
Enabling Confidentiality of Data Delivery in an
Overlay Broadcasting System

Ruben Torres, Xin Sun, AAron Walters, Cristina Nita-Rotaru and Sanjay Rao
Purdue University�

rtorresg,sun19,sanjay � @ecn.purdue.edu, crisn@cs.purdue.edu, awalters@4tphi.net

Abstract— Most prior work on the use of key management
algorithms to enable confidentiality of video delivery has been
conducted in the context of IP Multicast. In this paper, we
consider the unique challenges and opportunities of integrating
key management algorithms in an overlay multicast system. We
conduct a systematic and extensive performance evaluation of
strategies for key dissemination in the context of an operational
overlay broadcasting system on the Planetlab testbed using
real traces of join/leave dynamics. We show that leveraging
TCP in each hop of the overlay dissemination structure can
significantly simplify reliable key dissemination. The performance
can be further enhanced if convergence properties of overlays
are considered. We show that using two specialized dissemination
structures, one for data and one for keys, potentially achieves low
overhead for key dissemination without sacrificing application
performance. To our knowledge, this is the first paper to study
key management schemes in an overlay context using real
implementation and Internet experiments and the first to consider
issues in resilient key dissemination with overlays.

I. INTRODUCTION

In recent years, overlay multicast has emerged as an alterna-
tive architecture to IP Multicast for enabling group communi-
cation applications over the Internet. In an overlay architecture,
end systems participating in a multicast group self-organize
into efficient structures for delivering data without requiring
any support from the existing network infrastructure. Signif-
icant effort focused on validation of the architecture [1], [2],
[3], [4], [5], and design of protocols [1], [2], [3], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. The initial success has led to
validations through real deployments and extensive usage of
these systems in real applications [15], [16], [17].

Achieving further usage of these systems in a wider range
of applications requires integrating security mechanisms to en-
able confidentiality and integrity of data delivery. Such security
mechanisms can be efficiently provided by using symmetric-
key based cryptographic algorithms, which in turn require all
participants to share a secret key. This key is referred to as
the group key and protocols providing its establishment and
management are referred as group key management protocols.

A vast majority of previous work in group key management
for broadcast systems has been conducted in the context of IP
Multicast and focused on reducing the encryption overhead
at the source. In contrast to these works, we investigate
challenges and opportunities for group key distribution and
management in the context of overlay networks. In overlays,
there is no native multicast medium (e.g. IP Multicast) that
could be used for key distribution. However, keys could be

distributed by using the existing overlay data delivery structure
or by constructing additional structures specifically designed
for group key distribution.

In this paper, we focus on single-source broadcasting appli-
cations. Our work is conducted in the context of an operational
overlay broadcasting system, the End System Multicast (ESM)
and its data dissemination algorithms [15]. We selected ESM
because it is one of the first operationally deployed systems
and has seen significant real-world deployment. We have
implemented the LKH [18] key management algorithm and
its batching variant [19], [20] in ESM. We chose the LKH
protocol and its variant due to their wide use in the research
community.
Our contribution:� We conduct a systematic performance evaluation of strate-
gies for key dissemination in the context of an operational
overlay broadcasting system on the Planetlab testbed using real
traces of join/leave dynamics. While a few recent works have
considered issues with key dissemination using overlays [21],
[22], these works rely on analysis or simulations with synthetic
workloads and do not consider issues such as resilient key
delivery. To our knowledge, this paper presents the most
extensive study of key dissemination schemes in an overlay
context, and the first to involve actual implementation, real-
world performance, and real traces. Real Internet deployment
in turn allows us to provide unique insights into the inter-
action between key management and data traffic, as well as
investigate the sensitivity of such protocols to losses in realistic
Internet data and traffic conditions.� We conduct the first study of issues in resilient key dissemi-
nation in an overlay context. While reliable key dissemination
is a challenging and well-studied problem in the context of IP
Multicast, we show that it can be considerably simplified with
overlays. In particular, overlays provide the unique opportunity
to employ protocols for per-hop reliability in the key dissemi-
nation structure. We show that leveraging TCP in each hop of
the overlay dissemination structure can significantly simplify
reliable key dissemination, and could help achieve resiliency in
end-to-end delivery. The performance can be further enhanced
if convergence properties of overlays are considered.� We study the design space for dissemination of data and
keys. We first consider coupled architectures in which the
same dissemination structure is used for both data and keys.
In particular, we consider (i) a coupled architecture optimized
for data which intuitively has the lowest level of complexity;

and (ii) a coupled architecture optimized for keys which was
shown in recent work [21] to result in savings in overhead
associated with key dissemination. Our results show that
while (i) incurs a high overhead for key dissemination, (ii)
violates the physical access bandwidth constraints of nodes
for bandwidth-demanding applications. We then consider a
decoupled architecture using two specialized dissemination
structures, one for data and one for keys. The architecture
honors access bandwidth constraints at nodes, and our results
show the benefits of reducing overheads associated with key
dissemination outweigh the cost of maintaining an additional
overlay structure.

The rest of the paper is organized as follows. Section II
presents a description of the system settings and assumptions
considered in this work. Section III discusses the design
space for dissemination of data and keys. Sections IV and V
present our evaluation methodology and experimental results.
Section VI concludes the paper.

