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Abstract— Many multicast overlay networks maintain
application-specific performance goals such as bandwidth,
latency, jitter and loss rate by dynamically changing the overlay
structure using measurement-based adaptation mechanisms.
This results in an unstructured overlay where no neighbor
selection constraints are imposed. Although such networks
provide resilience to benign failures, they are susceptible to
attacks conducted by adversaries that compromise overlay nodes.
Previous defense solutions proposed to address attacks against
overlay networks rely on strong organizational constraints
and are not effective for unstructured overlays. In this work,
we identify, demonstrate and mitigate insider attacks against
measurement-based adaptation mechanisms in unstructured
multicast overlay networks. The attacks target the overlay
network construction, maintenance, and availability and allow
malicious nodes to control significant traffic in the network,
facilitating selective forwarding, traffic analysis, and overlay
partitioning. We propose techniques to decrease the numberof
incorrect or unnecessary adaptations by using outlier detection.
We demonstrate the attacks and mitigation techniques in the
context of a mature, operationally deployed overlay multicast
system, ESM, through real-life deployments and emulations
conducted on the PlanetLab and DETER testbeds, respectively.

Keywords: Overlay Networks, Security, Insider Attacks,
Adaptivity

I. I NTRODUCTION

Multicast overlay networks were proposed as a viable appli-
cation level multicast architecture to overcome the scarcity of
native IP multicast deployments. Examples of such networks
include ESM [1], Nice [2], ALMI [3], and Overcast [4].
Moving buffering and relaying functionality from core routers
to end-systems provides support for easy deployment and in-
creased scalability. In addition, using dissemination structures
constructed based on partial overlay topology information
allows for reduced overhead.

Many multicast overlay networks optimize application-
specific performance goals such as bandwidth, latency, jitter,
and loss rate by dynamically adapting the overlay topology.
This improves suboptimal overlay meshes resulting from
random initial neighbor selection, aggressive partition repair,
group membership changes, and transient conditions in the
underlying physical network. Each node maintains partial
overlay topology in the form of a set of neighbor nodes

and an upstream node. A node changes its upstream node if
the performance becomes inadequate by monitoring its per-
formance from the multicast source and periodically probing
its neighbor nodes about their performance. We refer to this
process asadaptationand to the mechanisms used to achieve
it as adaptation mechanisms. There are no constraints in the
selection of the neighbor set and no imposed constraints in the
resulting overlay. Such networks are referred to asunstruc-
tured overlay networksto differentiate them fromstructured
overlay networks[5], where the overlay topology offers pre-
defined bounds and organizational invariants by constraining
the set of nodes eligible to become neighbors of a given
node. Examples of multicast systems using structured overlay
networks include Scribe [6] and SplitStream [7].

While pushing functionality to end-systems allows overlay
networks to achieve better scalability, it also makes them
vulnerable as trust is pushed to the fringes of the Internet
where end-nodes are more likely to be compromised than
core routers [8]. Overlay networks are more susceptible to
insider attacks conducted by attackers that infiltrate the overlay
or compromise some of its nodes. One attack that does not
require significant work from the attacker is to exploit the
adaptation mechanisms by influencing the accurate interpreta-
tion of performance observations, and the correctness of the
responses received from probed nodes. As a result, an at-
tacker can influence the overlay construction and maintenance,
controlling a significant part of the traffic. This facilitates
further attacks such as selective data forwarding, cheating,
traffic analysis, and overlay partitioning. Some attacks, such as
selective forwarding, may ultimately be noticed by the victim
so they can be effectively addressed by deploying a posteriori
detection mechanism. Other attacks, such as traffic analysis, do
not have immediately observable results. It is thus critical to
address the primary attacks that allow the adversary to control
the overlay structure maintenance.

Previous work addressing malicious attacks on overlay net-
works focused on structured overlays [9], [10], [11], [12],[13],
[14] used for file sharing applications. In this case, the attacker
controls the file discovery by manipulating the control and data
messages routed within the overlay, poisoning the routing ta-
ble, or partitioning the network. The proposed mitigation tech-



niques leverage the strong organizational constraints imposed
on neighbor selection and the invariant relationships between
neighbors. While solutions for attacks in structured overlay
networks offer valuable insights into the problem space, they
are not appropriate for unstructured overlay multicast networks
where no structural constraints exist between neighbors.

In this paper, we focus on identifying, demonstrating, and
mitigating insider attacks in unstructured multicast overlay
networks. The attacks exploit adaptation mechanisms that
these networks use in order to maintain application-specific
performance. Current adaptation mechanisms assume that the
information reported by probed nodes is always correct and
fail to take into account the effects of malicious attackerson
their surrounding environment. Unlike previous work demon-
strating attacks exploiting adaptivity [15], [16], our work
considers the effects of insider adversaries in the contextof
overlay networks. We summarize our key contributions:
• We provide a characterization of the types of mechanisms
currently used to achieve adaptivity in overlay networks and
identify attacks against these mechanisms. We refer to the
attacks asattraction, repulsion, anddisruption.
• We provide an analysis of the solution space for mitigating
insider attacks that exploit measurement-based adaptation:
preventing incorrect or unnecessary adaptations, increasing
stability by incorporating metrics that reflect stability into the
decision process, detecting observable malicious behavior such
as degradation of service, and isolating the malicious nodes.
• We propose techniques to reduce incorrect and unnecessary
adaptations by using spatial and temporal correlations to
perform context-sensitive outlier analysis. A key component of
our solution is based on the observation that several estimated
metrics are dependent variables and the overlay and multicast
logical networks share overlapping physical links.
• We demonstrate the effectiveness of the identified attacks
and the benefits of our defense mechanisms in the context
of a well-known and operationally deployed multicast system,
ESM [1], through experiments and emulations conducted on
the PlanetLab [17] and DETER [18] testbeds, respectively.

