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Abstract—The openness of the Android operating system in-
creased the number of applications developed, but it also intro-
duced a new propagation vector for mobile malware. We model
the propagation of mobile malware using epidemiology theory
and study the problem as a function of the underlying mobility
models. We define the optimal approach to heal an infected system
with the help of a set of static healers that distribute patches,
as the T-COVER problem and show that it is NP-HARD. We
then propose two families of healer protocols that trade-off time
recovery and energy consumed by sending patches. The first one
uses randomization to ensure a small recovery time but may result
in healers sending more patches than needed. The second one
uses system feedback to optimize energy consumed by sending
patches, but it may result in a larger recovery time. We show
through simulations using the NS-3 simulator that despite lacking
knowledge of the future, our protocols obtain a recovery time
within a 10x bound of the oracle solution that knows the arrival
time of the infected nodes.

I. I NTRODUCTION

With the advent of Google’s Android, the number of wireless
devices with complex capabilities and supporting open source
operating systems has significantly increased. While the open-
ness of operating systems induces developers’ motivation,it
also introduces a new propagation vector for mobile malware.
Recent reports show a significant increase in malware targeting
Android devices [1, 2].

Significant research focused on propagation modeling, de-
tection, and application profiling of malware in the contextof
wired networks [3]–[7]. Those results do not model mobile
malware which spreads directly from device to device by
using short-range communication such as WiFi or Bluetooth.
Mobile malware propagation has been studied using mean field
compartmental models [8] which assume that each infected
node will contact every neighbor once within one time step,
i.e., the infectivity is equal to the connectivity. Such models
do not take into account that mobile malware does not spread
at an even contact rate, as spreading requires devices to be
within each other’s proximity which in turn depends on user
mobility. Most previous research on mobile malware has either
not considered mobility [9]–[11] or has given limited consider-
ations to it [12, 13]. Approaches that considered mobility have
used popular models like the random waypoint model which,
as it has been shown, does not realistically mimic human
mobility [14].

While there has been work studying mobile malware prop-
agation, the problem ofinfection containmentin wireless
networks was less studied. The work of [15] analytically
studied containment of infection in a mobile network through
countermeasures such as reducing communication range of
nodes during an infection outbreak. The work does not consider
realistic mobility models and does not propose concrete pro-
tocols to deploy and activate such countermeasures. The work
in [16] introduced replicative and non-replicative patch dis-
seminations assuming a network cost function and proved that
the dynamic control strategies have a simple optimal structure.
However, the impractical determination of the healer activation
time and the lack of inclusion of the resource cost incurred by
each patch dissemination make the techniques difficult to apply
directly to energy constrained realistic scenarios.

In this paper, we take the first step towards designing
countermeasures for malware propagation under the presence
of realistic mobility in a practical scenario. We investigate
the dependence of infection spread on the underlying mobility
model in order to systematize the design of countermeasures.
We introduce the concept ofhealers to mimic the recovery
process in a standard epidemic model and we focus onstatic
healers, i.e., immobile healers, which represent a realistic
model because they can be directly mapped to real-world
scenarios. For instance, static healers can be considered as
cellular base stations (where no two stations cover the same
cell in most cases) and the mobile nodes can be considered as
users carrying mobile phones (moving with a certain mobility
model). Unlike [12], our static-healers are not white-worms
and do not deactivate infected nodes. Our contributions are:

• We show that the infection spread in mobility models that
mimic human behavior is slower than standard mobility models
due to different contact rate and spatial distribution charac-
teristics. We compare the Truncated Levy Walk (TLW) and
Random Waypoint (RWP) mobility models and show that the
epidemic spread in TLW isrelatively slowercompared to RWP.
This finding indicates that when designing countermeasure
mechanisms, the time constraints are less tight than believed
and that time-dependent assumptions can be relaxed to some
extent, resulting in relatively lower consumption of energy.

• We model countermeasures to malware spread using static
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- Infection Rate: transition 

  from susceptible to infected status 

- Recovery Rate: transition 

  from infected to recovered status 

Fig. 1. SIR Model: S, susceptible; I, infected; R, recovered

healer nodes. Static healers once placed in the area, act
independently to deploy a patch when they sense nodes in
their proximity. A healer-based solution optimizes: (i) the time
it takes to heal the entire system by patching all the infected
nodes and (ii) the total number of patches broadcasted. We
formulate the optimal solution based on static healers as a T-
COVER problem and show that the T-COVER is NP-HARD.

• We design ORACLE, alog(n) greedy approximation algo-
rithm that computes the optimal healing time knowing the
placement of the static healers andthe future, i.e. the exact
time instances when the infected nodes arrive within each of
the healer’s proximity.

• We propose a novel healer placement strategy using blue-
noise distribution generating Poisson Disk Sampling. We show
that unlike random placement that results in many overlapping
healers which cover the same area, our method allows healers
to cover disjoint areas, thus enabling them to independently
cover more infected nodes.