II. SYSTEM AND ADVERSARY MODEL

A. System Model

We focus on overlay networks providing support for single-
source broadcasting applications, that are high-bandwidth
(hundreds of kilobits per second), and real-time but not in-
teractive. Such applications can tolerate modest delays of a
few seconds through buffering. The system consists of a set
of nodes and a data source node communicating via unicast
links. All nodes but the source have similar functionality. The
nodes are not only receivers of data, but also contribute to
the routing process. The source is assumed to be continually
available. Direct communication may exist between the source
and every receiver (or every pair of nodes).

The overlay construction is completely self-organized and
distributed. Each node maintains a set of neighbors referred
to as peers, a routing table and the upstream node forwarding
the data, referred to as the node’s parent. The neighbor set
is bootstrapped at join time by contacting the source and
is continually updated via a group management protocol to
reflect a set of nodes that are currently reachable in the overlay.
The routing table represents a set of nodes that the node is
responsible for routing data to, referred to as children. The
size of this set is limited by the saturation degree of the
node. This represents the maximum number of concurrent
data streams a node is able to support before saturating its
physical out-going access link. The saturation degree may vary
across nodes representing nodes with heterogeneous access
bandwidth (e.g. DSL, Ethernet), and it is critical the node
bandwidth constraints are honored. Each node runs an overlay
optimization protocol to adapt to abnormal scenarios such as
parent failures. In this paper, we assume nodes in the group
form a tree structure, where the source of the broadcasting
application is the root of the tree. We believe the results in
the paper may be easily extended to richer structures used for
delivering data.

B. Adversary Model

Our focus is ensuring that only authorized group members
will have access to group data, traffic generated by the
application and broadcasted by the source. Overlay networks
also disseminate control traffic such as messages generated by
the group management and the overlay optimization protocols.
The protection of the control traffic is an important problem,
but it is out of the scope of this paper. We assume that
mechanisms to protect the control traffic are in place.

Unless otherwise specified, we consider only outside adver-
saries who attempt to obtain unauthorized access to the group
data. As long as a member has the current group key, it can
decrypt and thus have access to the broadcasted data. The
access to data is restricted by changing the group key. Any
members that are not part of the group yet, or have left the
group, are not able to get access to the data. These properties
are known as forward and backward secrecy. We assume that
the source of the broadcast is trusted to behave correctly and
so are the group members. The source and group members are
trusted not to forward the secret group key or decrypted data
to participants who are not part of the group.

We assume that there exist mechanisms allowing the source
to authenticate a host interested in the broadcast. In addition
there exist means that allow the source and each host part of
the group to share a pair-wise key.

III. DESIGN SPACE

The primary focus of the paper is to systematically study
strategies for key dissemination when incorporating confiden-
tiality in an overlay broadcasting system. Our studies employ
well-known algorithms for key management which we discuss
in Section III-A. The first part of our study considers schemes
where key management algorithms are incorporated with min-
imal changes to the overlay system, by simply disseminating
keys using the existent overlay data delivery structure. Even
with such a minimalist approach, it is critical to ensure
resilient key dissemination – losing a key impacts all data
encrypted with that key and significantly affects application
performance. We present strategies to achieve resilient key
dissemination in Section III-B. While the existing overlay
data delivery structure could be used for key dissemination,
there are potential benefits in constructing additional structures
specifically designed for key distribution. We discuss possible
schemes in this space in Section III-C.

A. Key Management Algorithms

Key management algorithms can be classified as centralized
and contributory. Centralized key management schemes rely
on a single entity, referred to as key server, to select and
distribute the group key. In contrast, contributory schemes
compute the group key based on individual contributions
from each protocol participant. Given our focus on single
source broadcasting applications, we consider centralized key
management schemes.

One of the main factors to consider for centralized key
management schemes is the load on the key server resulting

from encryptions required when distributing the key. An
additional factor is the key refresh mechanism needed in order
to preserve security properties such as forward and backward
secrecy. Two strategies have been proposed in the literature:
refresh the key every time the group changes or refresh it
periodically. In the latter approach, known as batch rekeying
[19] several group changes are accumulated in one key change.
As a result, batch rekeying decreases the number of messages
and communication rounds needed to change the group key.

One important parameter in key management algorithms
using batching is the time between consecutive batching
operations, known as rekey period. A low rekey period results
in frequent rekeying, and potentially high overhead. A high
rekey period makes a scheme more vulnerable to violations
of security properties – in particular, the rekey period is an
upper bound on how long a node that has left the group may
continue to have access to information it is not authorized to.

We consider the following key management algorithms:
� Key-Star: This is a protocol in which the source encrypts
the new key with each node’s pair-wise key when performing
a rekey operation. Key-Star requires O(N) encryptions at the
source, as well as O(N) messages, where � is the group size.
The terminology is adopted from [19].

� Marking: This scheme is a batching variant of a well-known
protocol, LKH [23]. LKH improves over Key-Star by using
not only pair-wise shared keys with each member, but also
subgroup keys when performing a rekey operation. By using
sub-group keys to encrypt the new group key, the encryption
cost at the source is significantly reduced. The sub-group keys
are not known by the members that left, so the approach has
similar security properties as in the case when group keys
were encrypted using pair-wise keys. The keys are organized
in a key tree where the root corresponds to the group key,
the intermediate keys to subgroup keys and the leaves to the
pair-wise keys between the source and each member. LKH
achieves logarithmic broadcast size and computational cost.