Roadmap:The rest of the paper is organized as follows.
We specify our system and attack models in Section II. We
discuss adaptation mechanisms employed by overlay networks
and identify attacks against them in Section III. We propose
defense mechanisms in Section IV. We present experimental
results demonstrating the attacks and the defense techniques
in Section V. We overview related work in Section VI and
conclude our work in Section VII.

II. SYSTEM AND ATTACKER MODEL

A. System Model

We focus on overlay networks providing support for single-
source broadcasting applications that are high-bandwidth(hun-
dreds of kilobits per second) and real-time, but not interactive.
The system consists of a set of nodes and a data source node
communicating via unicast links. All nodes but the source
have similar functionality. The nodes are not only receivers

of data, but also contribute to the routing process. The source
is assumed to be continually available.

The overlay construction is self-organized and distributed.
Each node maintains a neighbor set, a routing table and the
upstream node forwarding the data, referred to as the node’s
parent. The neighbor set represents only partial topology
information and consists of nodes that are currently reachable
in the overlay. The nodes in the neighbor set are referred to as
peers. No node has complete knowledge of the dissemination
topology. The neighbor set is bootstrapped at join time by con-
tacting the source and is continually updated via a membership
protocol. There are no constraints placed on the members of
a node’s neighbor set. The routing table represents a set of
nodes that the node is responsible for routing data to, also
referred to aschildren. The size of this set is limited by a
system characteristic calledsaturation degree, representing the
number of concurrent data streams the node is able to support
before saturating the underlying physical network link.

Each node maintains a set of performance variables for each
member of its neighbor set. These variables are dictated by
application-specific goals and are continuously measured by
using passive observation and active probes. A node uses the
collected performance metrics to select a new parent from its
neighbor set if the performance becomes inadequate.

B. Attacker Model

We consider a constrained-collusion Byzantine adversary
model similar to that proposed in [12], with a system size ofN
and a bounded percentage of malicious nodesf (0 ≤ f < 1)
behaving arbitrarily. The set of malicious nodes is partitioned
into disjoint coalitions with intra-coalition cooperation possi-
ble. We assume a malicious adversary has access to all data at
a node as any legitimate user would (insider access), including
cryptographic keys stored at a node. This access can be the
result of the adversary bypassing the authentication mecha-
nisms or compromising a node through other means. Nodes
cannot be completely trusted although they are authenticated.
We assume that data authentication and integrity mechanisms
are deployed and we focus only on attacks directed at the
adaptation mechanisms. We assume the source is trusted and
cannot be compromised.

III. A TTACKS EXPLOITING MEASUREMENT-BASED

ADAPTATION IN OVERLAY NETWORKS

Any adaptive network protocol based on measurements
involves periodically observing and estimating the network
conditions, followed by making an adaptation decision. For
multicast overlays, the variables that are observed and esti-
mated include latency, jitter, bandwidth, and loss rate. The
adaptation decision consists of a node selecting a new parent
by weighing the associated costs versus benefits that could
occur as the result of the adaptation quantified through a utility
function [19]. For unstructured overlays, there are no structural
constraints placed on this selection.

Previous work studied the quality of the data observation
and estimation, as well as the ability of the metrics to



accurately reflect the state of the network. Examples of factors
that influence data quality include data freshness, variability
and the presence of noise. Mechanisms proposed to address
these issues are data sampling [20], data smoothing [21],
metric construction [22], as well as data summarization and
aggregation [23]. Previous work also studied instabilities [24],
[25], [26], such as the oscillatory behavior commonly referred
to as flapping, occurring when nodes rapidly switch between
seemingly equal alternatives. New techniques such as utility
discretization [26], [27], randomization [26], [28], damping
[25], and hysteresis [28], [20] were deployed to mitigate these
phenomena and provide a tradeoff between responsiveness to
change and instability.

None of the mechanisms described above take into account
adversarial environments, since they only address the effects
of benign problems. However, compromised overlay nodes
can take advantage of the adaptation process to gain control
over overlay traffic by manipulating the path selection or
the overlay topology. We classify these attacks asattraction
attacks, repulsion attacks, anddisruption attacks. Any of these
attacks can be conducted by an adversary by lying about its
observed performance metrics or by artificially influencingthe
performance metrics observed by other nodes.