• We design two families of healer protocols, RH and PH,
that trade-off time recovery and energy consumed by sending
patches. RH uses randomization to ensure a small time recov-
ery but may result in healers sending more patches than needed.
PH uses system feedback to optimize the energy consumed by
sending patches, but it may result in a larger time recovery.
We compare our protocols with the ORACLE protocol and
show through simulations that despite lacking knowledge of
the future, both RH and PH protocols obtain a recovery time
within a 10x bound of the oracle.

The rest of this paper is organized as follows.§II describes
our system model, our assumptions and introduces the mobility
models used in this paper.§III analyzes the infection dynamics
as a function of the underlying mobility models.§IV introduces
our healers and§V provides simulation results.§VI discusses
related research and§VII concludes the paper.

II. SYSTEM MODEL

In this section, we construct a framework for analyzing the
propagation of malware over a mobile ad hoc network that
relies on epidemic theory to capture both the spatial interaction
of nodes and the temporal dynamics of infection propagation.

A. Mobility Models

Due to the difficulties in adapting real-trace data to long
running simulations [11], we decided to use analytical models
derived from real-trace data instead. Specifically, we use the
Random Waypoint(RWP) andTruncated Levy walk(TLW)
mobility model to generate synthetic mobility traces. We se-
lected RWP because it is a typical mobility model used to study

mobile malware propagation. We selected TLW because it was
shown to mimic human mobility. Unless otherwise noted, we
use a node velocity of 0.6 m/s to mimic low velocity realistic
human mobility in both mobility models throughout the paper.
Random Waypoint (RWP): RWP is a widely used mobility
model [17]–[19] and includes pause times between changes in
direction and/or speed [20]. A mobile node begins by staying
in one location for a certain time period (pause time). Once this
time elapses, the mobile node chooses a random destination in
the simulation area and a speed that is uniformly distributed
between[vmin, vmax]. The mobile node then travels toward
the newly chosen destination at the selected speed. Upon
arrival, the node pauses for a specified time period and starts
the whole process again (see Fig. 2(a)).

The initial random distribution of mobile nodes is not
representative of the manner in which nodes distribute them-
selves when moving as the instantaneous mobile node neighbor
percentage possess high variability [21]. We use the approach
suggested by [22] and discard the initial 1000 seconds of
simulation time produced by RWP in each simulation trial.
Truncated Levy Walk (TLW) : Rhee et. al. recently [14]
reported that human walks performed in outdoor settings of
tens of kilometers resemble a truncated form of Levy walks
commonly observed in animals such as spider monkeys, birds
and jackals. ALevy walkis a type of random walk in which
the increments are distributed according to a heavy-tailed
probability distribution,i.e., their tails are not exponentially
bounded. The distribution used is a power law of the form
y = x−α where1 < α < 3. TLW is a random equivalent
mobility model for human walks in that it can describe some
important characteristics of human walks (e.g. flight length,
pause time and inter-contact time) despite being a random
model. Intuitively, Levy walks consist of many short flights
and exceptionally long flights that nullify the effect of such
short flights (see Fig. 2(b)).

B. Infection and Recovery Models

We adapt two classic epidemic models (SI and SIR) to take
into account mobility. First we give a brief overview of the
SI and SIR models, then describe how we use them to model
malware propagation and node recovery in a mobile network.
SI Model. The SI-model is a two-state compartmental epi-
demic model, i.e., a node can stay in one of two states:
susceptibleand infected. A susceptible node is vulnerable and
can be exploited to be infected which in turn can infect other
susceptible nodes. In this model, once a susceptible node is
infected, it stays that way. The parameter that characterizes
the model is the infection rate,β.
SIR Model. The SIR Kermack-McKendrick model [23] as-
sumes that an infected node can be recovered. Specifically a
node can be in one of the following states:susceptible, infected,
and recovered. Nodes flow from the susceptible group to the
infected group and then to the recovered group [24] as shown
in Figure 1. The model is characterized by two parameters, the
infection rateβ and the recovery rateα.



Mobile Infection Model . The SI model makes the unrealistic
assumption that each infected node will contact every neighbor
once within one time step,i.e., the infectivity is equal to the
connectivity. To take into account mobility, we assume the
nodes are moving according with a mobility model and we
define infection spread as a function of a parameterc which
we call the probability of successful transmission. At each
time step, for every nodeX, we find the neighbors ofX that
are capable of infectingX. For each of these neighbors, we
generate a random number from a uniform distribution between
[0, 1] and if this value is smaller thanc, then X becomes
infected.
Mobile Recovery Model. We adapt the SIR epidemic model as
follows. Infection is modeled as in the mobile infection model
above. We map node recovery through a healer that will change
the state of an infected node to recovered through a healing
mechanism. Once recovered, a node can no longer be infected,
thus if no new nodes are added the infection will eventually
disappear. The healing mechanism is distributed through a
patch, a healer can send at most once during an interval of
time calledepoch, denoted asτ . We assume that healers are
static, resource constrained, and act independently. We assume
that there is no packet loss but note that it is straightforward
to extend our model to a model having packet loss.