The protocol in [19] and subsequently refined in [20], which
we refer to as Marking, applies batch rekeying for the LKH
algorithm. As several group changes may have occurred during
a rekey period, the algorithm specifies how these changes will
be applied to modify the key tree. We chose this scheme
over LKH, given the benefits of batching in reducing the
computation and communication overhead.

B. Resilient Key Dissemination Strategies

The straight-forward approach to integrate key management
algorithms in an overlay system is to use the existent overlay
data delivery structure to disseminate rekey messages. How-
ever, while applications can tolerate losses in data packets,
losses in rekey packets can be more severe. Thus, it is
necessary to employ explicit mechanisms to enhance resiliency
of key delivery. Our focus is on minimizing loss of rekey
packets rather than perfect reliability – occasional losses can
be handled through recovery mechanisms, such as having
nodes contact other members.

While reliable key dissemination is a challenging and well-
studied problem in the context of IP Multicast, the problem
can be considerably simplified with overlays by using reliable
transport protocols (e.g. TCP) in each hop of the overlay key
dissemination structure. However, per-hop reliability may not
suffice to achieving end-to-end resilency of key delivery, as
losses may occur when the overlay is in a transient state.

With this view, we implemented and evaluated several
schemes for distributing rekey messages:� NaiveUnicast: The new key is distributed by the source to
each receiver individually using a TCP connection. Note that
only the keys that the particular receiver needs are included.
This algorithm is used as a base-line for comparison.� Tree-TCP, Tree-UDP: The overlay multicast tree involved
in data dissemination is used for key dissemination. Keys are
transmitted using TCP in each hop for the Tree-TCP scheme,
and using UDP for the Tree-UDP scheme.� Tree-Unicast: We introduce this scheme to handle conver-
gence issues with overlays. We provide the motivation and
details in Section V-B.1.

C. Key and Data Dissemination Coupling Strategies

Using the existing overlay data delivery structure for key
dissemination has the lowest level of complexity. We refer to
such a scheme as Coupled-DataOptimized. However, with this
strategy, the distribution of key messages can be suboptimal
and involve higher overhead. For example, Figure 1.a shows
an LKH key-tree. � is the group key, ��� and ��� are sub-
group keys. The keys at the leaves of the tree (square boxes)
are pair-wise keys of users ���	� � , �
��� � , ���� � and ���� � , with the
source. If group key � changes, in order to be distributed, it
is encrypted with the subgroup keys ��� and ��� , resulting in
messages ��������� and ��������� . Note that ��������� is of interest
to � �	� � and � �	� � , while ��������� is of interest to users � ��� � and
� �� � . Figure 1.b shows a possible structure constructed by a
Coupled-DataOptimized scheme. In this case the source has
to send messages ��������� (grey key) and ��������� (black key)
to all its children even though they may not need the keys.
This is because the source does not have complete knowledge
of where nodes that require a key are located in the overlay
structure.

An alternative approach is to use the same overlay to
disseminate data and keys, but to optimize the overlay for
key distribution, as proposed in recent work [21]. We refer to
such a scheme as Coupled-KeyOptimized. In this approach, the
key dissemination tree formed by the group members matches
the logical key tree built by LKH in order to send keys just to
the nodes that may need them. For example, Figure 1.c shows
a structure optimized for key dissemination for the key tree
in Figure 1.a. The structure is carefully optimized such that
an intermediate node will receive a key from its parent if and
only if the node or at least one of its descendants needs the
key. In this example message ��������� (grey key) is required
for users in the subtree rooted at � �	� � and message ���������
(black key) is required for users in the subtree rooted at ���� � .
Therefore, the source will send ����� � � only to user �
�	� � and

Fig. 1. a) An LKH keys tree. b) An overlay structure optimized for data delivery. Intermediate nodes are positioned by their network characteristics. New
keys are sent to all nodes. c) An overlay structure optimized for keys delivery. Intermediate nodes are positioned by their ID. New keys are sent only to
nodes that need them.

����� � � only to user ���� � . We refer the reader to [21] for
implementation details of the scheme.

While Coupled-KeyOptimized may reduce rekeying over-
head, we hypothesize that it can significantly impact applica-
tion performance, and more critically can violate the saturation
degree of nodes when bandwidth demanding broadcasting
applications are considered. In heterogeneous bandwidth en-
vironments that may involve hosts behind DSL and Ethernet,
the saturation degree of a node in a data dissemination tree is
constrained by the physical outgoing access bandwidth of the
node. A scheme like Coupled-KeyOptimized does not take into
account the physical outgoing access bandwidth limitations.
Nodes closer to the source will tend to have a large number of
children, irrespective of physical access bandwidth constraints.

To address the problem, we introduce and explore a third
strategy, referred to as Decoupled, which uses two specialized
dissemination structures one for data and one for keys. Intu-
itively, such an architecture has the advantage of providing
good performance for data delivery and reduction in overhead
to diseminate key messages. The drawback in this case is that
the source must maintain two structures instead of one, and
hence there is additional complexity and overhead to maintain
an extra structure.