Attraction attacksare a form of “bait-and-switch” attacks,
where a malicious node manipulates the observed data in
order to present the network conditions as better than they
are. The attack can also target one particular node, in which
case the attacker persuades the victim to attach to a malicious
parent in the dissemination structure. The final goal of the
attack can be manipulating data, performing traffic analysis,
performing man-in-the-middle attacks, causing disruption for
specific nodes by isolating them, or selectively dropping
packets for a particular destination. A compromised node can
perform the attack by falsifying the answers to probe requests
to create the perception of a route with higher utility from
the perspective of the victim node. The victim will make an
incorrect change since the perceived benefit does not reflect
reality. For example, if the adaptation decision is based onthe
bandwidth from the source, a malicious node can attract other
nodes to select it as parent by lying about its bandwidth when
it is probed. The victim nodes will incorrectly choose to adapt
and select the malicious node as parent since it appears that
the change will guarantee a better bandwidth from the source.
The malicious node can augment the attack by lying about
other metrics such as latency or saturation.

Repulsion attacksseek to reduce the attractiveness of other
nodes or misrepresent their ability, with the ultimate goal
of free-loading, traffic pattern manipulation, or augmenting
attraction attacks. As in the case of attraction attacks, repulsion
attacks can target one particular node. One way a malicious
node can conduct the attack is by lying about its performance.
For example, a malicious node may lie about route costs (i.e.,
hop count) in order to convince other nodes that it has a bad
connection and thus it should not be selected as a parent. The
malicious node will then obtain a reduced burden while still
taking advantage of the system.

As many nodes share the same physical links, an attacker
may instead choose to manipulate the physical or logical
infrastructure to affect the performance metrics monitored by
a victim node by exploiting its physical connectivity to the
victim. For example, a node can affect the link state estimation
by injecting a very small amount of traffic for a short amount
of time, creating the perception that the performance degraded
significantly and convincing the victim node to change its
parent. A variant of the attack is to target the active probeson
which the victim node relies. In this case, the victim’s peers
will be made to look unappealing as possible parents, thereby
increasing the chances of the malicious node moving closer to
the source in the multicast structure.

Disruption attackstarget the availability of the network by
using the adaptation process to turn the system against itself.
An attacker can create significant disruption in the overlayby
injecting or influencing the observation space metric data to
generate self-destructive responses as a result of unnecessary
adaptations. The ultimate goal of such attacks is to affect
the infrastructure that supports the overlay with the intent to
prevent or degrade service. These attacks can be classified as
a form of denial of service (DOS) and can result in jitter,
flapping, or partitioning the overlay.

IV. D EFENDING AGAINST ATTACKS IN ADAPTIVE

OVERLAY NETWORKS

In this section, we describe a comprehensive solution for
mitigating insider attacks that exploit adaptation in overlay
networks. As the attacks we are concerned with are performed
by compromised nodes controlled by adversaries, the solution
space components we describe below are complementary to
authentication and integrity mechanisms.

A. Solution Space

We identify four components that a framework designed to
address insider attacks against adaptation must include. Due
to lack of space, we provide a high-level description of all
of them and a detailed description of a critical component:
reducing incorrect or unnecessary adaptations. More details
about each component can be found in [29].
• (A1) Reducing incorrect adaptations:A node makes adap-
tation decisions based on two types of information: the per-
formance from the source measured directly by each node
and the performance of the neighbor nodes obtained by
probing them. By blindly accepting the information reported
by the potentially malicious probed nodes, correct nodes may
make incorrect decisions. We propose to prevent incorrect
adaptations by detecting and filtering out outliers in the metrics
reported by malicious nodes. Our method evaluates temporal
and spatial correlations among data in the system. Although
our solution is developed in the context of overlay networks,
it can be used to address the more general problem of “blind
acceptance” [30] of routing metrics present in many network
protocols. We present this approach in detail in Section IV-B.
• (A2) Increasing stability:Reducing the number of unneces-
sary adaptations has the potential to increase the stability and



decrease the number of incorrect adaptations, while reducing
the overhead. Nodes perceived as unstable will be pushed
to the fringes of the tree as no other node will select them
as a parent. We propose to integrate stability metrics such
as the time a node was connected to his current parent, the
frequency of changes, or the degree of variance in metrics into
the function that drives the adaptation.
• (A3) Detecting observable malicious behavior:The methods
proposed above may still result in some incorrect adaptations.
However, the attacks exploiting adaptation are often used to
further attack the multicast service, resulting in observable
degradation of service and thus allowing additional detection
mechanisms to be employed. Unlike (A1), which is focused
on preventing incorrect adaptations, this component reacts to
degradation of service resulting from the incorrect adaptation.
We propose that every node uses the low-bandwidth, bidi-
rectional unicast link that it shares with the source to provide
feedback to the source about the received data. The link is also
used by the source to inform member nodes about the state of
the overlay structure to allow them to detect inconsistencies
in the metrics reported by peers. The structural information
can be trusted as it is sent by the source and protected
cryptographically from modifications.
• (A4) Isolating malicious nodes:Without taking action
against malicious nodes, the convergence of the protocol and
the overall system overhead will increase as the malicious
nodes continue to interfere with the system. We propose a
gradual response where each node of the overlay maintains
two dichotomous lists: a local suspect list generated by that
node and a global black list generated by the trusted source
based on suspect lists received from nodes in the network. The
suspect lists allows nodes to take decisions locally, whilethe
global list allows nodes to share information about malicious
nodes in the system. While the benefits of the suspect list are
obvious, the use of the black list requires further investigation
as it creates opportunities for malicious nodes to black list
other correct nodes and also increases link stress in the system.