This model is characterized by the way the healers are placed
and by the frequency with which they send patches. All healers
are activated once the number of infected nodes in the system
reached a system-wide parameter.

III. I NFECTIONDYNAMICS

In order to understand the infection dynamics of the two
mobility models, we first describe our methodology and then
explain the results that we observed.

A. Methodology

We use the infection model described in previous section
with the parameter that controls the infection rate,c = 0.3 [25]
to mimic a more realistic infection scenario where infection
spreads slowly. We generate RWP traces by using [26] and
TLW traces by using the algorithm outlined in [14]. We
perform our simulations using NS-3 [27]. We simulate the
behavior of a system with 100, 200, and 300 nodes in a fixed
area. All results have been averaged over ten simulation runs.

We define aninversion pointto be the time instant where
50% of the population is infected. We use this metric to indicate
the first point in time where the number of infected nodes
surpasses the susceptible ones, thusinverting the scenario. In-
tuitively, an inversion point characterizes how fast the infection
is propagating in an epidemic system.

B. Results

Figure 2 shows the infection dynamics in RWP and TLW
mobility models. Observe that the inversion point for RWP
occurs quite early in the simulation (Fig. 2(c) indicates a
time around 500 seconds) in comparison with TLW (Fig. 2(c)
indicates times between 1500-3000 seconds). This indicates

that the time required to infect the system is far less in caseof
RWP differing almost by a factor of 3 from TLW. To the best of
our knowledge, this phenomenon has not been observed before
as most earlier research [12, 13] has studied these mobility
models in isolation. As protocols are to be designed mostly
for realistic mobility models (TLW in this case), this comes
as a good news in that certain assumptions such as time-
constrained-ness of a protocol can be relaxed to some extent,
resulting in relatively lower consumption of energy.

We gain insights into the reasons behind the slow infection
propagation for TLW by using two metrics: (i) contact rate,
and (ii) spatial distributions of node mobility.

1. Contact Rate:Contact rate is the average number of nodes
encountered by any given node over the duration of simulation.
We plot an empirical cumulative distribution curve (ECDF)
of the contact rate in Fig. 2(d) for RWP and TLW. Observe
that the median contact rate of nodes in case of RWP is
almost always higher than that in TLW. The same effect can
be observed for the95th percentile indicating that in RWP, a
given node comes in contact with a relatively higher number of
nodes thereby increasing its chances of infecting other nodes
or getting infected by other infected nodes.

2. Spatial Distributions: The spatial distribution (i.e., fre-
quency of visits in the simulation area) of the mobility models
reveals another reason behind the slow infection propagation.
In order to evaluate the spatial distribution of infected nodes
that move according to each of the models, we take an approach
similar to [28]. Specifically, we divide the simulation areainto
small size cells (e.g., divide a 1000x1000m2 into 20x20m2 size
cells) and characterize each one of them using a histogram that
captures the duration of how long an infected node stays in a
particular cell. We end the simulation after 50,000 seconds.

Fig. 3(a) shows the resulting spatial distribution and contour
lines for a particular simulation run using RWP. We observe
that the spatial distribution has a peak in the middle of the
area, i.e., an infected node is most likely to be found in the
central cells of the simulation area and the probability that
a node is located at the border of the area goes to zero.
Fig. 3(b) shows the spatial distribution and contour lines for
TLW. Observe that the non-homogeneous behavior seen in the
case of RWP is absent in the case of TLW, i.e., TLW exhibits
a homogeneous spatial distribution. The reason for the non-
homogeneous behavior in RWP is well known [28]–[30]. In
short, RWP chooses a uniformly distributed destination point
rather than a uniformly distributed angle. This means that nodes
located at the border of the simulation area are very likely
to move back toward the middle of the area. However, this
is not the case as per the original definition [14] of TLW.
Under a TLW, at the beginning of each step, an infected node
chooses a direction randomly from a uniform distribution of
angle within [0, 2π], a finite flight time randomly based on
some distribution, and its flight length and pause time from
some chosen probability distributions. In the long run, the
positions of the random walker (infected node in our case)
has been shown to converge to another distribution, called the
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Fig. 3. (a) Spatial Distribution of RWP: The non-homogeneous
distribution of node mobility indicates the center to be themost
frequented region.(b) Spatial Distribution of TLW: The nearly-
homogeneous distribution of node mobility indicates that all re-
gions are equally frequented.

Levy stable distribution, which leads to super-diffusive paths,
thus making the infected nodes cover the area in a nearly
homogeneous manner.

In summary, in case of RWP, depending on the origin of the
infection, the spread can progress rapidly because most nodes
have to pass through a common point in the center which also
explains why the contact rate of the nodes is higher than that
in TLW. In case of TLW, due to the underlying homogeneous
behavior, the rate of infection propagation is nearly the same
irrespective of the point of origin of the infection.
Impact on the design of countermeasures:

• Static healers placement: In case of RWP, positioning a
few static healers somewhere near the center of the field in
a non-overlapping manner should suffice because most nodes
will traverse the central point in the field anyways. However,
this is not the case for TLW, because the node distribution
is uniform across the field, thus requiring a way to optimize
healer placement such that they cover as much field as possible.

