
Securing Virtual Coordinates by
Enforcing Physical Laws

Jeff Seibert∗, Sheila Becker†, Cristina Nita-Rotaru∗ and Radu State†
∗Purdue University †University of Luxembourg

{jcseiber, crisn}@cs.purdue.edu {sheila.becker, radu.state}@uni.lu

Abstract—Virtual coordinate systems (VCS) provide accurate
estimations of latency between arbitrary hosts on a network,
while conducting a small amount of actual measurements and
relying on node cooperation. While these systems have good
accuracy under benign settings, they suffer a severe decrease
of their effectiveness when under attack by compromised nodes
acting as insider attackers. Previous defenses mitigate such
attacks by using machine learning techniques to differentiate
good behavior (learned over time) from bad behavior. However,
these defense schemes have been shown to be vulnerable to
advanced attacks that make the schemes learn malicious behavior
as good behavior.

We present Newton, a decentralized VCS that is robust to
a wide class of insider attacks. Newton uses an abstraction of
a real-life physical system, similar to that of Vivaldi, but in
addition uses safety invariants derived from Newton’s lawsof
motion. As a result, Newton does not need to learn good behavior
and can tolerate a significantly higher percentage of malicious
nodes. We show through simulations and real-world experiments
on the PlanetLab testbed that Newton is able to mitigate all
known attacks against VCS while providing better accuracy than
Vivaldi, even in benign settings.

I. I NTRODUCTION

Numerous distributed protocols use network locality for
optimized replica placement [1], multicast tree and mesh
construction [2], routing on the Internet [3, 4], and Byzantine
fault-tolerant membership management [5]. Virtual Coordinate
Systems (VCS) have been proposed as an efficient and low
cost service to provide network locality estimations by ac-
curately predicting round-trip times (RTT) between arbitrary
nodes in a network. Each node measures the RTT to a small
number of other nodes and the VCS then assigns a coordinate
to each node. Each node can then estimate the RTT between
itself and any arbitrary node by calculating some distance
function.

While some VCS are centralized in nature [6], many have
been designed as distributed systems [7], where each node
maintains and updates its own coordinate by relying on
information received from other nodes. Distributed VCS can
be classified as landmark-based and decentralized. Landmark-
based systems [8]–[12] assume a trusted set of nodes that
form the infrastructure by which other nodes can determine
their coordinates. Decentralized VCS [7, 13]–[15] assume no
such infrastructure; a node updates its coordinate based on
measurements and information from a random set of nodes.

Unfortunately, distributed VCSs have been shown [16] to
be vulnerable to insider attacks, where compromised nodes
delay measurement probes and lie about their coordinates to
decrease system performance. As many applications rely on

VCS to build robust services, there have been several propos-
als to secure them. For example, outlier detection [17, 18]
and voting [19] were used to detect equivocation of lying
attackers. Most of these defense methods ultimately decide
if an update from a node is malicious or not by learning
good behavior through system observation over time. As a
result, these schemes are vulnerable to attacks where through
small changes attackers make the defense mechanisms learn
malicious behavior as being good behavior. One such attack
is the well-known frog-boiling attack where attackers lie by
small amounts that accumulate over time and gradually lead
to large changes in performance [20]–[22].

A classical approach for designing distributed systems is
to usesafety invariantsin order to ensure system correctness.
These safety invariants specify states into which the distributed
system should never enter. For example, a distributed system
that forms a tree of nodes should never have any loops, or a
distributed hash table should never form multiple rings, but
only one continuous ring. At first glance, VCS do not appear
to have such invariants as minimal constraints are imposed on
how neighbors are selected or on what coordinates a node can
possibly have. We make the key observation that some VCS
are designed around an abstraction of a physical system [6, 7,
23] and that physical systems follow physical laws. As these
laws are universally true, we can leverage them to identify
safety invariants for VCSs based on physical systems.

We present Newton, a decentralized VCS which extends
Vivaldi [7] to withstand a wide class of insider attacks by using
safety invariants derived from Newton’s three laws of motion.
Newton relies on the observation that Vivaldi is an abstraction
of a real-life physical system and therefore all participating
nodes must follow Newton’s three laws of motion. As there
is a direct mapping between the actions taken by nodes, in
reporting their coordinates and RTTs, and the forces that these
physical laws govern, any attack in which malicious nodes
lie about their coordinates or delay probes will result in the
invariants being violated. We leverage this fact to detect attacks
and discard malicious updates. Our contributions are:
• We describe how to use Newton’s three laws of motion as
well as a mapping between forces and virtual coordinates to
identify invariants that mitigate a wide range of attacks against
Vivaldi. We show how to use the three identified invariants to
detect and mitigate the well-studied inflation, deflation, and
oscillation attacks, as well as the more recent frog-boiling and
network-partition attacks.
• We conduct extensive simulations and real-world experi-
ments on PlanetLab to demonstrate that Newton is able to

mitigate all known attacks against VCSs. We compare Newton
with Vivaldi outfitted with Outlier Detection [18] and show
that Newton is not vulnerable to the frog-boiling and network-
partition attacks. We also find that, even with no attackers,
Newton has better performance than Vivaldi, i.e. Newton is
25% more accurate and 68% more stable.
• We consider extreme scenarios where the attackers are
present in a much higher percentage, over 50% of nodes in the
network are malicious, and also where attackers are conducting
attacks from the beginning of the experiment, while the system
has not converged yet to a steady state. We show that even
under such conditions Newton still performs well.
• We consider adaptive attackers that know how the invariants
are used and try to exploit them. Because in real-deployments
Newton is not a perfect abstraction of a physical system, an
attacker can try to exploit the invariants. We explore a new type
of attack,rotation attack, where attackers rotate their positions
slowly around the origin of the coordinate plane in an attempt
to destabilize nodes while remaining undetected. We find that
Newton holds up well to such attacks, incurring only slightly
decreased accuracy.

The remainder of this paper is organized as follows: We
describe Vivaldi in Sec. II and attacks against it in Sec. III.
We describe Newton and our invariants in Sec. IV. We show
simulation results in Sec. V and PlanetLab experimental results
in Sec. VI. We present related work in Sec. VII and our
conclusion in Sec. VIII.