IV. EVALUATION GOALS AND METHODOLOGY

Our evaluation is driven by several goals:� Reliable Key Dissemination: (i) What is the impact of key
management algorithms on application performance given that
a loss or delay of keys can prevent a host from being able to
decrypt data? (ii) How does the choice of mechanism for key
transport impact performance? (iii) How effective are protocols
for per-hop reliability for key distribution in enabling end-
to-end reliability of key dissemination? (iv) What are the
additional overheads incurred in terms of computation (en-
cryptions) and communication when mechanisms for reliable
key dissemination are introduced?� Key and Data Coupling: (i) What is the impact on applica-
tion performance with the Coupled-KeyOptimized approach?
(ii) How significant is the reduction in key dissemination
overhead with the Decoupled approach? Does this reduction
outweigh the additional overheads of maintaining two struc-
tures? (iii) How sensitive are the results to the traces and rekey
period, and are the benefits significant under real work-loads
of interest?

A. Performance Metrics

Our evaluations consider the following metrics:� Decryptable Ratio: We consider the fraction of the raw
bandwidth obtained using overlay multicast that can be suc-
cessfully decrypted by a receiver. The raw throughput, or the
throughput a receiver sees in the absence of key management,
is bounded by the source rate and depends on the performance
of the underlying overlay multicast system.� Communication Overhead: We consider the total band-
width of all control messages sent or received by the source
arising due to key management. Depending on the partic-
ular context, we also consider overhead due to other con-
trol messsages, such as the overhead of the base overlay
multicast system itself. Our evaluations only focus on the
communication overhead of the source, and do not consider
the overhead at internal nodes. Given that overlay broadcasting
is a bandwidth constrained application and the bursty nature of
batch rekeying, we consider both average overhead and peak
overhead.� Computation Overhead: We consider the number of en-
cryptions per second, as well as the number of encryptions
conducted every rekey period.

B. Evaluation Methodology

To answer the questions listed above, we have conducted
a detailed evaluation of various key management schemes
implemented in an operational broadcasting system deployed
on the Planetlab testbed. We performed experiments on Plan-
etlab by emulating traces from real broadcast events that were
conducted using application end-point overlay multicast [15].
The traces capture bandwidth-resource constraints of nodes,
as well as information regarding user dynamic patterns. We
emulated the traces, by having each client in a trace execute
on a Planetlab host. Further, given that the peak number of
clients in the traces we use is much larger than the number of
Planetlab nodes, multiple simultaneously participating clients
in the trace are mapped onto the same Planetlab node.

Our experiments are conducted with a streaming video rate
of 420Kbps – the value used with the deployment of an
operational system based on overlay multicast [15]. This also
represents typical media streaming rates in real settings like
[24], [25]. We use the outgoing bandwidth information of
clients present in the trace, normalize it to the source rate, and

TABLE I

CHARACTERISTICS OF TRACE SEGMENTS USED.

Event Deg 0 or 1 Deg 6 Peak Grp. Size Joins Leaves

Conference1 33% 67% 42 8 9
Conference2 62% 38% 62 71 63
Portal 65% 35% 107 184 179
Competition 54% 7% 116 110 75
Rally 37% 12% 252 148 149

obtain a degree for the client in the corresponding Planetlab
instantiation. We assume a maximum degree of a client is
six, which corresponds to the settings used in operational
deployments reported in [15]. We directly use the same group
dynamics pattern as in the trace to drive the experiment.

To ensure that we do not place an undue bandwidth demand
on Planetlab nodes, we do not map more than three clients
onto a Planetlab node. We also seek to maintain the invariant������

��� �	��
����� where � is the number of clients in the trace
mapped to a Planetlab node � , � � is the degree of the client in
the underlying trace,
 is the maximum outgoing bandwidth
of Planetlab nodes, and � is the source rate.

As each of the traces lasts for several hours, it is not feasible
to emulate each of them entirely on Planetlab. Consequently,
we emulate twenty minute segments of the trace. The clients
already present in the trace at the start of the segment join
in a burst over the first two minutes, then follow join/leave
patterns exactly as in the trace for the next twenty minutes.

Our evaluations have considered a range of rekey periods
and studied performance sensitivity to this parameter.

C. Trace Characteristics

Table I summarizes the details of the trace segments used in
our evaluations. We used segments of traces from five different
broadcasts. Conference1 and Conference2 are broadcasts of
conferences, Portal refers to a broadcast conducted to a web
portal, Competition is a broadcast of a sports event, and Rally
refers to a broadcast of an election campaign. The first two
columns show the constitution of hosts by presenting the
percentage of hosts assigned a low degree (degree 0 or 1), or
a high degree (degree 6). For the Conference1, Conference2,
and Portal traces, these are the only two categories of nodes,
however for the Competition and Rally traces, there are nodes
with intermediate degree as well. The table also presents the
peak size seen in the trace segment. The last two columns
provide a sense of the group dynamics in the trace segments
by presenting the number of joins and leaves that occur
during that segment. Our evaluation study uses the Rally
trace segment as the default, as it has the largest peak size,
significant node dynamics, and significant heterogeneity in
node constitution. The Portal trace segment is interesting
in that while it has a smaller peak size, it has the highest
churn rate with maximum group changes in the period. The
Conference1 and Conference2 trace segments have smaller
group sizes. While the Conference2 segment has a significant
rate of node dynamics, Conference1 is much less dynamic.

Key Star
Marking 5sec
Marking 30sec
Marking 60sec
Marking 300sec

 0

 50

 100

 150

 200

 250

Rally Conference1Conference2Competition Portal

A
ve

ra
ge

 E
nc

ry
pt

io
ns

 p
er

 R
ek

ey
 P

er
io

d

Real Traces

Fig. 2. Avg. encryptions per rekey event with Marking for various rekey
periods. Each group of bars corresponds to a different trace. The first bar in
each group is the average group size.