• Healer patch dissemination: In case of designing a healer for
TLW, having a higher patch dissemination rate will result ina
lot of patches being delivered to the same set of nodes since due
to the low velocity (and thus low contact rate) many nodes may
continue to stay within the proximity of the healer. Therefore,
for a system optimizing energy, healer patch disseminationis
a function of the contact rate (details in§ IV-E).
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Fig. 4. Healer Activation Problem: Without information about
its future states, predicting when to broadcast a patch to optimize
the healing time is hard.

IV. D EFENSEPROTOCOLSBASED ON STATIC HEALERS

In this section, we discuss defense protocols against mobile
malware. We first present the problem definition, formally
define the static optimal healer activation problem, show itis
NP-hard, and design a greedy approximation algorithm. We
discuss strategies for healer placement and present two families
of static healers heuristics: randomized and profile-based.

A. Problem Definition

Healers have the ability to broadcast a patch periodically
at every epochτ . We consider the decision problem of when
the healer node should be activated (i.e. switched on) within
this time period to deliver a patch, to optimize along two
dimensions: (i) the time it takes to heal the entire system, and
(ii) the total number of patches broadcasted.

We assume that healers can sense the number of neighbors
surrounding them but cannot determine which of the nodes
are infected/susceptible/recovered. Note that this increases the
complexity of the problem significantly. Consider the example
in Fig. 4. At time slot 1, if the healer decides to utilize its patch,
it will heal three nodes whereas at time slotm, it can heal only
two nodes and at time slotn, it can heal five nodes. An oracle
that has access to the future will pick a time slot that will make
an effective use of the patch to heal the maximum number of
nodes (in this case, time slotn). However, in practice, the
future is not available to healer nodes.

We ask the questions:What is an effective strategy for posi-
tioning the static healers so that two healers will avoid healing
the same set of infected nodes?andHow does the healer decide
whether it should deliver the patch or wait in anticipation
of a higher number of nodes in the future?Without loss of



generality, we consider the energy consumption in delivering
the patch is much higher than any other communication activity
initiated by a healer. Intuitively, we are solving the problem
of effectively distributing a patch without knowing the arrival
distribution of infected nodes.

B. Design of an Oracle Optimal Healer

In the following, we formally define the static optimal healer
activation problem, show it is NP-hard, and design instead a
greedy approximation algorithm.

Let us call the task of designing a strategy for an optimal
healer as the T-COVER problem.

Definition 1. (T-COVER). Given a systemIt = (I, T ), where
I be the set of all infected nodes andT =

⋃
i
Ti, where each

Ti is the set of infected nodes seen by all the healers at time
instancei. Let no two healers exist within the range of each
other, and that a patch from a healer can heal all infected
nodes within its range and will consume one time unit. The
T-COVER problem finds a setW ⊆ T with min cardinality
so that it covers the entire set of infected nodesI with |W |
patches.

For example, letI = {1, 2, 3, 4} andT = {T1, T2, T3} where
T1 = {1}, T2 = {1, 2, 3} and T3 = {3, 4} be the sets of
infected nodes seen by the healer, then the T-COVER is W =
{T2, T3} meaning that a patch should be deployed at times
t = 2 and t = 3 for optimality.

We now prove that the T-COVER problem is NP-HARD by
reduction to the minimum set cover problem. First we state the
minimum set cover problem.

Definition 2. (M IN SET COVER (MSC)). Let S =
{S1, S2, ..., Sm} be a collection of finite sets, whereSi’s
elements are drawn from a universal setU =

⋃m

i=1 Si. The
MSC of Is = (U,S) is a setC with min cardinality where
C ⊆ S and

⋃
Si∈C

Si = U .

For example, assumeU = {1, 2, 3, 4, 5} and S =
{S1, S2, S3, S4}, whereS1 = {1, 2, 3}, S2 = {2, 4}, S3 =
{3, 4} andS4 = {4, 5}. The MSC isC = {S1, S4}. The MSC
problem is NP-HARD. Consequently, the following is entailed.

Theorem. The T-COVER problem isNP-HARD.

Proof: We prove the theorem by providing a polynomial
time reduction from the NP-HARD MSC problem. Consider
Is = (U,S) is an instance of MSC problem havingU as
the universal set andS = {S1, S2, ..., Sm} whereSi ⊆ U ,
and

⋃m

i=1 Si = U . We construct an instanceIt = (I, T ) of
the T-COVER problem as follows. Suppose the universal set
U corresponds to the set of infected nodesI. The intuition
behind this mapping is that withIs we want to cover each
element inU and accordingly we aim to cover all the infected
nodes inI of It. EachSi ∈ S is mapped to a time instance
Ti ∈ T as selection of sets inIs corresponds to selecting the
time instances inIt when a patch is to be broadcasted. This
reduction can be easily done in polynomial time.