II. V IVALDI COORDINATE SYSTEM

Algorithm 1: Node i Coordinate Update
Input : Remote node tuple〈xj , ej , RTTij〉
Output : Updated local coordinate and errorxi, ei

1 w = ei/(ei + ej)
2 es = |‖xi − xj‖ − RTTij |/RTTij

3 α = ce × w
4 ei = (α × es) + ((1 − α) × ei)
5 δ = cc × w
6 xi = xi + δ × (RTTij − ‖xi − xj‖) × u(xi − xj)

Vivaldi [7] is a decentralized VCS where the distance
between coordinates represents the estimated RTT between
nodes. All nodes start at the origin and periodically update
their coordinates based on interaction with a subset of nodes
referred to as the neighbor set. A node chooses half of these
nodes randomly from all possible nodes and the other half
from a set of low-latency nodes. Research [7] has shown that
a neighbor set of 64 nodes ensures quick convergence.

In addition to the coordinate value, each node also main-
tains a local error value which shows the confidence in the
coordinate. Algorithm 1 describes how each nodei updates
its coordinate. Specifically,i will send a request to node
j for its coordinate and local error value. When nodej
replies nodei also measures the actual RTT. An observation
confidencew is calculated first (line 1) along with the error
es in comparing the coordinates with the actual RTT (line
2). Nodei updates its local error (line 4) by calculating an
exponentially-weighted moving average with weightα and
system parameterce (line 3). Next,i computes the movement
dampening factor calculated with another system parametercc

(line 5) and updates its coordinate by finding how far it should
move and then multiplying that by a unit vector (represented
by u(•)) in the direction it should move (line 6).

A VCS generally has the system goals of providing accuracy
and stability with respect to the coordinates that it produces.
Accuracy describes how closely the coordinates reflect the
actual RTT between nodes. Stability describes how quickly
nodes converge to a set of accurate coordinates and how long
a node can be absent from the system and still have accurate
coordinates.

Accuracy. We useprediction error to measure accuracy:
Errorpred = |RTTAct − RTTEst|, where RTTAct is the
measured RTT andRTTEst is the estimated RTT. A small
prediction error indicates high accuracy. We report the median
of all the prediction errors at a time instant.

Stability. We usevelocity of a node to measure stability:
V elocity = ∆xi

t , where∆xi is the change in coordinates for
nodei (or distance traveled by a node), andt is the amount
of time taken to make that change. A small velocity indicates
high stability. We report the average of velocity of all nodes
at a time instant.

III. A TTACKS AGAINST VCS

We consider that a bounded number of compromised and
colluding nodes act maliciously. To attack Vivaldi, a malicious
node can (1) influence the coordinate value computation by
lying about its coordinate and local error value or (2) influence
the RTT computation by delaying the measurement probe.

An attacker can exploit coordinate and RTT computation to
conduct the followingbasic attacks:
• Inflation: Attackers lie about having very large coordinates.
This pulls benign nodes far away from their correct coordinates
and thus is an attack on accuracy.
• Deflation: Attackers lie about having small coordinates near
the origin. This prevents benign nodes from being able to
update to their correct coordinates and therefore is also an
attack on accuracy.
• Oscillation: Attackers lie by reporting randomly chosen
coordinates and randomly delaying measurement probes. This
is an attack both on accuracy and stability.

Basic attacks against Vivaldi have been shown to be very
effective in reducing accuracy and stability [16]. Moreover,
while defenses have been proposed, recent work [20]–[22]
identified moreadvanced attacksthat are able to bypass all
previously proposed defenses [17]–[19]. Advanced attacksare:
• Frog-boiling: Attackers lie by small amounts at a time,
slowly increasing this amount by moving their coordinates in
one direction. Over time though, the attacker ends up reporting
coordinates that are far away from their correct coordinate.
This results in an attack on both accuracy and stability.
• Network-partition: Attackers lie similarly as in the frog-
boiling attack, but instead groups of nodes collude together
and move in opposite directions, again attacking both accuracy
and stability.

IV. D ESCRIPTION OFNEWTON

In this section we present our VCS, Newton, which builds
upon Vivaldi by implementing invariants derived from physical

laws to defend against all known insider attacks against VCS.

A. Vivaldi as a Physical System
The coordinate update in Vivaldi is actually modeled based

on a mass-spring system abstraction, where each pair of nodes
have a spring connecting them. Depending on its state, the
spring applies a force to the nodes to either push them together
or pull them apart. This force is calculated by Hooke’s law,
F = −kx, wherek is a spring constant andx is the amount of
displacement that a spring currently is from its equilibrium or
rest position. Every node has a spring constantk value of 1.
To determine displacement, the measured RTT between a pair
of nodes is considered to be the length of the spring at its rest
position, while the current length of the spring is the estimated
RTT. Over time, the system stabilizes when all pairs of nodes
minimize the amount of force that is placed upon them.

When updating its coordinate based on information from
nodej, a nodei calculates the magnitude and direction of the
force ~fij that nodej is applying to it. The magnitude of the
force mij is determined by the RTT between the two nodes
and the distance of the current nodes’ coordinates:mij =

RTTij − ‖xi − xj‖. The direction of the force~dij is a unit
vector that is calculated based on the two nodes’ coordinates:
~dij = u(xi − xj). The force ~fij is then simply~fij = mij ∗
~dij . This determines how much the coordinate needs to be
updated from the previous value and corresponds to Line 6
in Algorithm 1. Note that Vivaldi is not a perfect physical
system and also takes into account the perceived error reported
by the nodej and its own local error value. We discuss the
implications of Vivaldi not being a perfect physical systemin
Sec. IV-E.

B. Using Physical Laws to Identify Invariants
Detecting insider attacks in distributed systems can benefit

from identifying invariants in the system. For Vivaldi, no such
invariants appear to exist at first glance since nodes make
decisions based on inputs from nodes in their neighbor set
and there are no constraints imposed by the system in node
selection. We make the key observation that since Vivaldi [7]
is built upon an abstraction of a mass-spring system, all nodes
must follow physical laws. These laws are universal truths
so they represent invariants that all nodes in Vivaldi should
globally follow. In particular, nodes must follow Newton’s
three laws of motion which are:
First law: A body stays at rest unless acted upon by an
external, unbalanced force.
Second law:A forceF on a body of massm undergoes an
accelerationa, such that the acceleration is proportional to
the force and indirectly proportional to the mass.
Third law: When a first body exerts a force on a second body,
the second body exerts an equal but opposite force on the first
body.