V. RESULTS

We present results from our evaluations of an overlay
multicast system on Planetlab, using the key management al-
gorithms and dissemination structures discussed in Section III.
We first discuss the choice of rekey period in Section V-A.
Next, we evaluate mechanisms for reliable key dissemination
in Section V-B. Finally, in Section V-C, we present results
for several strategies for coupling data and key dissemination.
Unless otherwise specified, for each experiment and for each
point in every graph, we have conducted 5 runs and plotted
the mean and standard deviation.

A. Choice of Rekey Period

One important parameter in our experiments is the choice
of the rekey period (defined in Section III-A) for the Marking
algorithm. While a low rekey period results in frequent rekey-
ing and potentially high overhead, the advantages of Marking
diminish compared to Key-Star at higher rekey periods. With
the Marking scheme with higher rekey periods, the number of
encryptions per rekey event can be as high as ��������������� ,
where � is the number of keys changed during a rekey and��� �!����� is the degree of the LKH tree. The number of
encryptions required on a rekey operation for Marking depends
on the dynamics of the trace, the length of the rekey period,
and which users leave. In contrast, for Key-Star, the number of
encryptions is "$# ��% , where � is the group size, independent
of the frequency with which rekey events are conducted.

Based on the above insight, Figure 2 compares the perfor-
mance of Marking and Key-Star in terms of the number of
encryptions per rekey event for various traces and multiple
rekey periods. In each group of bars, the first bar represents the
number of encryptions per rekey event for Key-Star, which is
independent of the rekey period and simply the average group
size of that trace. The other 4 bars represent the number of
encryptions per rekey event for Marking for periods of 5, 30,
60 and 300 seconds. For all traces, the number of encryptions
per rekey event with Marking increases with higher rekey
periods. For a rekey period of 300 seconds, the benefits of
using Marking over the naive Key-Star are small for many
traces, and there is almost no benefit for the Portal trace.

1000

800

600

400

200

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

B
an

dw
id

th
(k

bp
s)

Time(second)

Decryptable Bandwidth
Raw Bandwidth

Group Keys

Fig. 3. Impact of loss of rekey packets on application performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
ta

ge
 o

f H
os

ts

Decryptable Ratio

Tree-UDP
Tree-TCP

Tree-Unicast

Fig. 4. Impact of key distribution schemes on application performance

Because of these results, the rest of the experiments with
Marking focus on rekey periods of 60 seconds and smaller.

B. Resilient Key Dissemination Strategies

In this section, we consider different strategies for reliable
key dissemination. We first show the impact of key loss on ap-
plication performance. Next, we show application performance
achieved when per-hop unreliable and reliable protocols are
used for key dissemination. Then, we consider convergence
properties of overlays as a way to further improve end-to-end
resiliency of key delivery. Finally, we present the overhead
incurred by incorporating resilient key dissemination in an
existent overlay broadcasting system.

To appreciate the impact of the loss of rekey packets
on application performance, consider Figure 3 which depicts
the performance of a user when Tree-UDP is used for key
dissemination. The X-Axis represents time, while the Y-Axis
depicts the bandwidth the user receives and can decrypt each
second. For comparison, the negative Y-Axis shows the raw
bandwidth the user receives each second. We note that though
the source rate is fixed, the data obtained by receivers can
be bursty. Each vertical line in the upper half of the graph,
corresponds to the time when a receiver obtains a rekey packet
containing a new group key. For the scenario in Figure 3,
the node misses the new group and subgroup keys in the
first rekey event after it joins. Consequently, it is unable to
decrypt keys until 187 seconds later. Interestingly, the impulses
show that the node keeps periodically receiving new versions
of the group key in the intervening period – however it is
unable to decrypt the keys since that requires a subgroup key

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

P
er

ce
nt

ag
e

of
 H

os
ts

Connection Time(second)

Connection time

Fig. 5. Connection Times for hosts in the overlay system

which the node does not possess. The recovery at 187 seconds
occurs because the subgroup keys the node was missing,
have changed and have been sent from the source and the
node receives those keys successfully. Similarly, the loss of a
subgroup key prevents the node from being able to decrypt
new group keys and data in the period 247-307.

Figure 4 shows the Decryptable Ratio achieved with Tree-
TCP, and Tree-UDP if a rekey period of 60 seconds is used.
We make two observations. First, the performance with Tree-
UDP is poor. Using per-hop UDP results in loss of rekey
packets which prevents the node from decrypting raw data it
may receive. Second, Tree-TCP does much better than Tree-
UDP with Decryptable Ratio greater than 0.97 for over �����
of the nodes, indicating that use of TCP for key dissemination
can have significant benefits. Figure 4 also shows the Tree-
Unicast scheme which we discuss next.

1) Overlay Convergence: Figure 4 shows that there is a
tail, and some nodes do not perform well. Our analysis reveals
the primary reason for the tail is that when a node joins the
group, or is disconnected because its parent left the group, it
may be disconnected from the overlay tree for a certain period
of time. During this time, the node is unable to receive data or
keys distributed along the tree. While the impact of missing
data is relatively minor if reconnection times are small, the
impact of missing a key can be more significant. We refer to
the time that a node takes to join an overlay multicast tree,
or reconnect when a parent leaves as the Connection Time.
Figure 5 plots a CDF of the Connection Time of nodes in the
ESM overlay multicast system. Over ����� of the nodes have a
Connection Time of less than 5 seconds, though this can be as
high as about 10-12 seconds in some cases. Connection Time
is a concern with both node joins and departures. For node
departures, the problem is partially ameliorated because over� �	� of nodes that depart do not have children, and thus their
leave does not have an impact on other nodes.