We now show thatIs has a MSC iffIt has a T-COVER.
Suppose thatIs has a MSCC = {Si1 , ..., Sik}, wherek ≥ 1.
Since eachSij ∈ C wherej = 1, ..., k, has a corresponding
Tij ∈ T and

⋃
Sij

∈C
Sij = U , therefore

⋃
(i,j)|Sij

∈C
Tij =

U = I. Thus, {Ti1 , ..., Tik}, where k ≥ 1 is a T-COVER

of It. Conversely, suppose thatW = {Ti1 , ..., Tik}, where
k ≥ 1, is a T-COVER of It. Similarly we can prove that
for each Tij ∈ W , we have a correspondingSij ∈ S
and thus

⋃
(i,j)|Tij

∈W Sij = U . Therefore, we conclude that

{Si1 , ..., Sik}, wherek ≥ 1, is a MSC ofIs.

Algorithm 1 Greedy Approximation (ORACLE)
Input Let I be the list of all infected nodes,Si be the set of infected nodes

seen at each timei, wi be the list of costs associated with each arrival ati

Initially :
R is the set of elements that are not covered as yet
C is the set of covered elements
w is the weight vector
R = I andC = φ

repeat
let Si be the set that minimizes wi

|Si∩R|

C = C ∪ {Si}
R = R− Si

until R = φ
return C

According to the above theorem, we can employ any heuris-
tic that solves the set cover problem to solve the T-COVER

problem. Algorithm 1 gives a greedy approximation for the
T-COVER. The algorithm takes as input the arrival times of
the infected nodes. Here,Si is the set of infected nodes seen
at any one time instant and we equate the weight vectorwi

to the time of arrival – cost of healing nodes at a later time
is higher because it introduces delay. The main loop iterates
for O(n) time, where |I| = n. The minimumW can be
found in O(log m) time, using a priority heap, where there
are m sets in a set cover instance giving us a total time of
O(nlog(m)). Fig. 5(a) shows that even in the presence of
hundreds of thousands of node sets, we are able to compute
the optimal solution in under 8 seconds.

C. Effective Healer Placement

Since the healers are static, the healer placement has an
impact on our defense protocols and thus their coverage area
depends on their placement strategy. Our simulations showed
that a naive placement using uniform random distribution
resulted in a scenario where many healers ended up covering
the same region thereby leaving a lot of uncovered area.
Therefore, what we need is a type of a constraint that rejects
certain configurations that place healers very close to each
other. This problem can be directly reduced to a problem from
the field of computer vision which involves producing sampling
patterns with a blue noise Fourier spectrum.

Formally, the problem can be defined as the limit of a
uniform sampling process with a minimum-distance rejection
criterion. Successive points are independently drawn fromthe
uniform distribution[0, 1]. If a point is at a distance of at least
R from all points in the set of accepted points, it is added to
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that set. Otherwise, it is rejected. The choice ofR controls the
minimum allowable distance between points. This procedure
called Poisson Disk Sampling[31] has been actively studied
and many efficient algorithms exist. Due to space constraints,
we do not discuss this algorithm further but refer the reader
to the linear algorithm outlined by [31]. We adapted this
algorithm by settingR = 2r, where r is the range of our
each healer. Fig. 5(b) clearly highlights the merits of using
this specific sampling process - healers are no longer close to
each other and hence cover more of the simulation area.

D. Family of Randomized Healers

We first present a heuristic where a healer randomly decides
at what time within an epoch to send a patch. Note that a healer
will decide to send a patch regardless of the number of nodes in
its vicinity. Fig. 6 depicts the state machine of the randomized
healer (RH). It contains two states, aninitialization phase
where anepoch timeris started and anexecution phasewhere
the healer prepares to deliver a patch. Theepoch timerfires
a callback function that has two responsabilities: (i) picka
random time from the interval[0, τ ], where τ is the epoch
length that is used to schedule a broadcast, called thepatch
timer and (ii) re-schedule theepoch timerto be fired for the
next epoch.τ depends on the range of the healer and velocity
of the mobile node. When thepatch timerexpires, the healer
broadcasts a patch with a probabilityp, we call it thepatch
deployment probability.

Algorithm 2 Randomized Healers (RH)
Input Epoch lengthτ and patch deployment probabilityp

Initially :
startepoch timer(τ )

Upon the expiration ofepoch timer:
select a durationt randomly from(0, τ)
startpatch timer(t)
startepoch timer(τ)

Upon the expiration ofpatch timer:
Broadcast a patch with probabilityp

Algorithm 2 outlines the pseudo-code for the randomized
healer. Varyingp will generate a family of randomized healers.
On one hand, settingp = 1 (RH(p=1)) makes the healer
broadcast a patch at every epoch and thus attempts to minimize
the time it takes to heal the system. However, notice that
the number of patches delivered would be equal toDsim

τ
,

where Dsim is the simulation duration. On the other hand,
settingp < 1 makes the healer broadcast a patch only during
certain epochs. The time taken to heal the system is inversely
proportional top whereas the number of patches delivered is
directly proportional to it.