When an attacker lies about its own coordinate, it is
implicitly lying about forces that have previously acted upon
it, thus introducing extraneousindirect forcesinto the system.
Introducing such forces into the system breaks the first and
third laws, as attackers are not acting according to the in-
fluences of the outside forces upon them. When an attacker
delays a measurement probe or lies about its local error value,

it is lying about the force between itself and another node,
thus introducing extraneousdirect forces into the system.
Lying about such forces breaks the second law, as nodes
do not undergo accelerations that are governed by the forces
determined by Hooke’s law.

We show how to leverage Newton’s three laws of motion
to identify three invariants, which we callIN1, IN2 and IN3.
Nodes can then use these invariants tolocally detect whether
an update that results in a force being acted upon is the result
of nodes behaving according to the protocol and thus following
physical laws, or the result of a lying attacker. Below we define
the invariants and describe how to detect extraneous indirect
and direct forces with their help.

C. Detecting Extraneous Indirect Forces
We first focus on how to detect whether a node is lying

about the forces that have acted upon it, resulting in mali-
ciously derived coordinates. For ease of exposition, assume
each nodei is at coordinatexi and at any moment is applying
the force ~fij onto nodej. As described in Sec. II, a node
chooses its neighbor set based on two criteria: (1) half are
chosen randomly and (2) half are chosen based on if they are
physically close. We design two detection schemes, one for
nodes that are randomly chosen, and the other for nodes that
are physically close.

Detection for malicious random nodes from the neighbor
set: We observe that the third law states that there can be
no unbalanced forces in the mass-spring system. An attacker
introducing any extraneous indirect force that causes nodes
to move will be an unbalanced force by definition of the first
law. The third law then implies that an unbalanced force can be
detected by finding the centroid of all the node’s coordinates,
where the centroid is the average of all the coordinates and
has the physical analogue of being the center of mass of
the mass-spring system. We note that while perfect detection
requires knowledge of the coordinates of all nodes, using just
the randomly selected nodes also provides a good vantage
point from which to calculate an approximate centroid. We
summarize our first invariant.
IN1: If the centroid of a nodei and the randomly selected
nodes from its neighbor set is at the origin then no unbalanced
force has been introduced. However, if the centroid is not at
the origin, then an attacker (or collection of attackers), has
introduced an unbalanced force that has the same direction
as a force vector from the origin to the centroid (~c).

In Figs. 1(a) and 1(b) we illustrate how to useIN1 to detect
attacks. In Fig. 1(a) nodei, located at coordinatexi = (2,3),
is the victim and all the other dots are the randomly selected
nodes from its neighbor set, including nodej. Node i can
calculate the centroidc based on its own coordinate and the

coordinates of all those neighborsc =

n∑

p=1

xp

n . Since the third
law states that all forces must be balanced, we would expect
that the centroid would never move, and thus even during
normal operations, would be at the origin. In Fig. 1(a) the
green square signifies this calculated centroid, and since no
attack has taken place yet, it is at the origin.

In Fig. 1(b), we consider what happens when the attacker,
nodej, represented by the red triangle at coordinatexj = (-

 -8 -6 -4 -2 2 4 6 8

2

4

6

8

-8

-6

-4

-2

j i

(a) Random: no attack

 -8 -6 -4 -2 2 4 6 8

2

4

6

8

-8

-6

-4

-2

i

j

fij

c

(b) Random: attack

i

j

k
 -8 -6 -4 -2 2 4 6 8

2

4

6

8

-8

-6

-4

-2
fij

vk

(c) Physical close: no attack

j

i

k

 -8 -6 -4 -2 2 4 6 8

2

4

6

8

-8

-6

-4

-2
fij

vk

(d) Physical close: attack

Fig. 1: Detecting extraneous indirect forces

2,2), introduces an extraneous unbalanced force. In this case,
the attacker moves to coordinate (-9,9). Nodei recalculates

the centroid, usingct =

n∑

p=1

xpt
+fij

n , to be at coordinate (-1,1),
which corresponds to~c, the force that moved the centroid from
the origin. Nodei also experiences a force~fij , represented by
the arrow pushing it towards the attacker. Nodei can detect
the attack by finding that~c is non-zero, as described inIN1. It
can then find which node introduced the unbalanced force, and
thus is the attacker. Specifically, for every neighbor nodek, i
sums up the forces (~sik) thatk has applied to it sincek entered
its neighbor set and then calculates the vector projection of ~sik
onto~c. The node whose projection has the greatest magnitude
is the one who has contributed most to the centroid being
moved, thus an attacker, and its force is ignored.

IN1 holds even if a malicious node initially reports an
incorrect coordinate because the system always starts in a
correct state (all the nodes start at the origin, and so does
the centroid).

Detection for malicious physically close nodes from
neighbor set:For nodes that are physically close, we observe
that because all nodes are connected via springs they will
experience very similar forces from the same nodes. We can
use the first law, which dictates that a node in a mass-spring
system must move if acted upon by an external, unbalanced
force. Moreover, the second law implies that we can detect ifa
node should be moving or not and we can calculate how much
it should move. Our second invariant can now be summarized:
IN2: Nodes i and k are physically close and if nodei
experiences a force~fij from nodej, then nodei would expect
node k to experience a force fromj similar to the vector
projection of ~fij onto the vectoru(xj − xk).

We use Figs. 1(c) and 1(d) to illustrateIN2. Fig. 1(c) shows
the nodes before the attack. The black dot at coordinate (-2,3)
is nodei, the victim, the blue dot at coordinate (-6,6) is node
j, and the red triangle at coordinate (-3,2) is the attacker node
k. Both i andk experience forces upon them fromj. Nodei
can calculate what it expects the force uponk to be and thus
determine that it expectsk to update its coordinate to (2,-5).

Fig 1(d) shows the nodes when the attack happens. Nodei

does move according to the force applied to it to coordinate
(7,-3). However, whenk attacks by introducing an extraneous
indirect force, it moves in a different direction than expected.
To detect the attack, nodei can calculate the force value for
node k as described inIN2 for every force that is applied
to itself and sum up that value (~vk). Node i will remember

the previous coordinate that was reported byk and when it
receives a new update fromk it calculates the change (∆xk).
This difference and the sum of vector projections~vk should
be equivalent, if they are not, thenk did not move according
to the external unbalanced force.