To address the problem for node joins, we introduce a
heuristic called Tree-Unicast. The approach is similar with
the Tree-TCP scheme, where the LKH keys that have been
modified are disseminated using the overlay tree. In addition,
for nodes that have recently joined, the source sends them the
keys directly by using unicast. The time for which the source
disseminates keys via unicast depends on the Connection

90

92

94

96

98

100

Rally Conference1 Conference2 Competition Portal

P
er

ce
nt

ag
e

of
 H

os
ts

Traces

30sec
60sec

Fig. 6. Performance of Tree-Unicast with various traces.

 0

 2

 4

 6

 8

 10

 12

 14

 16

5 sec 30 sec 60 sec 300 sec

Ov
er

he
ad

(k
bp

s)

Rekey Period

NaiveUnicast
Tree-TCP

Tree-Unicast

Fig. 7. Avg. overhead due to key management with various schemes and
rekey periods

Time of the underlying overlay protocol. Given that typical
Connection Time values are of the order of

����� � seconds,
and rekey periods we consider are longer, we simply have the
source directly unicast packets to nodes that joined during the
last rekey period. Figure 4 shows the Decryptable Ratio with
Tree-Unicast. We note this does achieve better performance
than Tree-TCP and helps improve the performance of the tail.

Figure 6 considers the performance with Tree-Unicast ob-
tained with the entire set of traces. Each group of bars
corresponds to a different trace. For each group, there are 2
bars, one indicating the performance at a rekey period of 30
seconds, and the other indicating performance at rekey period
of 60 seconds. Each bar represents the fraction of receivers for
which the Decryptable Ratio is greater than � ��� for a given
trace and rekey period. For a rekey period of 30 seconds,
over � ��� of receivers see a Decryptable Ratio greater than
� ��� . If a rekey period of 60 seconds is used, the performance
results are even stronger, with over ����� of receivers seeing
a Decryptable Ratio greater than ����� for all traces. The
performance is better with a higher rekey period because
it decreases the probability of a node departure happening
shortly before a rekey event.

2) Communication Overhead: While Tree-Unicast im-
proves the performance of Tree-TCP, it places additional
overhead on the source because of keys unicasted to the nodes
that join since the last rekey. Figure 7 shows the additional
average overhead incurred with key management algorithms
by measuring all control traffic related to key management sent
or received by the source, averaged across the session duration,

for the Rally trace. Each group of bars denotes a different rekey
period, while the three bars denote NaiveUnicast, Tree-TCP,
and Tree-Unicast.

There are several points to note from Figure 7. First, for
all schemes, the overhead due to key management decreases
when the rekey period increases. This is expected since rekey
operations are conducted less frequently. Second, the benefits
of Tree-TCP are more visible for lower rekey periods. For
example, for a rekey period of 5 seconds, Tree-TCP lowers
the overhead due to key management from 16 Kbps with
NaiveUnicast to about 4 Kbps. For rekey periods of 300
seconds, both NaiveUnicast and Tree-TCP incur overheads of
less than 1Kbps. Finally, the additional overhead incurred with
Tree-Unicast is small and the scheme still has lower overhead
than NaiveUnicast.

We have repeated the overhead measurements for all traces.
Across all traces, while Tree-Unicast incurs higher overhead
as compared to Tree-TCP, the overall overhead due to key
management is acceptable and ranges from � ��� Kbps for
rekey periods of 30 and 60 seconds. We omit the results due
to lack of space.

While these results focus on the average overheads, it is
important to also consider the peak overheads, and this forms
the focus of the next section.

C. Key and Data Dissemination Coupling Strategies

Our evaluations so far have focused on using the exist-
ing data delivery structure for constructing overlays. In this
section, we evaluate the benefits of optimizing the overlay
for key dissemination and decoupling key and data dissem-
ination structures. We consider the Coupled-DataOptimized,
Coupled-KeyOptimized, and Decoupled strategies discussed
in Section III-C. Our Coupled-DataOptimized scheme simply
refers to the Tree-Unicast scheme introduced in the previous
section – the new term is used for notational convenience. Our
implementation of the Coupled-KeyOptimized scheme follows
the recent proposal in [21], as discussued in Section III-C.
For the Decoupled scheme, our implementation uses ESM for
data delivery and a key-optimized structure augmented with
reliable dissemination mechanisms for key delivery.

We begin by evaluating the feasibility of using the Coupled-
KeyOptimized strategy for delivering data for bandwidth de-
manding brodcasting applications using simulations. We show
the strategy violates the saturation degree and physical band-
width constraints of nodes. The rest of the section then
focuses on comparisons between the Decoupled and Coupled-
DataOptimized strategies.

1) Feasibility of Coupled-KeyOptimized: Figure 8 presents
results from a simulation study of the Coupled-KeyOptimized
scheme conducted using the Rally trace. Each group of bars
correspond to nodes at a particular forwarding level in the tree
produced by Coupled-KeyOptimized. The source is at forward-
ing level 0, its direct children at level 1, and so on. For each
forwarding level, three bars are shown corresponding to: (i)
the average number of children in the Coupled-KeyOptimized
structure for nodes at that level; (ii) the average saturation

Number of Children
Saturation Degree
% Violated Nodes

 0

 2

 4

 6

 8

 10

1 2 3
Forward Level

100% 100%

35.4%

Fig. 8. Number of children imposed by overlay (first bar), saturation degree
(second bar) and percentage of nodes with saturation degree violated (third
bar - scaled down by a factor of 10), when Coupled-KeyOptimized is used to
deliver keys.