Algorithm 3 Profile healers w/o (PH) and with (PHB) backoff
Input Epoch lengthτ , observation timeT (> 1) and maximum backoffη

Initially :
t← 0, ∆← 1, state← LEARNING, next epoch time← 0
backoff enabled ← true if η > 1
Startsensing timer(∆)

Upon the expiration ofsensing timer:
t← t + ∆
if state = LEARNING then

if t < T then
Recordnum of neighbors in proximity

else
Estimatethreshold from the recordednum of neighbors at
each∆
state← EXECUTION
next epoch time← t + τ

Startsensing timer(∆)
else

if currentnum of neighbors > threshold then
Broadcast a patch
if backoff enabled = true then

Randomly selectκ between(0, η)
Startepoch timer(next epoch time− t + κ× τ)

else
Startepoch timer(next epoch time− t)

else
Startsensing timer(∆)

Upon the expiration ofepoch timer:
if backoff enabled = true then

t← get current time()
else

t← next epoch time

next epoch time← t + τ

Startsensing timer(∆)

E. Family of Profile Healers

One limitation of the RH approach is that healers may send
more patches than needed since they decide to send patches
regardless of how many infected nodes are present in their
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Fig. 7. State Machine of a Profile Healer

proximity. We propose a new approach, PH, where a healer
attempts to learn the arrival distribution of nodes and subse-
quently determine whether or not it is cost effective to deliver a
patch. The decision is made based on a threshold that captures
the number of nodes in its vicinity. Each healer can exist in
one of three states as depicted in Fig. 7 - aninitialization
phasewhich sets up all the relevant timers, alearning phase
where the healer passively records the number of neighbors it
is observing during each epoch, and anexecution phasewhere
the healer utilizes information that it learnt during the previous
phase to decide whether or not to deliver a patch.

The goal oflearning phaseis to learn the distribution of node
arrivals specific to a healer’s locality for a certainobservation
time T which is a multiple of τ . Specifically, the goal is
to learn a threshold of nodes that will determine whether
the healer should send a patch or not. We use two metrics:
(i) MSD = Mean + 1.5 × Standard Deviation and (ii)
M = Median. MSD is well-known for normal distributions
and makes the healer broadcast a patch only if the number of
neighbors exceeds its estimate of the95th percentile whereas
the second metric considers only the median. M is very robust
to outliers - it handles cases where a healer observes a burst
of infected nodes during an epoch. Algorithm 3 describes this
healer in detail (in this case, we useη = 1).

During our simulations, we observed that relying solely on a
thresholdwas leading to a wastage of patches - due to the low
contact rate we observed in§III-B. Consider Fig. 5(c) which
depicts the healing sequence of a set of five healers during the
epochs of one simulation run. Points situated at0 indicate that
the healer deployed a patch as the number of neighbors was
above the threshold but the patchdid not heal any infected
nodes. Any other number indicates the number of infected
nodes healed with that patch. Observe that most patches are
going to waste,i.e., they are not healing any nodes. In the worst
case, it takes at leasthealer range

node velocity
seconds for a node to go out

of range of a healer. Therefore, for shorter epochs, consecutive
patches are delivered to the same set of nodes. We address this
issue by introducing arandom backoff, i.e., once a patch has
been broadcast, the healer selects a random backoff delayκ

from the interval(0, η), whereη is the maximum backoff in
epochs, and skips that many epochs. Algorithm 3 also describes
the backoff algorithm in detail (in this case, we useη > 1).
We refer to this algorithm as PHB.

We also propose an optimization where the algorithm dy-
namically estimates the decision threshold, everyT epochs,
and uses the newly estimated threshold in the nextT epochs.
We refer to this algorithm as D-PHB.

V. DEFENSEEVALUATION

In this section, we describe our evaluation methodology and
present the performance of the various healer based defense
mechanisms outlined in§IV.

A. Evaluation Methodology

To evaluate the performance of the two families of healers,
we simulate these healers using the ns-3 [27] network simu-
lator using a network containing 300 nodes. We perform two
different sets of experiments, one with nodes having RWP and
the other with TLW as their mobility model. We assume that
the range of each healer is 20 meters and theepoch length, τ ,
is 30 seconds (so that each node stays within the range of a
healer for one epoch length on an average before leaving the
coverage area of the healer). In addition, 10% of the population
is assumed to be initially infected to enable bootstrapping
the system. We can technically start with one infected node
(which was our initial attempt), but we observed that this only
delays infection spread and increases the chance that infection
will disappear. Healers are placed in the system using the
strategy outlined in§IV-C and are activated when the fraction
of infected nodes exceeds 70% of the total population to give
the system sufficient time to warm-up. We note that 70% is
one possible worst case scenario and projects the capabilties of
the healer. In real-world scenarios, this value depends on how
fast one can setup healers during an epidemic outbreak. Once
the healers are activated, they follow the protocols outlined in
§IV-D and §IV-E. All results are averaged across 10 runs of
each experiment, to obtain statistically significant results, by
varying the seedof a pseudo-random number generator. To
measure the performance of each protocol, we define:

• Total recovery time: It represents the amount of simulation
time required by the set of healers to recover at least 95%
of the nodes in the system.