D. Detecting Extraneous Direct Forces
We now focus on how to detect if a force directly acting

on a node is extraneous and is caused by a malicious process.
To accomplish this, we leverage the second law of motion and
Hooke’s law. The second law states how much a node should
accelerate given the force and mass of a node. In our mass-
spring system, the mass of every node is 1, and thus can be
ignored. In a mass-spring system, the amount of force applied
to a node is controlled by Hooke’s law,F = −kx which
states that the amount of force on a node is proportional to
the spring’s current displacement from its rest position. We
now state our third and final invariant:
IN3: As the springs in the physical system stabilize and come
closer to their rest position, nodes should decelerate and thus
the forces that are applied to them should decrease over time.

IN3 applies also to joining and leaving nodes. While joining
nodes may lie about their initial force,IN3 obliges a decreas-
ing force over time. Leaving nodes stop moving and the force
becomes zero.

One possible detection scheme is to impose a certain rate
of decrease on the forces applied to a node, and if the
force is larger than expected, offending nodes are considered
malicious. However, we have experimentally found that this
approach is too strict for real deployments, due to practical
aspects of the Internet. First, triangle inequality violations
result in nodes stabilizing even though springs are still exerting
force on nodes. Thus we can expect forces to never decrease
all the way to zero, but rather opposing forces will simply be
balanced. Second,IN3 assumes that latencies do not change
as real springs can not change their rest position. However,
on the real Internet this will not hold as routes change and
mobile nodes move.

We instead take a different approach. A node calculates the
medianf̃ and median absolute deviationD of the magnitude
of the force that each node is applying to it. Then if the
magnitude of any forcemj is a few deviations larger than
the medianmj > f̃ + k ∗ D, the node will ignore it. We
use the median and median absolute deviation instead of the
average and standard deviation, as the former are more robust
to outliers and have been shown to be resilient against frog-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 300 600 900 1200 1500 1800

D
is

ta
nc

e
fr

om
 O

rig
in

 (
m

s)

Time (s)

Inflation
No Attack

(a) IN1 with Inflation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 300 600 900 1200 1500 1800

D
iff

er
en

ce
 in

 D
is

ta
nc

e
(m

s)

Time (s)

Network-Partition
No Attack

(b) IN2 with Network-Partition

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 300 600 900 1200 1500 1800

M
ed

ia
n

M
ag

ni
tu

de
 o

f F
or

ce
 (

m
s)

Time (s)

Oscillation
No Attack

(c) IN3 with Oscillation
Fig. 2: Invariants shown through deployments of Vivaldi on PlanetLab.

boiling attacks [24].

E. Using IN1, IN2, and IN3 to Design Newton
We use IN1, IN2, and IN3 combined with Vivaldi to

create Newton. We investigate if these invariants hold on
real deployments of Vivaldi on PlanetLab. While Vivaldi
models a mass-spring system, the actual protocol, and more
importantly, any network on which it runs, will not perfectly
emulate a physical mass-spring system. Thus, we expect some
discrepancy between the ideal physical system and the real
deployed system. We investigate these discrepancies and use
the results to calibrate Newton.

We use results of Vivaldi on PlanetLab deployments of
500 nodes to investigate the invariants. We implement all
5 attacks (inflation, deflation, oscillation, frog-boiling, and
network-partition) and plot results relevant to each invariant.
As inflation and deflation share similar characteristics, with
inflation being a more damaging attack, and network-partition
is a stronger variant of the frog-boiling attack, Fig. 2 shows
results for inflation, oscillation, and network-partition. Each
attack starts at 600 seconds into the experiment and are
conducted where 10% of nodes are attackers.

IN1. In Fig. 2(a), we plot the distance from the origin to
the centroid of the coordinates of randomly chosen neighbor
nodes, averaged for all nodes in the system. We expect this
distance to be zero or very small. When there is no attack,
we find the centroid to be less than 20 ms away from the
origin. However, during an inflation attack, the value increases
drastically as nodes start to lie about their coordinate. We
select a threshold of 20 ms to detect an attack.

IN2. In Fig. 2(b) we plot the difference in distance from
where physically close nodes were expected to have their
coordinates located at, versus where they actually reported
themselves to be. We expect this value to be zero or very small.
When there is no attack on Vivaldi, we find these values to
be small, with most less than 50 ms. When under a network-
partition attack, these values increase dramatically, especially
the further a node has moved from its correct coordinate. To
find a good value for the threshold we conducted a sensitivity
study by varying it between 10 and 50 and then finding the
true positive rate (TPR) and the false positive rate (FPR) when
classifying updates. We show the results in Table I and found
a good threshold for detecting the attack to be 35 ms, which
trades-off discarding some benign updates for better detection
of malicious nodes.

IN3. Fig. 2(c) depicts the median of the magnitude of the
force applied to a single node over time. We see that while
there is not a strictly decreasing line as one would expect
in an ideal system, the general trend is present. Also, in an

TABLE I: Sensitivity on threshold for IN2
Threshold (ms) FPR TPR

10 0.57 0.98
15 0.37 0.97
20 0.27 0.95
25 0.19 0.91
30 0.14 0.90
35 0.11 0.84
40 0.09 0.83
45 0.08 0.75
50 0.06 0.61

oscillation attack we see that this value quickly grows and
is inconsistent with benign behavior. To detect attackers,we
have found that it is best to calculate the median separately
for randomly chosen nodes and physically close nodes. This is
due to physically close nodes having smaller force values, but
deviate more from the median, while randomly chosen nodes
have the opposite characteristics. Thus we choose a threshold
of 8 absolute deviations for physically close nodes and 5 for
randomly chosen nodes.

Implementation. To implement Newton, we started with
the base code of Vivaldi and then added the invariants. In
Newton, every node checks the invariants after receiving an
update from another node. If at least one invariant is violated
the update is discarded.

Thresholds. Because Newton uses thresholds that rely on
a fixed point as a reference, such as the origin, they are more
difficult to exploit by an attacker. Nevertheless, an attacker
can still try to exploit these thresholds by staying under their
values.We discuss scenarios where an attacker can exploit
these thresholds in Sec. V-D and show that Newton is robust
even under such scenarios.

Overhead. As Vivaldi is an efficient and low cost service
for latency estimation, we also aimed to preserve that goal in
designing Newton. As such, we do not add any extra network
communication, as the use of our invariants do not require it,
and the added computation and memory usage are very small.

