56–65, IEEE Computer Society Press,
Los Alamitos, CA, June 1994.

[7] K. P. Birman and R. V. Renesse, Reliable Distributed Com-
puting with the Isis Toolkit. IEEE Computer Society Press,
March 1994.

[8] R. V. Renesse, K.Birman, and S. Maffeis, “Horus: A flex-
ible group communication system,” Communications of the
ACM, vol. 39, pp. 76–83, April 1996.

[9] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis:
A communication sub-system for high availability,” Digest
of Papers, The 22nd International Symposium on Fault-
Tolerant Computing Systems, pp. 76–84, 1992.

[10] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agarwal,
and P. Ciarfella, “The Totem single-ring ordering and mem-
bership protocol,” ACM Transactions on Computer Systems,
vol. 13, pp. 311–342, November 1995.

[11] B. Whetten, T. Montgomery, and S. Kaplan, “A high per-
formance totally ordered multicast protocol,” in Theory and
Practice in Distributed Systems, International Workshop,
Lecture Notes in Computer Science, p. 938, September
1994.

[12] M. K. Reiter, “Secure agreement protocols: reliable and
atomic group multicast in Rampart,” in Proceedings of the
2nd ACM Conference on Computer and Communications
Security, pp. 68–80, ACM, November 1994.

[13] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The
SecureRing protocols for securing group communication,”
in Proceedings of the IEEE 31st Hawaii International Con-
ference on System Sciences, vol. 3, (Kona, Hawaii), pp. 317–
326, January 1998.

[14] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev,
“Ensemble security,” Tech. Rep. TR98-1703, Cornell Uni-
versity, Department of Computer Science, September 1998.

[15] O. Rodeh, K. Birman, and D. Dolev, “Using AVL trees for
fault tolerant group key management,” International Journal
on Information Security, vol. 1, February 2002.

[16] O. Rodeh, K. Birman, and D. Dolev, “The architecture and
performance of security protocols in the Ensemble Group
Communication System,” ACM Transactions on Informa-
tion and System Security, vol. 4, pp. 289–319, August 2001.

[17] P. Zimmermann, The Official PGP User’s Guide. MIT Press,
1995.

[18] P. McDaniel, A. Prakash, and P. Honeyman, “Antigone:
A flexible framework for secure group communication,”
in Proceedings of the 8th USENIX Security Symposium,
pp. 99–114, August 1999.

[19] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A
reliable multicast framework for light-weight sessions and
application level framing,” IEEE/ACM Transactions on Net-
working, vol. 5, pp. 784–803, December 1997.

[20] J. Schultz, “Partitionable virtual synchrony using extended
virtual synchrony,” Master’s thesis, Department of Com-
puter Science, Johns Hopkins University, January 2001.

[21] Y. Amir, Replication using Group Communication over a
Partitioned Network. PhD thesis, Institute of Computer Sci-
ence, The Hebrew University of Jerusalem, Jerusalem, Is-
rael, 1995.

[22] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group com-
munication specifications: A comprehensive study,” ACM
Computing Surveys, pp. 427–469, December 2001.

[23] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[24] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in
dynamic peer groups,” IEEE Transactions on Parallel and
Distributed Systems, August 2000.

[25] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient
group key agreement,” in Proceedings of IFIP SEC 2001,
June 2001.

[26] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key
agreement,” 2002. In Submission.

[27] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On the
performance of group key agreement protocols,” in Proceed-
ings of the 22nd IEEE International Conference on Dis-
tributed Computing Systems,, (Viena, Austria), June 2002.

[28] Cliques Project team, “Cliques.”
http://sconce.ics.uci.edu/cliques/.

[29] M. Burmester and Y. Desmedt, “A secure and efficient con-
ference key distribution system,” Advances in Cryptology –
EUROCRYPT’94, May 1994.

[30] W. Diffie and M. E. Hellman, “New directions in cryptogra-
phy,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 644–654,
November 1976.

[31] B. Schneier, “The Blowfish encryption algorithm,” Dr.
Dobb’s Journal, pp. 38,40, Apr 1994.

[32] The TLS Protocol Version 1.0. No. RFC2246, T. Dierks and
C. Allen, 1999. http://www.faqs.org/rfcs/rfc2246.html.

[33] OpenSSL Project team, “Openssl,” May 1999.
http://www.openssl.org/.

[34] Advanced Encryption Standard (AES). No. FIPS 197, Na-
tional Institute for Standards and Technology (NIST), 2001.
http://csrc.nist.gov/encryption/aes/.

[35] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant
key agreement for dynamic collaborative groups,” in Pro-
ceedings of 7th ACM Conference on Computer and Com-
munications Security, pp. 235–244, ACM Press, November
2000.

12


