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Numerous practical systems based on network coding have been proposed in recent years demonstrating

the wide range of benefits of network coding such as increased throughput, reliability, and energy efficiency.

However, network coding systems are inherently vulnerable to a severe attack, known as packet pollution,

which presents a key obstacle to the deployment of such systems. Several cryptographic schemes have been

proposed to defend against pollution attacks.

We conduct a detailed analysis and an experimental evaluation in a realistic wireless network coding

setting of a set of representative cryptographic defenses against pollution attacks. Our analysis identifies

severe limitations of asymmetric based schemes which impose high communication overhead by placing

constraints on the basic network coding parameters and high computation overhead by relying on numerous

operations over large fields. Our analysis also shows that symmetric cryptographic schemes, while having

better performance than asymmetric cryptographic based schemes, impose prohibitive overhead in the

presence of multiple byzantine adversaries. We further evaluate these schemes by using a set of typical

network coding system parameters on a realistic topology. Our experimental evaluation shows that all the

schemes we compare induce a throughput degradation that negates the performance benefits of network

coding in the presence of multiple colluding adversaries.

Categories and Subject Descriptors: C.2.1 [Computer-communication Networks]: Network Architecture
and Design—Wireless Communication

General Terms: Experimentation, Performance, Security

Additional Key Words and Phrases: Network Coding, Pollution Attacks, Wireless Mesh Networks

1. INTRODUCTION

Network coding has emerged as a new paradigm for designing network protocols. In
network coding systems, nodes mix several buffered received packets to generate a
coded packet, then forward the coded packet. The benefits of network coding include
increased throughput [Ahlswede et al. 2000; Li et al. 2003; Jin et al. 2006], increased
reliability [Widmer and Le Boudec 2005; Lun et al. 2005], and reduced energy cost
[Wu et al. 2005]. Numerous practical systems [Chachulski et al. 2007; Zhang and Li
2008b; 2008a; Katti et al. 2006; Le et al. 2008; Das et al. 2008] have been proposed for
wireless networks.

Due to a fundamental change in the trust model, network coding creates opportuni-
ties for new attacks. The most severe is the pollution attack in which an attacker injects
polluted (or invalid) packets. Pollution attacks are devastating to a network coding sys-

This research is supported by the NSF NETS Program.
Authors’ addresses: Department of Computer Science, Purdue University, 305 N. University St., West
Lafayette, IN 47907 USA; email: {newella,dongj,crisn}@cs.purdue.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Andrew Newell et al.

tem because they propagate epidemically as honest nodes use polluted packets to code
new packets and thus unknowingly behave as polluters themselves.

While the receivers can detect polluted packets by using end-to-end integrity mech-
anisms or recover the packets when redundant coding is used, this approach is not
practical for wireless networks that have limited resources. Instead, polluted packets
must be identified and dropped at intermediate nodes. Such an approach requires cryp-
tographic mechanisms that have homomorphic properties, allowing any intermediate
node to verify that the coded packets it combines ultimately originated at the source.

Several cryptographic defenses against pollution attacks have been proposed [Boneh
et al. 2009; Gkantsidis and Rodriguez Rodriguez 2006; Charles et al. 2006; Krohn
et al. 2004; Yu et al. 2008; Zhao et al. 2007; Li et al. 2006; Agrawal and Boneh 2009;
Zhang et al. 2011]. The security of such schemes relies on the security of the basic
cryptographic primitive the scheme uses, which often relies on the intractability of a
mathematical problem such as the Discrete Log Problem (DLP). However, both the
cryptographic and network coding operations are performed in the same field, which
may trigger significant changes to the network coding parameters in order to meet
security requirements. Previous work did not study the impact of security parameters
on the network coding parameters that control system performance.

Other work proposed defenses which utilize mechanisms other than just cryptogra-
phy such as time-asymmetry [Dong et al. 2009; Li et al. 2010], information theory [Ho
et al. 2004; Jaggi et al. 2007; Wang et al. 2007; Silva et al. 2008; Yeung and Cai 2006;
Cai and Yeung 2006], and monitoring [Kim et al. 2010; Kehdi and Li 2009] to defend
against pollution attacks. These works potentially escape the problems of pure cryp-
tographic approaches, but due to their reliance on other mechanisms, these defenses
place additional constraints on the network, modify the underlying routing protocol,
and provide a lesser defense as some polluted packets will be forwarded and adver-
sary affect the network performance. We discuss these other defenses in more detail
in Section 6.