Non-Euclidiean spaces.Since Newton is based on physical
laws found in our Euclidean-based world, we investigate if
Newton works in non-Euclidean spaces. We show results for
Newton in hyperbolic spaces in Sec. V-C. Furthermore, as the
most general form of non-Euclidean spaces are Riemannian
manifolds, and as the Nash embedding theorem says that
any m dimensional Riemannian manifold can be embedded
isometrically in some Euclidean space, we see that the defined
invariants would still hold in non-Euclidean spaces. However,
the construction of this isometrical embedding is not straight-
forward and if pseudo-Riemannian manifolds are used for
virtual coordinates then no such embedding might exist.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(b) Accuracy - 30% attackers
Fig. 3: Simulation results - inflation attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(b) Accuracy - 30% attackers
Fig. 4: Simulation results - deflation attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(b) Accuracy - 30% attackers
Fig. 5: Simulation results - oscillation attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(b) Accuracy - 30% attackers
Fig. 6: Simulation results - frog-boiling attack

V. SIMULATION RESULTS

We show through simulations, using the p2psim simula-
tor [25], how effective Newton is in defending against attacks.
We compare Newton against the unsecured Vivaldi and also
Vivaldi outfitted with Outlier Detection [18], referred to as
Outlier Detection. We also include Vivaldi when no attackers
are present, referred to asNo Attack, as a baseline comparison.

We use the King data set [26] which contains Internet
pairwise measurements between 1740 nodes (average RTT is
180 ms and maximum RTT is 800 ms). Simulations last for
200 time units, where each time unit is 500 seconds. Each
node joins at the beginning of the simulation in a flash-crowd
scenario and remains for the entire duration. We use a typical
setting for Vivaldi [7], where every node has a neighbor set
of 64 nodes, with half randomly chosen and the other half
being nodes with low RTT (also referred to as physically close
nodes). The attackers are chosen randomly from all nodes.
Unless otherwise stated, malicious nodes start their attack at
one-third of the way through the simulation. This is to give a
fair comparison for Outlier Detection, as it needs to learn what
good behavior is. Outlier Detection uses spatial and temporal
thresholds of 1.25 and 4, respectively, as described in [18].
Newton uses the thresholds described in Sec. IV-E which
any Internet-wide deployment could use. For the coordinate
space, we use a Euclidean distance and gradient function in 2
dimensions, unless otherwise stated.

A. Attacks Mitigation
We vary the percentage of nodes that are attackers between

10%, 20%, and 30%. For lack of space and similarity of results
we show only the 10% and 30% cases.

Inflation. Figs. 3(a) and 3(b) show the accuracy under an
inflation attack. We can see that when under attack Vivaldi has
very poor accuracy, which gets increasingly worse with the
percentage of attackers. Both Outlier Detection and Newton
are able to effectively keep the error low after the attack starts.
However, as the percentage of malicious attackers increase,
Outlier Detection’s prediction error also increases as time pro-
gresses, while Newton is able to match the baseline prediction
error. We attribute Newton’s performance to its ability to detect

that the attacker nodes are introducing unbalanced forces and
thus shifting the centroid far away from the origin.

Deflation. Results for the impact of the deflation attack on
accuracy are in Figs. 4(a) and 4(b). The deflation attack does
not have as great of an impact on Vivaldi as inflation, but the
opposite is true of Outlier Detection. However, we see again
that Newton is able to successfully mitigate the attack.

Oscillation. The oscillation attack is different from the
previous two attacks in that while attackers lie about their
coordinates in a random way, they also delay measurement
probes up to 1 second. We show the results of how the
different systems handle the attack and the impact on accuracy
in Figs. 5(a) and 5(b). Outlier Detection is able to withstand the
attacks until there are 30% attackers, when the prediction error
increases to 26 ms. However, Newton continues to provide
good performance for all percentage of attackers. We attribute
this to IN3, requiring forces to decrease over time.

Frog-boiling. The frog-boiling attack, has been shown in
[20]–[22] to be an effective attack against VCS defenses that
must learn over time what good behavior is. We now show the
impact of the attack on accuracy in Figs. 6(a) and 6(b). Similar
to previous works, we see that Outlier Detection indeed does
not protect against such an attack. Newton, though, is able to
successfully protect against the frog-boiling attack.

We give insights about how Newton works in Fig. 7(a)
showing how the centroid moves over time on the coordinate
plane when under attack (10% attackers). Vivaldi’s centroid
moves far away from the origin. Outlier Detection’s centroid
does not move as far, but still it moves close to (100,100).
To be able to see how Newton’s centroid moves, we show
a zoomed in picture in Fig. 7(b). Newton’s centroid also
initially moves away from the origin, until it almost reaches
coordinate (13,15). At this point individual nodes calculate that
the centroid is near 20 ms away from the origin, thus triggering
the detection mechanism. The honest nodes can then determine
who the attackers are and ignore their updates.

Network-partition. The network-partition attack is similar
to the frog-boiling attack, except multiple groups of attackers
move in opposite directions, trying to split the network. We
consider four groups of nodes moving in four different direc-

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

-100 0 100 200 300 400 500 600 700 800

Vivaldi
Outlier Detection

Newton

(a) Centroid

-10

-5

 0

 5

 10

 15

 20

-10 -5 0 5 10 15 20

Vivaldi
Outlier Detection

Newton

(b) Centroid of Newton
Fig. 7: Centroid over time for frog-boiling attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

Outlier Detection

(b) Accuracy - 30% attackers
Fig. 8: Simulation results - network-partition attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
40%
50%
60%
70%

(a) Frog-boiling

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
40%
50%
60%
70%

(b) Network-partition
Fig. 9: Simulation results - high percentage of attackers

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
10%
20%
30%
50%

(a) Oscillation

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
10%
20%
30%
50%

(b) Frog-boiling
Fig. 10: Simulation results - attacks start at the beginning

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

(a) Deflation attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

(b) Oscillation attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

(c) Frog-boiling attack

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Vivaldi
Newton

(d) Network-partition attack
Fig. 11: Simulation results - accuracy when using 4 dimensions in hyperbolic space with 30% attackers

tions. Figs. 8(a) and 8(b) show the accuracy for the different
systems under attack. This attack is successful against Outlier
Detection, while Newton still performs well under attack. This
is even though groups of attackers moving in different direc-
tions give the illusion that they are actually acting according
to balanced forces by not moving the centroid, thus making it
difficult to detect this attack usingIN1. However, in this case,
attackers that are physically close can still be detected byIN2
and all types of attackers can be detected byIN3.