B. Reducing Incorrect Adaptations Using Local Spatial and
Temporal Correlation for Outlier Detection

The primary cause of the identified attacks is the ability of
the attacker to influence the adaptation process by manipulat-
ing the performance metrics. We propose to detect inconsistent
metrics by performing outlier analysis on the information
received from probed nodes and used in the decision process.
An outlier is a data point that is significantly different (greater
than a threshold) from the rest of the data in the observation
space based on a measure of distance.

The detection is performed locally by each node using
spatial and temporal correlations. Thespatial outlier detection
compares the reported metrics received from each node in the
set of probed nodes. Thetemporal outlier detectionexamines
the consistency in the metrics received from an individual
probed node over time. Our outlier detection does not affect
the link stress in the system, as it uses the metrics already
reported by nodes: latency, bandwidth and RTT. Both latency

and RTT are utilized because they are highly correlated met-
rics collected in different manners (probed versus measured,
respectively). Since TCP is used as the data transport protocol,
loss rate is not considered. In order to avoid being suspected
by correct nodes, a malicious node must insure that any lie it
tells: (1) is consistent with what the other peers are reporting
during a probe cycle about current network conditions, (2)
ensures consistency between the different dependent metrics
(bandwidth, latency, and RTT), and (3) is consistent with
metrics it reported in the past. The spatial outlier detection
targets the first and second aspects of consistency, while the
temporal outlier detection targets the second and third aspects.
Spatial and temporal data correlations have been previously
shown effective in detecting network attack scenarios [31].
Unlike the the general approach in [31], our work does not
look for correlations but exploits the fact that they exist to
detect suspicious nodes.

The intuition behind our solution is that the intrinsic depen-
dency existent in the measured variables requires attackers to
make sure the “fake” metrics vary in a consistent manner. This
dependency results from a fundamental characteristic of end-
system multicast systems – that the distribution tree overlaps
on the routing infrastructure, often represented as a measure
called link stress. Lying is made more difficult by the fact
that attackers can only make the RTT worse, because it is
a measured attribute, and yet, at the same time, the RTT
must remain consistent with both the bandwidth and latency.
Our solution also forces an attacker to lie consistently with
other peers. This is difficult to achieve as an attacker does
not have perfect knowledge of the observation space, must
accurately predict the random subset of nodes that will be
queried, and only has a finite amount of time (the probe period)
to coordinate with other attackers.

A key component of our approach is using the Mahalanobis
[32] distance to detect outliers. We selected this distance
function because it has been shown to detect outliers with
multiple attributes better than other distance functions [33],
scales each variable based on its standard deviation and
covariance, and takes into account how the measured attributes
change in relation to each other. This makes it appropriate for
our environment where there is a dependency between several
of the attributes reported by each node.

Spatial outlier detection.The outlier detection is performed
by a node as follows. Each probe cycle, the node first computes
the centroid of the data set consisting of observation tuples
from all probed nodes. Anobservation tupleis represented
by bandwidth, latency, and RTT. The node then computes the
Mahalanobis distance between the observation tuple from each
probed node and the centroid as follows:

d(~x, ~y) =
√

((~x − ~y)T C−1(~x − ~y)) (1)

where~x and~y are the feature vectors consisting of bandwidth,
latency, and RTT.~x is the value from the probe response
and ~y is the average value that was calculated.C−1 is the
inverse covariance matrix computed from the observation
tuples. When there are not enough observation tuples received



during a probe cycle, the tuples are compared with the
most recent centroid. When there is no variance between the
received observation tuples, the Mahalanobis distance cannot
be computed since the determinant of the covariance matrix
becomes zero. In this case, a node is randomly selected from
that probe set of observation tuples and compared to the most
recent centroid. If no centroid is available, the decision is
postponed to the next probe cycle.

Spatial threshold selection.The threshold for our outlier
detection can be mathematically derived as in [34], [35],
assuming a multivariate Gaussian distribution for the metrics
vector. The contours of equal probability of this distribution
create a 3-dimensional ellipsoid and the outlier threshold
reflects the probability of a vector being within the ellipsoid
specified by the focusk. The probability that a random vector
lies within the ellipsoid increases with the size ofk. Thus,
for a given value ofk the probability that a probed tuple lies
within the ellipsoid can be computed as:

P = − 1√
2π

+ 2

(

1√
2π

∫ k

0

e
y2

2 dy

)

−
√

2

π
ke

−k2

2 (2)

We initially selected ak of 2.37, creating a threshold which
half of the probes would successfully pass. Through testing
in over 539,739 probe responses during 19,465 probe cycles,
we found an ellipsoid determined by a threshold of 1.5 will
contain approximately 80% of the nodes. Thus, we selected a
threshold of 1.5 for our experiments. This variation from the
mathematically derived value can be attributed to the fact that
the used metrics do not form a perfect normalized distribution
and have a smaller variance than assumed in Equation 2.
A node may select smaller threshold distances for stronger
security guarantees, with the drawback that it may find itself
isolated due to aggressive filtering.