 0

 100

 200

 300

 0 200 400 600 800 1000 1200

Ov
er

he
ad

[K
bp

s]

Time[Secs]

Coupled-DataOptimized
Decoupled

Fig. 9. Overhead per second at the source when mantaining Coupled-
DataOptimized and Decoupled structures (An offset included in X axis to
clearly read the graph), for Rally trace and rekey period 60 seconds.

degree (maximun degree imposed by node out bandwidth) for
nodes at that level; and (iii) the fraction of nodes at that level
which have more children than permitted by their saturation
degree. As can be seen from the figure (third bar), 100% of the
nodes at forward level 1 and 2, and 35.4% of the nodes in level
3 are violating their saturation degree. The average number
of children (first bar) exceeds the average saturation degree
(second bar) for levels 1 and 2, and exceeds the maximum
saturation degree any node has in our experiments for level 1.
These results indicate that it is not feasible to use the Coupled-
KeyOptimized strategy for bandwidth-demanding applications.
The reason is that the goal of matching the dissemination tree
with the logical key tree built by LKH is at odds with the goal
of honoring the heterogeneous access bandwidth constraints of
participating nodes.

2) Benefits of Decoupled: Given the feasibility concerns
with Coupled-KeyOptimized, the rest of the section focuses on
Decoupled and Coupled-DataOptimized strategies. Since both
strategies employ the same ESM overlay for data distribution,
we expect the application performance to be similar, and
our comparisons primarily focus on the overheads involved.
Figure 9 shows the overhead for the two schemes as a function
of time for the Rally trace and a rekey period of 60 seconds.
The overhead is sampled every second and considers all
control messages at the source, including those due to key
management and maintenance of the overlay dissemination

Traces
Rally Conference1 Conference2 Competition Portal

O
ve

rh
ea

d(
kb

ps
)

0

20

40

60

80

100

120

140

160

180

200
Control Messages for Keys Delivery Structure

Control Messages for Data Delivery Structure

Key Messages

Fig. 10. Peak overhead of Decoupled (first bar) and Coupled-DataOptimized
(second bar) with various traces for rekey period 60 seconds.

structures. We have added an offset on the X-Axis to Decou-
pled curve for clarity of reading this figure. Both curves see
periodic spikes corresponding to rekey events. Both schemes
have similar overheads in the time ranges between rekey
events, but the overhead at the rekey event is reduced for
Decoupled.

Figure 10 studies the schemes across the complete set of
traces. The figure shows the peak communication overhead
incurred with Decoupled and Coupled-DataOptimized with
a rekey period of 60 seconds and for various traces, by
sampling overhead at every second after the first rekey period
and identifying the peak value. The overhead during the first
rekey period is not considered since the system is not in a
steady state at that time. Each group of bars corresponds
to a different trace. The first bar in each group is the peak
overhead incurred with Decoupled, and the second bar the
peak overhead with Coupled-DataOptimized. Each bar con-
sists of various overhead components: key messages, control
messages for data-delivery structure, and control messages
for keys-delivery structure with Decoupled. We make two
observations: first, for all traces, the overhead of key mes-
sages incured with Decoupled is reduced by between � ���
to ��� � of that incurred with Coupled-DataOptimized. This
is expected since Decoupled uses a separate optimized keys-
delivery structure. Second, for all traces, the total overhead
incurred with Decoupled is reduced by between � ��� and
� �	� of that incurred with Coupled-DataOptimized. Here for
some small-sized and less dynamic traces like Conference1,
the reduction in total overhead made by Decoupled is not
so significant as in key messages. The main reason is that
for those traces the overhead of maintaining the data-delivery
structure is significant, so reducing only key messages can not
reduce the total overhead greatly. Another reason is that for
Decoupled, there is an additional overhead of maintaining the
separate keys-delivery structure. However, for larger and more
dynamic traces like Rally where overhead of key messages
is the major component, the reduction in total overhead is
still significant. We also performed experiments with the Rally
trace for a rekey period of 300 seconds and the reduction in
peak overhead of Decoupled versus Coupled-DataOptimized
is even more significant.

Overall, these results show that the reduction in peak

overheads due to key dissemination with the Decoupled ap-
proach can outweigh the overhead of maintaining an additional
structure. Further, these benefits may be realized while still
honoring physical access bandwidth constraints, and achieving
good application performance.