B. Extreme Attack Scenarios

High percentage of attackers.We also show extreme
scenarios where Newton must face an increasing percentage of
attackers. We show the advanced attacks in Fig. 9, results were
similar for the basic attacks, but we did not include them dueto
space constraints. Overall, we see that Newton is able to handle
50% attackers without losing significant accuracy. However,
under 60% and 70% of attackers accuracy starts to degrade,
particularly for the network-partition attacks. We point out
that each node updates its coordinate based on a set of 64
nodes, thus the high-percentage of malicious nodes resultsinto
a lower percentage in the neighbor set. For example, using the
analysis from [18], when there are 70% malicious nodes in the
entire network, about 54% of nodes will be malicious in the
neighbor set and thus able to manipulate the median that is
used to detect extraneous direct forces.

Attacks before system converges to steady state.In
previous simulations, we showed performance when there was
a period before attacks started to allow Outlier Detection to
learn good behavior. Newton does not need such period since
it is based on invariants. We show results only for oscillation

and frog-boiling attacks as results for the other attacks were
similar. Fig. 10 shows results when attacks start from the
beginning of the simulation. As can be seen, Newton mitigates
the attacks. Under the oscillation attack, as the percentage of
attackers increase, it takes slightly longer for coordinates to
stabilize and become accurate. This is because we do not
enforce a strict rate of decrease on the amount of force between
two nodes and instead use the median force to detect nodes.
Nodes must first sample a number of forces before they can
calculate the correct median. Thus, in Newton an honest node
cannot immediately detect if a node is artificially increasing
the force between itself and another node.

C. Newton in Higher-dimensional and Hyperbolic Space

So far we have shown that Newton works well in simple
2-dimensional Euclidian coordinate spaces. However, more
complex spaces have been shown in the past to improve
prediction error. For example, Ledlieet al. [27] have shown
through a Principal Component Analysis that 4 dimensions are
appropriate for Internet-scale network coordinates. Hyperbolic
spaces also have been proposed as an alternative to Euclidean
spaces as they better represent the structure of the Internet [28].
Several works have applied Vivaldi to such spaces and have
shown that it does produce an accurate embedding [29, 30].
Modifying Vivaldi and Newton to work in hyperbolic spaces
simply involves changing the distance and gradient function.
We implement these functions as described in [30]. Hyperbolic
spaces also have a curvature parameter that describes how
much a line deviates from being flat. We experimentally
found that a value of 60 provides good accuracy in benign
environments. We ran simulations in hyperbolic space in 4

 0

 5

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Newton 0%

Newton 30%

(a) Attackers push theIN1 threshold

 0

 5

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Newton 0%

Newton 30%

(b) Attackers push theIN2 threshold

 0

 5

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Newton 0%

Newton 30%

(c) Attackers push theIN3 threshold
Fig. 12: Simulation results - attackers (30%) push the limits of the thresholds used byIN1, IN2, and IN3

dimensions. We find that for 10% and 20% attackers, Newton
performs better than the baseline. Newton continues to work
well even under 30% attackers, which we show in Fig. 11.

D. Invariants under Attack
Because in real-deployments Newton does not behave ex-

actly like a physical system, it uses thresholds for the three
invariants. We note that Newton’s thresholds use as a reference
a fixed point such as the origin, while Outlier Detection’s
thresholds use as a reference a moving point (the centroid of
metrics derived from all nodes in the neighbor set), allowing
attacks such as frog-boiling to move it. Thus, Newton’s thresh-
olds are more difficult to exploit by an attacker. However, an
adaptive attacker can still exploit the values of the thresholds
used by Newton to his advantage.

We conduct three tests, one for each invariant, where the
attacker tries to remain undetected, yet come as close to the
threshold as possible. ForIN1, the attackers push the centroid
to right below the 20 ms threshold. ForIN2, attackers initially
move as the forces dictate, but then always shift just below 35
ms away from this position. Finally, forIN3, attackers delay
probes only enough to stay beneath the deviation threshold.
The results of these tests are shown in Fig. 12, where we
zoom in on the results of the steady state performance to
see the effects. We compare the normal baseline of Vivaldi
when no attack occurs, Newton when no attack occurs, labeled
Newton 0%, and also Newton when there are 30% attackers,
labeledNewton 30%. We find that even 30% attackers can not
significantly increase the prediction error.

Attackers can also conduct a new attack, which we call the
rotation attack, where the goal is not necessarily to disrupt
accuracy, but rather stability. In this attack, colluding nodes
rotate around the origin in the same direction at a slow rate.
This attack will not triggerIN1, and if done slowly enough,
will bypass the thresholds ofIN2 andIN3. We implement this
attack and show the results in Fig. 13 (notice the zoomed-
in y axis scale). We find the accuracy in Fig. 13(a) to only
be slightly raised over our baseline. Stability, as shown in
Fig. 13(b), is also raised over Newton’s normal levels, but is
not yet worse than the baseline.

VI. EXPERIMENTAL RESULTS

We evaluate Newton in real-life experiments on the Planet-
Lab testbed. We use 500 nodes and run each experiment for 30
minutes, unless otherwise stated. Every second a node chooses
one of its neighbors to probe and gets their coordinate update.
We use Newton configured for a Euclidean coordinate space.
Due to PlanetLab being an Internet-scale testbed, we use 4
dimensions as suggested by Ledlieet al. [27]. Malicious nodes

 0

 5

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Attack
Newton 0%

Newton 30%

(a) Accuracy

 0

 0.005

 0.01

 0.015

 0.02

 40 60 80 100 120 140 160 180 200

V
el

oc
ity

 (
m

s/
s)

Simulation Time

No Attack
Newton 0%

Newton 30%

(b) Stability
Fig. 13: Simulation results - attackers (30%) rotate around the origin

at a slow rate

start performing attacks immediately once the experiment
starts. All other parameters are the same as in the simulations.
We compare Newton with Vivaldi under attacks and consider
as baseline Vivaldi with no attacks.

A. Performance in Benign Networks
We first show the results when there are no attackers in

Fig. 14. Accuracy is shown in Fig. 14(a) where the prediction
error is lower in both Vivaldi and Newton for PlanetLab than
the simulations. This is most likely due to the smaller number
of nodes involved as the error needs to be minimized for
a fewer number of nodes. Furthermore, Newton only has a
resulting prediction error of 9 ms, while Vivaldi has one of
12 ms. The difference in stability has also increased over the
simulations, as shown in Fig. 14(b). Vivaldi has a resulting
velocity of 0.8 ms/s, while Newton is only 0.25 ms/s. This
increase in accuracy and stability is due to Newton being less
sensitive to probes that get delayed occasionally as the result
of benign occurrences such as queueing delays on routers.