Temporal outlier detection.We use temporal correlations
to detect inconsistencies in the performance metrics reported
over time by a node. We develop models for the peers of a
given node during the course of a multicast session by using
incremental learning. Our technique is based on the “simplified
Mahalanobis distance” presented in [32]:

d(x, ȳ) =
n−1
∑

i=0

(|xi − ȳi|/(σ̄i + α)) (3)

where n is the number of metrics, three in our case (bandwidth,
latency, and RTT),σ̄i is the standard deviation, andα is a
smoothing factor empirically set to .001 to help to avoid over-
fitting and reduce false positives [32]. We trade-off accuracy
of the distance function to minimize the amount of data we
must store by making the assumption that the metrics are
statistically independent. As a result, each node maintains
for each peer only the temporal centroid consisting of the
mean, standard deviation, and sample count computed from
the observation tuples received over time, and not the whole
history. The centroid for each peer is incrementally updated
with observations received during each probe cycle, as in [32],
using the technique Knuth described in [36]. At the end of
the probe cycle, the latest observation tuple for each peer is
compared with the corresponding temporal centroid using the

Mahalanobis distance.
Temporal threshold selection.We used a threshold of 3.0

for our temporal outlier detection, to allow each of the three
features to vary within one standard deviation from their
temporally developed mean. The value was chosen based on
the formula of the simplified Mahalanobis distance as in [32].

Spatio-temporal outlier detection.The two outlier detection
mechanisms have the potential of being more effective when
used together. We combine them by using a codebook tech-
nique similar to [31]. The peer nodes are ranked according
to their spatial outlier distance from the spatial centroidand
traversed from the closest to the farthest node. The node that is
closest to the spatial centroid that is not a spatial or temporal
outlier is chosen as the new parent. If no peer is found meeting
these criteria or if there are a large number of temporal outliers,
no adaptation is performed during that probe cycle.

V. EXPERIMENTAL RESULTS

We demonstrate through experimental results the attacks
identified in Section III and our outlier detection techniques
in the context of the ESM overlay multicast system. We
selected ESM because of its maturity, extensive deployment,
and the advanced set of adaptation techniques it employs. Our
experiments show that, although ESM employs an advanced
set of adaptation mechanisms, it is unable to mitigate the
attacks posed by a malicious adversary. Our outlier detection
was able to reduce significantly the number of malicious
changes without adding to the link stress in the system.

A. Overview of ESM

ESM [1] is a multicast system mainly used for broadcasting
live events such as academic conferences. We provide a high-
level description below. For further details, the reader is
referred to [29]. ESM forms a peer-to-peer overlay tree for
distributing multicast content. A node changes its parent in
the overlay to maintain and improve application performance.
Both passive observation and probing are used to collect
data used to make the adaptation decision. ESM uses data
sampling and data smoothing to address variations in the
metrics considered: available bandwidth, latency, and RTT.
ESM also employs a number of combined metrics, damping,
randomization, hysteresis and three utility functions to address
instabilities in the observed data. The three utility functions are
based on: bandwidth, latency, and a combination of bandwidth
and latency. A damping factor is used to induce stability and
a randomization technique is used to avoid the case where
several nodes try to change to the same parent.

In order to select a new parent, a node first computes a
list of potential candidates from its neighbor set. Nodes which
are currently saturated, descendants, or did not respond when
recently probed are not considered. If there is no utility gain,
no node is selected and the process will be repeated next
cycle. If several nodes are candidates, then the first candidate
is selected as the new parent. The selection process uses
hysteresis to generate a negative bias against nodes that have
performed poorly in the past.
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Fig. 1. The effect of attraction attacks on correct nodes foran ESM overlay
of 100 nodes on PlanetLab for a duration of 60 minutes.

B. Testbed and Experiment Setup

To study the attacks and defense mechanisms under real-
world conditions, we conducted our experiments on the Planet-
Lab [17] Internet testbed. In addition, for repulsion and disrup-
tion attacks that could have been disruptive to PlanetLab, we
used DETER [18], a testbed that provides a stable, controllable
emulation environment for network security research.

We use sixty minute long ESM deployments of 100 nodes
in which the nodes join after the experiment begins and leave
before it ends, with an average participation time of fifty-five
minutes. As in previous ESM deployments [37], nodes are
probed every seven seconds, the saturation degree of correct
nodes is six, and the source constant bit rate is 480 Kbps. All
experiments use these parameters unless otherwise noted.

C. Attack Effectiveness

1) Attraction Attacks: We demonstrate the effect that a
single coalition of one malicious node, who exploits the
adaptive nature of ESM, has on the multicast tree construction,
maintenance, and stability. One randomly selected node per-
forms an attraction attack in which it lies every probe cycle
about having the best bandwidth (480Kbps), latency (0ms),
and no saturation. We summarize our findings in Table I.
When the node is honest, it is selected only 5 times as a
parent by other nodes. However, when the node is malicious,
it is selected 172 times, or almost 35 times more often. The
malicious node causes the overlay to become more unstable, as
can be seen in the large increase of total parent changes. This
increased instability can be attributed to the fact that thenew
child will eventually realize the bait-and-switch and change
parents again.