Cryptographic defense schemes have been proven to prevent pollution attacks. A
defense scheme must also be practical to ensure adoption. To be practical, the de-
fense scheme must scale with the number of (possibly colluding) attackers and retain
as much performance of the insecure system as possible. The schemes proposed to de-
fend against pollution attacks [Boneh et al. 2009; Gkantsidis and Rodriguez Rodriguez
2006; Charles et al. 2006; Krohn et al. 2004; Yu et al. 2008; Zhao et al. 2007; Li et al.
2006; Agrawal and Boneh 2009; Zhang et al. 2011] have not been evaluated to see if
they are practical in wireless network coding systems.

In this paper, we perform the first systematic analytical and experimental evalu-
ations of several representative cryptographic defenses against pollution attacks in
wireless networks. We compare the KFM [Krohn et al. 2004], YWRG [Yu et al. 2008],
NCS [Boneh et al. 2009], ZKMH [Zhao et al. 2007] asymmetric cryptographic schemes
and the HOMOMAC [Agrawal and Boneh 2009] symmetric cryptographic scheme. Our
simulations are conducted using the Glomosim [GloMoSim 2000] simulator, the well-
known MORE [Chachulski et al. 2007] wireless network coding system and the link
quality dataset from the Roofnet [MIT 2006] testbed. Our main contributions include:

— We define a unifying metric framework that captures the different performance
and security impact of all schemes. We classify the cryptographic schemes based on
their underlying cryptographic primitives of signature-based, hash-based, and MAC-
based (Message Authentication Code). Our framework provides network coding and
security parameters settings that allows us to compare the schemes while ensuring
they have comparable security.
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— We propose a definition of practicality for a secure network coding scheme. For
a majority of cases where network coding outperforms shortest path routing, secure
network coding should also outperform secure shortest path routing. We consider as
a baseline ARAN [Sanzgiri et al. 2002], a secure version of the well-known AODV
[Perkins et al. 2003] routing protocol for wireless networks.

— We identify strong dependencies between network coding parameters, which dic-
tate network coding gains, and security parameters which ensure security of basic
cryptographic primitives. Such dependencies cause defense schemes relying on asym-
metric cryptographic primitives to impose symbol sizes of 20-32 bytes in comparison
to symbol sizes of 1-2 bytes that were shown to work well for wireless network coding
systems. As a result, such schemes make the coding overhead prohibitively large for
wireless settings.

— We show through analysis and benchmarking that asymmetric cryptographic
defense schemes require costly computation operations per plain packet symbol, per
coded packet symbol, and per coded packet, resulting in a high computational over-
head.

— We show through simulations that each scheme relying on an asymmetric cryp-
tographic primitive induces a throughput degradation that negates the performance
benefits of network coding. Even more, such a degradation of performance is incurred
regardless of the presence of attackers in the network. We also show that the HOMO-
MAC symmetric cryptographic scheme is the only one that is practical for a very small
number of adversaries (2 or less).

— We find that schemes based on a symmetric cryptographic primitive for data in-
tegrity, a MAC, do not scale well when tolerating multiple byzantine adversaries. To
be resilient against multiple byzantine adversaries a MAC-based scheme must append
many MACs per packet and distribute unique sets of keys to each forwarder while the
redundancy of MACs and keys ensures that no collection of byzantine nodes can create
enough MACs to allow a polluted packet to pass a legitimate node’s verification test,
this same redundancy imposes prohibitive overhead when multiple attackers exist in
the system.

Roadmap. We provide an overview of wireless network coding in Section 2. In Sec-
tion 3 we classify existing cryptographic defenses against pollution attacks and de-
scribe representative schemes for each class. We present our analytical metrics and a
comparison of a set of representative schemes in Section 4. We define the performance
metrics and evaluate the schemes in Section 5. We present related work in Section 6
and conclude the paper in Section 7.

2. WIRELESS NETWORK CODING

We overview network coding, outlining the specific constraints of network coding in
wireless networks.

2.1. System model

We consider a general intra-flow network coding system that mixes packets within the
same flow. The network consists of a source node, a subset R of receiver nodes, and a
subset F of forwarder nodes. The source delivers to receivers a sequence of plain pack-
ets which are divided into sub-sequences called generations. A generation consists of n
packets. Each packet consists of m symbols. Symbols are elements of Fq, and packets
bi are m-dimensional vectors of symbols:

bi = (bi,1, bi,2, ..., bi,m), bi,j ∈ Fq.
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A generation is represented by a matrix B of symbols bi,j where there are nm total
symbols.