• Total number of patches: It represents the count of patches
deployed by the set of healers to heal the system such that
at least 95% of the total number of nodes are recovered.

Note that we chose 95% to account for scenarios similar to
the rare block problem[32] in p2p networks - we observed the
presence of infected nodes that take exceedingly long time to
enter the range of healers because they are wandering along
the edge of the field and hence prolong our simulation.

B. Results for Family of Randomized Healers

Fig. 8(a)-(e) shows the temporal view of infection propaga-
tion and the recovery of the system for RH and PH families
using RWP and TLW. The graphs show that regardless of the
protocol, the required recovery time is always smaller in case
of RWP than TLW which is due to RWP’s higher contact rate.

Fig. 8(a) shows the required recovery time for randomized
healers withp = 1, i.e., RH(p=1). The upper graph is for TLW
and the lower one is for RWP. Additionally, we also point out
the recovery time required by ORACLE using a vertical line.
In case of RWP, ORACLE requires 587 seconds to heal the
system whereasRH(p=1) requires almost double this time,i.e.,
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Fig. 8. Comparison of Healer Families: (a)-(e) Infection propagation and recovery with the values obtained using our ORACLE
shown as the vertical lines, (f) Summary of the performancesof healer families for TLW

1,241 seconds. In TLW,RH(p=1) requires about eight times
the optimal recovery time. We also note that the recovery time
required byRH(p=1) is the minimum time that we can achieve
using healers that do not depend on system feedback (e.g.,
estimating the arrival distribution of nodes).

Fig. 8(b) shows the results forRH(p=0.5), i.e., each healer
deploys a patch per epoch with a probabilityp = 0.5. It is
expected thatRH(p=0.5) requires more time thanRH(p=1)

to heal the system since now the healers skip some epochs.
In comparsion with the recovery time required byRH(p=1),
RH(p=0.5) shows 48% increase in case of RWP and 31%
increase in case of TLW.

C. Results for Family of Profile Healers

Let XMSD and XM represent a profile-based healerX

that utilizes MSD(= Mean + 1.5 × Standard Deviation)
and M(= Median) as its threshold, respectively. Fig. 8(c)
shows the performance of PH for the RWP and TLW mobility
models. PHMSD requires more time to heal the system in
comparison with the other twoRH healers. Since we are
more interested in the human-mimicking mobility model, we
evaluate PHB and D-PHB for only TLW in Fig. 8(d) and
Fig. 8(e), respectively. Due to space limitation, we present
the performance of PHB and D-PHB with maximum backoff
η = 2 and M as the threshold value in Fig. 8(d)- 8(e). When
we compare PHMSD, PHBM , and D-PHBM using the TLW
mobility model, PHBMSD outperforms the other two in terms
of total recovery time.

To measure the impact of different maximum backoff values
on the PHBMSD and PHBM , we varied the maximum backoff
from 2 epochs to 16 epochs. Fig. 9 shows the results of
this experiment. We also include the results ofRH(p=1) as a
baseline of the performance. We use two Y-Axes for this graph:

the left one for the total number of patches and the right one
for the total recovery time. Each point is the average of 10
different runs of the simulation and is plotted along its 95%
confidence intervals. With the increase in maximum backoff
values, the total recovery time is increasing rapidly in case of
PHBMSD in comparison with PHBM . On the other side, the
total of number of patches is decreasing rapidly for PHBMSD

in comparison with PHBM . We conjecture that if the recovery
time is to be optimized, then PHBM is a better solution; but if
the energy of the healers is to be optimized, then the PHBMSD

is a better choice. However, the downside of PHB is its large
observation time. D-PHB is a solution to this downside of PHB.
We also include the performance of D-PHBM in Fig. 9. The
results demonstrate that D-PHBM performs as good as PHBM
in terms of both the metrics. So if the large observation time
is unacceptable, D-PHBM heals the system as fast as PHBM

and does not require any observation time.

Summary: Fig. 8(f) summarizes results for TLW for both
metrics obtained by each of the healers. Observe thatRH(p=1)

outperforms the others in terms of the total recovery time.
However, in order to achieve the fastest recovery,RH(p=1)

has to deploy the maximum amount of patches. In terms of
the number of patches, PHMSD requires the least number of
patches but at the cost of a large recovery time. However,
PHBM performs best since it requires only 6% more recovery
time in comparison toRH(p=1) and only 30% more patches
than that of PHMSD.

Our results show that each of the schemes has advantages
and disadvantages. Randomized healers offer the immediate
advantage that they do not rely on system feedback nor do
they have to estimate node arrival distributions. They would be
beneficial in a time-constrained system as randomized healers
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are fast at recovering an infected system. However, they result
in using 3.5x more patches than the profile healers. On the
other hand, profile healers offer intelligent decision making
thereby saving energy in the form of utilizing less number of
patches and would benefit the most in an energy-constrained
environment. However, they result in taking 1.5x more time to
recover in comparison to randomized healers.