We next consider the effect on the correct nodes when
a percentage of randomly selected malicious nodes perform
attraction attacks. Metrics we investigate are: the percentage
of nodes that have at least one malicious node on their path
to the source, the percentage of nodes that have a malicious
node as a parent at some point during the experiment, and the
number of parent change decisions that resulted in selecting a
malicious node. The results of the experiment, summarized in
Fig. 1, demonstrate that even a small percentage of malicious
nodes will affect the majority of correct nodes in the overlay.
Fluctuations in the general trends of the curves result from
the use of real-world experimentation and randomly selected
malicious nodes. The greater the number of malicious nodes
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Fig. 2. An example of repulsion attack against an ESM overlayin a controlled
experiment on DETER. (a) represents the overlay and the multicast tree before
attack while (b), (c) and (d) are the topology changes in the multicast tree
as a result of the attack. Node E is manipulated by the attacker to attach to
malicious node D, although this causes E to be three hops awayfrom the
source, instead of just one. (e) The average bandwidth with topology changes
denoted by the solid and dashed impulses representing good and malicious
parent changes respectively.

located near the source in the overlay topology, the greaterthe
effect will be on the overall system.

2) Repulsion Attacks:While performing experiments, we
noticed that nodes with very good performance, such as those
directly attached to the source, could not be fooled by mali-
cious nodes simply by lying, and more sophisticated attacks
are needed. We demonstrate a repulsion attack where an
attacker affects the partially observable link state estimation in
order to make a node incorrectly believe that the performance
from the current parent is inadequate.

Fig. 2 presents a star topology composed of six nodes, all
of which are connected with 100 Mbps links to switch S1. For
demonstrative purposes, ESM is configured to use a saturation
degree of two. In our example, node A is the source and nodes
C, D, and E are end-systems in the overlay. Nodes B and
F are outsiders who collude with D, a malicious node that
has infiltrated the overlay. During the attack, nodes B and F
generate traffic to augment the attack of malicious node D,
which lies about its bandwidth (480Kbps), latency (0ms), and
saturation (none). Similar results will be obtained if nodes
B and F are trusted members of the overlay attempting to
improve their position in the tree or influence the path data
takes from the source to themselves or others.

The overlay initially converges to the stable structure seen in
Fig. 2(a), at which point the mean bandwidth is approximately
480 Kbps. Topology changes occur at the impulses seen in
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Fig. 3. An example of disruption attack against an ESM overlay in a
controlled experiment on DETER. The experiment was performed using the
same experimental setup as Fig. 2. The attackers periodically sent 5 second
bursts of traffic at the focal point creating constant churn in the system.
Topology changes are denoted by the solid and dashed impulses representing
good and malicious parent changes respectively.

Fig. 2(e). The attack begins at 115 seconds when nodes B and
F begin flooding 30 seconds worth of traffic at the source,
node A. After several seconds of traffic, the attack is able to
generate the first change in the tree when node C chooses
node E as its new parent in Fig. 2(b), despite the fact that C
will be an extra hop to the source. Then, 14 seconds later, C
switches back to its previous position, but the overlay has yet
to stabilize in Fig. 2(c). Next, node E detaches from the source
and, instead of choosing node C, chooses the malicious node
D, as its parent in Fig. 2(d). Note that node E was previously
directly connected to the source but it is now connected three
hops away. The changes after 200 seconds are due to nodes
leaving the experiment.

The cost of such an attack consists of saturating the 100
Mbps link with a short 30 second burst of traffic. In real In-
ternet deployments, the cost of the attack will be substantially
less since links will typically have a lower capacity.

3) Disruption Attacks: Fig. 3 demonstrates an example
of a disruption attack where the attacker exerts an artificial
influence, extraneous traffic, towards a focal point of the
overlay topology. The main difference from previous attacks
is that the artificial influence is done periodically in orderto
destabilize the infrastructure. In the experiment in Fig. 3, the
attacker sends 5 second bursts of traffic every 30 seconds.
This is similar to the attacks performed in [15], [16] which
targeted the TCP congestion control. Fig. 3 shows that using
this technique the attacker can keep the system in a constant
churn as it keeps trying to stabilize itself. Despite the fact that
the attacker was using only 5 second bursts of traffic, parent
changes occurred in the overlay at almost every probe cycle.

D. Effect of Malicious Nodes on Average Bandwidth

We studied the effect multiple malicious nodes can have on
the overlay topology. Having a malicious parent can result in
a severe degradation of service if the malicious parent decides
to selectively drop data. In Fig. 4, we demonstrate the impact
malicious nodes that use their position in the tree can exerton
the bandwidth of correct nodes. The graphs plot the bandwidth
averaged over all receivers as a function of time. Malicious
nodes start dropping 100% of the data traffic received through
the data dissemination tree fifteen minutes after they joined

the overlay. We vary the percentage of malicious nodes to
10%, 30%, and 50% of the overlay size to demonstrate the
performance degradation that results when more nodes behave
maliciously.

We define the relative strength of a particular attack as:

τ =
Bnorm − Badv

Bnorm × Numadv

(4)

whereBnorm andBadv represent the average throughput in the
absence and presence of adversaries respectively, andNumadv

is the number of adversaries. Intuitively, tau represents the
amount of damage an attack created in the system. The greater
the performance degradation observed in the system between
when the malicious nodes are passive and active (the difference
betweenBnorm andBadv), the higher the value of tau and the
more damage an attack inflicts on the overlay.