 0

 5

 10

 15

 20

 25

 30

 35

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

Vivaldi
Newton

(a) Accuracy

 0

 2

 4

 6

 8

 10

 0 300 600 900 1200 1500 1800

V
el

oc
ity

 (
m

s/
s)

Time (s)

Vivaldi
Newton

(b) Stability
Fig. 14: PlanetLab results - no attackers

Adapting to changes in the network.In real deployments,
such as on PlanetLab, route changes will take place, potentially
having an effect onIN3. To show that Newton can withstand
such changes, we run Newton forfour dayson 350 nodes
on PlanetLab. For this particular experiment we reduce the
frequency of how often a node sends a probe to a neighbor to 5
seconds, all other parameters remained the same as before. We
performed traceroutes between all-pairs of nodes before and
after the experiment to estimate the number of routes changed.
We conservatively only count routes as changed if they contain

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (hours)
Fig. 15: PlanetLab results - Accuracy of Newton for 4 days

different routers and also have a difference in RTTs greater
than 10 ms. We find that 12% of all routes changed.

Fig. 15 shows the results. Initially, Newton is able to
stabilize within an hour to 6 ms of error. We attribute this
smaller error, compared to the 9 ms seen earlier, to the smaller
number of nodes that must embed coordinates. However, over
time, Newton reduces the error even further to 3 ms. We also
investigate in more details what happens when routes change.
We find that in many cases the resulting change is not so large
that IN3 is violated. However, there are cases in whichIN3 is
violated for a short period of time, for one of the two nodes.
This is due to when a single path between routers change,
it often affects many end-to-end routes for one node, thus
causing RTTs to multiple neighbors to change simultaneously.
Thus, one node will realize that many neighbors are putting
extra force on it, and change its coordinate accordingly.

B. Attack Mitigation
Inflation and deflation. Figs. 16 and 17 show accuracy

under inflation and deflation attacks respectively, for 10% and
30% attackers in the system. We find that the inflation attack is
not as effective against Vivaldi in these experiments as it is in
the simulations, even though in the experiments we increased
the amount that attackers lie about so that they have larger
coordinates. The deflation attack is also not as effective as
in simulations. In both cases, Newton is able to handle such
attacks while having better accuracy than in the benign setting.

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(b) Accuracy - 30% attackers
Fig. 16: PlanetLab results - inflation attack

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(a) Accuracy - 10% attackers

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(b) Accuracy - 30% attackers
Fig. 17: PlanetLab results - deflation attack

Oscillation. For the rest of the attacks, we show just 30%
attackers. We conducted experiments with lower percentages
of attackers, but we did not include them because of lack
of space and similarity. Fig. 18 shows accuracy and stability

under the oscillation attack. This attack proves to be more
damaging in the experiments than the simulations for Vivaldi.
Newton though, because it is taking advantage ofIN3, is able
to mitigate such attacks easily.

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(a) Accuracy - 10% attackers

 0

 5

 10

 15

 20

 25

 30

 0 300 600 900 1200 1500 1800

V
el

oc
ity

 (
m

s/
s)

Time (s)

No Attack
Vivaldi
Newton

(b) Stability - 30% attackers
Fig. 18: PlanetLab results - oscillation attack

Frog-boiling and network-partition. Results for frog-
boiling are shown in Fig. 19, which while we find it to be
the most effective attack on Vivaldi, for reasons previously
explained, it has no effect on Newton. Unsurprisingly, we find
that the network-partition attack, which is similar to the frog-
boiling attack but nodes move in different (four in our case)
directions, has similar results to it. We plot the effects ofthis
attack in Fig. 20.

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(a) Accuracy - 10% attackers

 0

 5

 10

 15

 20

 25

 30

 0 300 600 900 1200 1500 1800

V
el

oc
ity

 (
m

s/
s)

Time (s)

No Attack
Vivaldi
Newton

(b) Stability - 30% attackers
Fig. 19: PlanetLab results - frog-boiling attack

 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200 1500 1800

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Time (s)

No Attack
Vivaldi
Newton

(a) Accuracy - 10% attackers

 0

 5

 10

 15

 20

 25

 30

 0 300 600 900 1200 1500 1800

V
el

oc
ity

 (
m

s/
s)

Time (s)

No Attack
Vivaldi
Newton

(b) Stability - 30% attackers
Fig. 20: PlanetLab results - network-partition attack

VII. R ELATED WORK

Much research has been conducted to find detection and
mitigation techniques against attacks [16] in VCS.

Landmark-based defenses:Kaafar et al. [17] propose
to model the behavior of trusted landmark nodes using a
Kalman filter, this provides an outlier detection scheme by
which nodes learn good behavior and can then filter out
malicious updates. Their technique requires 8% of all nodes
to be trusted, which could be non-trivial to obtain given
a large deployment. Similarly, Saucezet al. [31] define a
reputation based system that leverage trusted nodes and a
reputation certification agent to calculate the other nodes
reputation. Treeple [22], while not strictly coordinate based,
provides secure latency estimation, using landmarks as vantage
points for providing traceroutes on the Internet. In Treeple,
landmarks perform traceroute measurements to peers, which

the landmarks can then digitally sign and provide for nodes to
compute the network distance themselves. As landmark-based
defenses have stronger assumptions, as they requirea priori
trusted nodes, we do not compare Newton to them as Newton
is a decentralized defense and does not require trusted nodes.

Decentralized defenses:Zageet al. [18] propose the usage
of spatial and temporal properties of nodes to learn what good
behavior is, then by using outlier detection detect anomalous
coordinate updates. Veracity [19] uses a voting scheme to
verify potentially malicious coordinate updates by using a
subset of nodes. Each node maintains a verification set where
several other nodes attest to whether a particular update
increases their estimation error above a certain threshold, and
if so, ignores it. Suspected nodes are tested based on their error
to the verifying nodes; nodes with large errors are considered
malicious.