VI. RELATED WORK

There has been some work in controlling the spread of the
worm inside a wireless network [7, 33, 34]. Williamsonet
al. [33] present a technique to limit the rate of connections to
“new” machines that is effective at both slowing and halting
virus propagation without affecting normal traffic. Their work
is based on heuristics and simulations which consider a static
choice of reduced communication rate. Wonget al. [34] present
a technique that relies on limiting the contact rate of worm
traffic. Specifically, they investigate rate control at individual
end hosts and at the edge and backbone routers, for both
random propagation and local-preferential worms. They show
that both host and edge-router based rate control result in a
slowdown that is linear to the number of hosts implementing
the rate limiting filter. Our work focuses on modeling infection
dynamics as a function of mobility models and introduces a
suite of defense protocols to thwart the epidemic spread.

VII. C ONCLUSION

Mobile malware present an emerging problem that threat-
ens smartphones which are growing significantly in recent
days. In this paper, we considered realistic mobility patterns
to model proximity dependent malware and compared them
against de facto models like random waypoint mobility model.
We presented several defense mechanisms that allow tuning
parameters to control the dimensions of optimization – either
time to recovery or energy utilized. The extensive evaluation
of all our defense mechanisms shows that randomized healers
would be more effective in a time constrained environment
whereas profile healers would benefit the most in an energy
constrained environment.

REFERENCES

[1] “McAfee Threats Report: 3rd Quarter 2011,” http://goo.gl/jIQPJ.
[2] “Juniper Mobile Threats Report 2010-11,” http://goo.gl/v3yFg.
[3] D. Moore et al., “Inside the Slammer worm,”IEEE SnP, 2003.
[4] C. Zou et al., “Code Red Worm Propagation Modeling and

Analysis,” in Procs. of CCS, 2002.
[5] A. Wagneret al., “Experiences with worm simulations,” inRapid

Malcode, 2003.
[6] J. Kephart and S. White, “Directed-graph epidemiological models

of computer viruses,”Computation, p. 71, 1992.
[7] S. Sellke et al., “Modeling and Automated Containment of

worms,” in Procs. of DSN 2005.
[8] A. Khelil et al., “Epidemic model for information diffusion in

manets,” inACM MSWiM, 2002.
[9] A. Bose et al., “Behavioral detection of malware on mobile

handsets,” inProcs. of MSAS, 2008.
[10] C. Fleizachet al., “Can you infect me now?: malware propagation

in mobile phone networks,” inRecurring Malcode, 2007.
[11] A. Bose and K. Shin, “On mobile viruses exploiting messaging

and bluetooth services,” inSecurecomm, 2006, 2006.
[12] G. Zybaet al., “Defending mobile phones from proximity mal-

ware,” in Infocom, 2009.
[13] R. Potharaju and C. Nita-Rotaru, “Pandora: A platform for worm

simulations in mobile ad-hoc networks,”ACM MCCR, 2011.
[14] I. Rhee et al., “On the levy-walk nature of human mobility,”

IEEE/ACM TON, 2011.
[15] M. Khouzani et al., “Optimal quarantining of wireless malware

through power control,” inITA, 2009.
[16] ——, “Dispatch then stop: Optimal dissemination of security

patches in mobile wireless networks,” inCDC, 2010.
[17] J. Brochet al., “A performance comparison of multi-hop wireless

ad hoc network routing protocols,” inProcs. of ACM MCN, 1998.
[18] C. Chiang and M. Gerla, “On-demand multicast in mobile wire-

less networks,” inProcs. of Network Protocols, 2002.
[19] J. Garcia-Luna-Aceves and M. Spohn, “Source-tree routing in

wireless networks,” 1999.
[20] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc

wireless networks,”Mobile computing, pp. 153–181, 1996.
[21] J. Boleng, “Normalizing mobility characteristics andenabling

adaptive protocols for Adhoc networks,” inProcs. of MAN, 2001.
[22] T. Campet al., “A survey of mobility models for ad hoc network

research,”WCMC, 2002.
[23] V. Capasso and G. Serio, “A generalization of the kermack-

mckendrick deterministic epidemic model,”Math. Biosci, 1978.
[24] C. Huanget al., “Influence of local information on social sim-

ulations in small-world network models,”Journal of Artificial
Societies and Social Simulation, vol. 8, no. 4, 2005.

[25] R. Potharaju, “Infection quarantining for wireless networks using
power control,” inDSN Student Forum, 2010.

[26] C. de Waal and M. Gerharz, “Bonnmotion: A mobility scenario
generation and analysis tool,”CSG, 2003.

[27] “The ns-3 Network Simulator,” http://goo.gl/Lh1Fw.
[28] C. Bettstetteret al., “The spatial node distribution of the random

waypoint mobility model,” inWMAN, 2002.
[29] G. Resta and P. Santi, “Analysis of node spatial distribution of

Random Waypoint Model for Adhoc networks,” inWMC, 2002.
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