Fig. 5 depicts tau varying over the percentage of the traffic
dropped. As it can be seen, the greater the amount of data
traffic a malicious node drops, the greater the effect it has
on the system. The drop in the effectiveness of the attacks as
the malicious nodes drop high percentages of data (100%) is
due to ESM categorizing the malicious nodes as unstable links
based on past experienced bandwidth and having a bias against
choosing them as parents. Fig. 5 also shows the intuitive
notion that the greater the number of malicious nodes, the
greater effect there is on the system. It can be noted that just
10% malicious nodes have a significant effect on the average
bandwidth. We believe this is because a percentage of 10%
malicious nodes is enough to obtain advantageous positions
in the vulnerable tree structure which has no path redundancy.

E. Effectiveness of Outlier Detection

To demonstrate the effectiveness of our outlier detection at
improving the parent selection process and the stability ofthe
system, we considered one malicious attacker and recorded
the number of parent changes that took place for the duration
of the experiment considering two cases, one when only the
spatial outlier is used, and one when the temporal-spatial
outlier is enabled. The outcome of these experiments is shown
in Table I. The results indicate that using the spatial outlier
detection scheme has dramatically reduced the likelihood of
choosing a malicious parent since the number of times the
malicious node was selected as a new parent is reduced from
172 to 70. The addition of the temporal outlier detection
further reduces this to only 35 times.

Our method also dramatically improved the stability of the
overlay in spite of the presence of the malicious node, as
measured by the decrease in total parent changes denoted in
third column of Table I. In fact, the number of adaptations
is comparable to the number of adaptations that would occur
when no malicious nodes are present in the overlay.

F. Coalitions of Attackers and Spatial Outlier Detection

The previous experiment demonstrated the effectiveness of
the spatial correlation for detecting outliers produced bya
single coalition containing one attacker. We now consider the
constrained collusion model presented in Section II-B in which
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Fig. 4. The average bandwidth over time for an ESM overlay of 100 nodes on PlanetLab for a duration of 60 minutes with different percentages of malicious
nodes.
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Fig. 5. Tau as a function of (a) the percentage of data droppedand (b) the percentage of malicious nodes for an ESM overlay of 100 nodes on PlanetLab
for a duration of 60 minutes.

TABLE I

THE EFFECTIVENESS OF OUTLIER DETECTION AT IMPROVING PARENT

SELECTION FOR ANESM OVERLAY OF 100NODES ONPLANETLAB OVER

60 MINUTE RUNS

Experiment Changes to Total Parent
Malicious Parents Changes

No lying 5 833
Lying 172 1032
Spatial 70 800
Spatial/Temp 35 604
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Fig. 6. Number of colluding nodes necessary to influence parent selection.
The goal is for a colluding node to be ranked first and chosen asa parent.

all faulty nodes are part of the same coalition. A coalition of
colluding attackers may attempt to bypass the outlier detection
mechanism itself by shifting the centroid so they are not
perceived as outliers anymore. As a result, one of the members
of the malicious coalition will be selected as the parent.

We consider three colluding cases requiring different de-
grees of coordination between the attackers. In the first case,

referred to as “Optimum BW, Latency”, the malicious nodes
can only lie about the latency and bandwidth and not the
RTT. The second case, referred to as “Optimum BW, Latency,
RTT”, the malicious nodes agree to lie consistently on a set
of predefined values: RTT of 0, latency of 0, and bandwidth
of 480 Kbps. Note that in order to influence the RTT, this
case requires that one malicious node indeed has an RTT of 0
with the victim and it can intercept all the RTTs of the other
nodes in the coalition. The third case, referred to as “Mean”,
assumes that the attackers have the ability to share their
observed performance and compute and report the average of
their real metrics, again only bandwidth and latency. This case
requires strong coordination between the attackers, whichmay
not always be possible during a probe cycle without creating
inconsistencies in measured probe times. We compare these
cases with the normal case, when no nodes are lying.

We summarize our findings for an ESM overlay of 118
nodes on PlanetLab in Fig. 6. The graph depicts the rank of
possible parents of a malicious node member of a coalition.
Note that it took a malicious coalition of 80% of the nodes
in a probe set in the first case and 60% of the nodes in
a probe set in the second case before a malicious node is
chosen as the next parent. This demonstrates the effectiveness
of the spatial outlier detection since both the number and
type of metrics used by the outlier detection defense make
it difficult for the attackers to maintain consistency. In the
“Mean” case, 47% of the nodes needed to be in a coalition
before they could deterministically guarantee that a malicious
node would be chosen. This demonstrates that if the attackers
have more information, then they can reduce the amount of



work necessary for subverting the spatial outlier detection
mechanism. When compared with the normal case in which no
node exhibits malicious behavior, the “coalition” would only
need to contain 40% of the nodes. Thus, lying about metrics,
even with sophisticated coordination techniques, is no longer
an effective attack technique. The spatial outlier technique we
describe constrains the behavior of attackers and reduces their
ability to artificially augment their influence on the system.