Although these decentralized defenses differ in the way
they secure virtual coordinate systems, they both, along with
[17], suffer from the frog-boiling attack [20]–[22]. A few
works have been proposed to defend against the frog-boiling
attack. Wanget al. [20] proposes detecting attackers that lie
about coordinates by using the PeerReview [32] accountability
protocol. Since, if implemented, this approach would have
higher costs than our method (i.e. bandwidth, storage for a
tamper-evident log, and computation for public-key cryptog-
raphy), we do not compare Newton with them. Beckeret
al. [33] propose a method for detecting frog-boiling by using
a machine learning approach, where through a training data
set the system learns what normal and abnormal data is. In
contrast, our approach has no need to train the system and can
detect abnormal behavior directly due to the applied physical
laws. Furthermore, while [33] can detect attacks are occuring
but not find and discard the updates that are causing it, Newton
is able to do both.

VIII. C ONCLUSION

We introduced Newton, a new approach to providing a
secure VCS by going back to the abstraction that Vivaldi
is based on, a physical mass-spring system. In accordance
with the abstraction, our defenses are based on the three laws
of motion as put forward by Newton.We have explained in
depth how the laws provide invariants for our system and how
they are leveraged to mitigate basic attacks such as inflation,
deflation, and oscillation but also more advanced attacks like
frog-boiling, and network-partition attacks. Through simula-
tions and experiments on the PlanetLab testbed we showed
that Newton outperforms Vivaldi even in benign settings andis
able to mitigate the advanced attacks that remained undetected
by Outlier Detection. Newton can also cope with advanced
attackers that might leverage insider knowledge about calibra-
tion specific parameters used by Newton. Newton is immune
to such attacks, since the calibration of the defense mechanism
is relying on robust and fixed, time independent thresholds.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications, ser.
SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.
[Online]. Available: http://doi.acm.org/10.1145/383059.383071

[2] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in Proc. of SIGMETRICS, 2000.

[3] J. Ledlie, M. Mitzenmacher, and M. Seltzer, “Wired geometric routing,”
in IPTPS, 2007.

[4] R. Gummadi and R. Govindan, “Reduced state routing in theinternet,”
in ACM HotNets Workshop, 2004.

[5] J. Cowling, D. R. K. Ports, B. Liskov, R. Ada, and P. A. Gaikwad, “Cen-
sus: Location-aware membership management for large-scale distributed
systems,” inUSENIX, 2009.

[6] Y. Shavitt and T. Tankel, “Big-bang simulation for embedding network
distances in euclidean space,” inINFOCOM, 2004.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” inProc. of ACM SIGCOMM, 2004.

[8] T. Ng and H. Zhang, “A network positioning system for
the internet,” in Proc. of USENIX, 2004. [Online]. Available:
http://www.cs.rice.edu/ eugeneng/papers/USENIX04.pdf

[9] E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” inProc. of INFOCOM, 2002. [Online].
Available: http://www.cs.rice.edu/ eugeneng/papers/INFOCOM02.pdf

[10] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang,
“IDMaps: A Global Internet Host Distance Estimation Service,”
IEEE/ACM Trans. Netw., vol. 9, p. 525, 2001.

[11] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Proc.
of SIGCOMM, 2003.

[12] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris, “Lighthouses
for scalable distributed location,” inProc. of IPTPS, 2003. [Online].
Available: http://citeseer.ist.psu.edu/pias03lighthouses.html

[13] M. Costa, M. Castro, R. Rowstron, and P. Key, “PIC: practical Internet
coordinates for distance estimation,” inProc. of ICDCS, 2004. [Online].
Available: http://research.microsoft.com/ antr/MS/PIC-ICDCS.pdf

[14] L. Lehman and S. Lerman, “A decentralized network coordinate
system for robust internet distance,” inProc. of ITNG, 2006. [Online].
Available: http://dx.doi.org/10.1109/ITNG.2006.4

[15] ——, “Pcoord: Network position estimation using peer-to-peer measure-
ments,” inProc. of NCA, 2004.

[16] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous, “Virtual net-
works under attack: Disrupting internet coordinate systems,” in Proc. of
CoNext, 2006.

[17] M. A. Kaafar, L. Mathy, C. B. K. Salamatian, T. Turletti,and W. Dab-
bous, “Securing internet coordinate embedding systems,” in Proc. of
SIGCOMM, 2007.

[18] D. Zage and C. Nita-Rotaru, “On the accuracy of decentralized virtual
coordinate systems in adversarial networks,” inProc. of CCS, 2007.

[19] M. Sherr, M. Blaze, and B. T. Loo, “Veracity: Practical secure network
coordinates via vote-based agreements,” inProc. of USENIX ATC, 2009.

[20] G. Wang and T. S. E. Ng, “Distributed algorithms for stable and secure
network coordinates,” inIMC, 2008.

[21] E. Chan-tin, D. Feldman, N. Hopper, and Y. Kim, “The frog-boiling
attack: Limitations of anomaly detection for secure network coordinate
systems,” inSecureComm, 2009.

[22] E. Chan-Tin and N. Hopper, “Accurate and provably secure latency
estimation with treeple,” inNDSS, 2011.

[23] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: A physically
inspired approach to distributed motion coordination,”IEEE Pervasive
Computing, vol. 3, no. 2, pp. 52–61, 2004.

[24] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. Lau, S. Rao,
N. Taft, and J. D. Tygar, “Antidote: understanding and defending against
poisoning of anomaly detectors,” inIMC, 2009.

[25] p2psim: A simulator for peer-to-peer protocols,
http://pdos.csail.mit.edu/p2psim.

[26] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” inProc. of ACM SIGCOMM-IMW,
2002.

[27] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,”
in Proc. of USENIX NSDI, 2007.

[28] Y. Shavitt and T. Tankel, “On the curvature of the internet and its usage
for overlay construction and distance estimation,” inINFOCOM, 2004.

[29] C. Lumezanu and N. Spring, “Measurement manipulation and space
selection in network coordinates,” inICDCS, 2008.

[30] Y. Fu and Y. Wang, “Hyperspring: Accurate and stable latency estimation
in the hyperbolic space,” inICPADS, 2009.

[31] D. Saucez, B. Donnet, and O. Bonaventure, “A reputation-based ap-
proach for securing vivaldi embedding system,”Lecture Notes in Com-
puter Science, vol. 4606, p. 78, 2007.

[32] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: practical
accountability for distributed systems,” inSOSP, 2007.

[33] S. Becker, J. Seibert, C. Nita-Rotaru, and R. State, “Securing application-
level topology estimation networks: Facing the frog-boiling attack,” in
International Symposium on Recent Advances in Intrusion Detection
(RAID), 2011.