VI. SUMMARY AND CONCLUSIONS

While key management algorithms have been widely ex-
plored in the past, most prior work was conducted in the
context of IP Multicast. In this paper, we study the unique
opportunities and challenges when incorporating key manage-
ment schemes in an overlay architecture. Specifically:� We present the first study of key dissemination schemes with
overlays that involves implementation, performance evaluation
in real Internet environments, and which uses real traces of
join/leave dynamics. We show results from key management
schemes (Key-Star and Marking) and key distribution strate-
gies (NaiveUnicast, Tree-TCP, Tree-UDP, and Tree-Unicast),
deployed on the Planetlab testbed and evaluated with real
join/leave dynamics from previous operational deployments
(Table I). Prior work in this space [21], [22], has relied on
analysis or simulations with synthetic workloads.� We conduct the first study of resilient key dissemination
using overlays. While reliable key dissemination has proven
challenging in the context of IP Multicast, we show that it
can be significantly simplified in the overlay context through
use of TCP to ensure per-hop reliability. For the Rally trace
and a rekey period of 60 seconds, � �	� of receivers see a
Decryptable Ratio greater than ��� ��� when using per-hop TCP.
Per-hop reliability is by itself insufficient to ensure end-to-
end reliability due to transient conditions that may occur in
the overlay. We show that it is feasible to improve performance
if the convergence properties of overlays are considered and
propose Tree-Unicast. We observe that for the Rally trace and
60 second rekey periods, with Tree-Unicast ����� of receivers
see a Decryptable Ratio greater than ��� � � as compared to �����
of receivers for the Tree-TCP scheme. A detailed study of
sensitivity to several traces and rekey periods support these
results.� We study the potential of a decoupled architecture that uses
two specialized dissemination structures, one for data and one
for keys, compared to coupled architectures in which the same
structure is used for disseminating both data and keys. We
show that Coupled-DataOptimized incurs high peak overheads
associated with key dissemination, and Coupled-KeyOptimized
(recently proposed in [21]), violates the physical access
bandwidth constraints of nodes for bandwidth-demanding
broadcasting applications. With Decoupled, physical access
bandwidth constraints are honored. Further, the reduction
in peak overheads due to key dissemination outweighs the
overhead of maintaining an additional structure. For the Rally
trace and 60 seconds rekey period, Decoupled reduces the peak
overhead 44% in comparison to Coupled-DataOptimized while
the average overheads are comparable.

Our future work involves extending our results to deploy-
ments with real users. In addition, we will explore ways to

minimize peak overheads, and reduce the costs of incorporat-
ing confidentiality in extremely large-scale overlay multicast
groups.

REFERENCES

[1] Y. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,”
in Proceedings of ACM Sigmetrics, June 2000.

[2] P. Francis, “Yoid: Extending the Internet Multicast Architecture,” Apr.
2000.

[3] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O.
Jr., “Overcast: Reliable Multicasting with an Overlay Network,” in
Proceedings of the Fourth Symposium on Operating System Design and
Implementation (OSDI), Oct. 2000.

[4] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An Ap-
plication Level Multicast Infrastructure,” in Proceedings of 3rd Usenix
Symposium on Internet Technologies & Systems (USITS), March 2001.

[5] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points,” in Proceedings of ACM SIGCOMM,
2004.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” in Proceedings of ACM SIGCOMM, Aug. 2002.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth Content Distribution in Coop-
erative Environments,” in Proceedings of SOSP, 2003.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: A
Large-Scale and Decentralized Application-Level Multicast Infrastruc-
ture,” in IEEE Journal on Selected Areas in Communications Vol. 20
No. 8, Oct. 2002.

[9] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” in Proceedings
of SOSP, 2003.

[10] J. Liebeherr and M. Nahas, “Application-layer Multicast with Delaunay
Triangulations,” in Proceedings of IEEE Globecom, Nov. 2001.

[11] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Dis-
tributing Streaming Media Content Using Cooperative Networking,” in
Proceedings of NOSSDAV, May 2002.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
level Multicast using Content-Addressable Networks,” in Proceedings
of NGC, 2001.

[13] W. Wang, D. Helder, S. Jamin, and L. Zhang, “Overlay Optimizations for
End-host Multicast,” in Proceedings of Fourth International Workshop
on Networked Group Communication (NGC), Oct. 2002.

[14] S. Q. Zhuang, B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
“Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-Area
Data Dissemination,” in Proceedings of NOSSDAV, Apr. 2001.

[15] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “Early Experience with an Internet Broadcast System
Based on Overlay Multicast,” in Proceedings of USENIX, June 2004.

[16] “Tmesh broadcast system,” http://warriors.eecs.umich.edu/tmesh/tmeshv.html.
[17] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A

Data-driven Overlay Network for Live Media Streaming,” in Proceed-
ings of IEEE INFOCOM, 2005.

[18] D. Wallner, E. Harder, and R. Agee, “Key Management for Multicast:
Issues and Architectures,” RFC 2627, June 1999.

[19] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for
secure group communications,” in Proceedings of the tenth international
conference on World Wide Web. ACM, 2001, pp. 525–534.

[20] X. Zhang, S. Lam, D. Lee, and Y. Yang, “Protocol design for scalable
and reliable group rekeying,” IEEE/ACM Transactions on Networking,
vol. 11, no. 6, Dec. 2003.

[21] X.B.Zhang, S.S.Lam, and H.Liu, “”‘Efficient Group Rekeying Using
Application Layer Multicast”,” in Proceedings of IEEE ICDCS, 2005.

[22] C. Abad and I. Gupta, “”Adding confidentiality to application-level
multicast by leveraging the muticast overlay”,” in ”Proceedings of
IEEE 4th International Workshop on Assurance Distributed Systems and
Networks (ADSN)”, 2005.

[23] C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure group communica-
tions using key graphs,” Transactions on Networking, vol. 8, no. 1, pp.
16–30, 2000.

[24] “Akamai Technologies, Inc.” http://www.akamai.com.
[25] “Inktomi,” http://www.inktomi.com/.