G. Overhead and System Performance

Our outlier detection does not introduce any extra link stress
since it uses information that is already being exchanged
between nodes. The memory utilization for spatial correla-
tion only lasts for the span of a probe cycle and requires
maintaining the observation tuple associated with each of the
probed nodes, while the storage requirements consist of three
additional values in the route table for the peer set maintained
by each node. In the case of the temporal outlier detection, the
memory usage consists of maintaining the temporal centroid.
By incrementally updating the centroid, we do not need to
maintain the entire history for each probed node. The temporal
outlier detection also requires modifying the route table entries
to store nine additional values: mean, standard deviation,and
count for each of the three metrics.

VI. RELATED WORK

Our work focuses on attacks exploiting measurement-based
adaptation in overlay networks and our solution uses concepts
borrowed from anomaly detection. Below we review work in
several areas related to our research.

Attacks exploiting adaptivity.Previous work showed the
vulnerability of the TCP adaptation mechanisms, i.e. the
congestion control mechanism, to malicious attacks [15].
The authors showed that by manipulating the end-system’s
perception of network congestion, the adaptivity mechanism
could be used to perform a low-rate DOS attack with severe
effects on TCP throughput. The attack was generalized in
[16], as a form of low-rate ROQ attack targeting point-to-
point adaptive control loops that drive resource allocation and
affect perceived service of a system (bandwidth, jitter, etc).

Our work assumes a different, stronger adversarial model
in a distributed system, specifically overlay networks. The
nature of the attacks, application and deployment environment
allows us to use a context sensitive observation space and
correlated information associated with the same information
that drives the adaptation to detect and limit the effect of
malicious behavior.

Anomaly detection and Mahalanobis distance.Recently the
benefits of the Mahalanobis distance for statistical anomaly
detection have been demonstrated in the context of network
intrusion detection [32], [38]. In [38] the authors presenta
comparative study of detection schemes based on data mining
techniques for network based intrusion detection. In [32]
the authors discuss an unsupervised, payload-based network
anomaly detector based on the Mahalanobis distance which
was used to detect attacks like worms.

Use of spatial and temporal correlations.Spatial and tem-
poral correlations were previously used in the context of
network security. A notable work in this aspect is [31] where
authors use temporal and spatial correlations to trace back
attacks and detect attack scenarios, using a large amount of
information from intrusion detection systems, firewalls, and
different software logs. Unlike the approach in [31], which
was more general, our work focuses on overlay networks and
does not look for correlations, but exploits the fact that they
exist to detect inconsistent metrics and find suspicious nodes.

Correlations have also been used in sensor network and ad-
hoc networks for the detection of malicious nodes [39], [40].
Most of this research focused on the evaluation of off-line
data developed in a simulator. In our work, the correlation is
actually incorporated in-line with the protocol as it triesto
adapt. Analysis is performed on the Internet with real data
while fusing multiple correlations to improve our predictive
abilities. The work in [40] shows how to augment a sensor
network with spatio-temporal correlation to detect misinfor-
mation being injected into the sensor streams. In our research,
we are concerned with an attacker manipulating the control
information in order to influence system adaptation.

Malicious behavior in overlay networks.The problem of
malicious attackers was previously studied in the context of
structured overlay networks. A subset of these types of attacks,
referred to as Eclipse attacks [13], [14], was subsequently
studied in optimized structured file sharing overlays. The
solution enforces degree constraint invariants associated with
neighbors, supported by anonymous auditing, and takes advan-
tage of strong organizational neighbor constraints existent in
such networks. As unstructured overlay networks do not have
such constraints, the proposed solutions are not applicable.

To the best of our knowledge, the problem of malicious
insider attacks was not studied in the context of unstructured
overlay networks. An attack performed by selfish attackers
(i.e. nodes that want to obtain an advantage but do not have
destructive goals) was shown through simulations in [41]. Our
work is different in the fact that it considers malicious attackers
and presents results in the context of a real system in real
deployments over the Internet.

VII. C ONCLUSIONS

In this paper we identified insider attacks that exploit
measurement-based adaptation mechanisms in multicast over-
lay networks. We discussed a comprehensive defense frame-
work and presented an in-depth solution to a critical aspect
of the problem: preventing poor adaptation decisions in net-
works influenced by attackers. Our solution lies in performing
spatial and temporal outlier analysis on measured and probed
metrics to allow an honest node to make better use of avail-
able information before making an adaptation decision. We
demonstrated the effectiveness of the newly identified attacks
and the benefits of using our outlier detection and response
mechanisms in the context of ESM, a well-known adaptive
multicast overlay network. Our experiments conducted in real-
life deployments and emulations, demonstrate that although



ESM employs an advanced set of adaptation mechanisms it is
unable to mitigate the attacks posed by a malicious adversary.

Previous research has demonstrated the inability of conven-
tional detection techniques to detect attacks on adaptive pro-
tocols. In this research, we have demonstrated the importance
of tightly coupling the detection space and the control space.
We showed that by incorporating context sensitive anomaly
detection into the protocol, the detection mechanisms have
the semantic understanding to improve the adaptive decision
process. Our experiments demonstrate that our techniques
improve the adaptation process and the overall stability ofthe
system while limiting the effect of malicious nodes.

Current work investigates the trade-offs and benefits of shar-
ing information about malicious behavior using a two-stage
response mechanism relying on local and global knowledge.
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