The source forms random linear combinations of the plain packets x =
∑n

i=1 vibi

where v is an n-dimensional vector of random symbols such that v = (v1, v2, ..., vn). The
vector v is the coding vector which consists of the coding coefficients, and the vector x
is the coded data. A coded packet 〈v,x〉 consists of both the coding vector and the coded
data. A forwarder node buffers received coded packets and creates new coded packets
by computing random linear combinations of the coded packets within its buffer (i.e.,
this can be a number between 2 and n). Once a receiver obtains n linearly independent
coded packets it can obtain the plain packets by solving a system of linear equations.

2.2. Constraints for network coding

Coded packet size. One constraint when using network coding to design practical
wireless networks is that the coded packet size is limited by the transmission frame
size. This design decision allows a coded packet to be immediately available for use by
a forwarder or receiver node.

Network coding overhead. An important characteristic of network coding sys-
tems is the communication overhead introduced in the system by the coding vector.
Given a coded packet 〈v,x〉, this overhead is measured by the ratio ρ = n

m
where n is

the number of symbols in the coding vector v (i.e., the size of the generation) and m
is the number of symbols in the coded data x. The smaller ρ is, the less communica-
tion overhead incurred by network coding. When designing a network coding system
for wireless networks, the selection of parameters for network coding is chosen such
that n ≪ m to ensure a small network coding overhead. However, the upper bound on
the coded packet size has consequences on the lower bound on ρ. Specifically, reducing
n is lower bounded because it reduces the potential gains of network coding (e.g., if
n = 1 no network coding is present), and increasing m is upper bounded due to the
maximum transmission frame size. A larger m may result in a packet larger than the
transmission size and thus have a negative impact on system performance.

Transmission frame and symbol size. Increasing the coded packet size beyond
the standard transmission frame would reduce the network coding overhead. However,
the typical wireless transmission frame size offers a good balance between mitigating
the overhead of sending header information and reducing the probability of a single
bit-error in a packet [Lettieri and Srivastava 1998]. Increasing the coded packet size
increases the probability of a bit-error which potentially reduces the overall through-
put for a wireless link.

The symbol size has a direct impact on the number of coded data symbols m, and
thus, on system performance. In order to meet the constraint that (n + m)λq ≤ Ω
(where λq is the symbol size and Ω is the maximum transmission frame size) and
ensure network coding gains, several of the proposed practical systems use symbol
sizes of 1-2 bytes.

3. CRYPTOGRAPHIC DEFENSES AGAINST POLLUTION ATTACKS

Several cryptographic schemes [Krohn et al. 2004; Yu et al. 2008; Zhao et al. 2007; Li
et al. 2006; Agrawal and Boneh 2009; Charles et al. 2006; Boneh et al. 2009; Zhang
et al. 2011] were proposed in recent years to defend against pollution attacks in net-
work coding. We first present an overview of the general procedure these schemes
follow, then present a detailed description for each scheme.

3.1. Overview

Table I presents a list of representative schemes guarding against pollution attacks.
Each scheme provides protection against such attacks by supplying forwarders with a
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Table I: Taxonomy of schemes

Scheme Category Security Steps

KFM [Krohn et al. 2004] Hash DLP over a Sign/Verify
multiplicative group

YWRG [Yu et al. 2008] Signature DLP over a Sign/Verify/Combine
multiplicative group

ZKMH [Zhao et al. 2007] Signature DLP over a Sign/Verify
multiplicative group

LCL [Li et al. 2006] Signature DLP over a Sign/Verify/Combine
multiplicative group

NCS1 [Boneh et al. 2009] Signature DLP using ECC Sign/Verify/Combine
NCS2 [Boneh et al. 2009] Signature DLP over a Sign/Verify/Combine

multiplicative group
CJL [Charles et al. 2006] Signature DLP using ECC Sign/Verify/Combine

HOMOMAC MAC PRF Sign/Verify/Combine
[Agrawal and Boneh 2009]
HSM [Zhang et al. 2011] MAC DLP over a Sign/Verify/Combine

multiplicative group

verification mechanism that allows them to detect invalid (polluted) packets and cease
propagating these invalid packets. An invalid packet is any packet c = 〈v,x〉 that does
not satisfy the following:

x = vB

B is a matrix of plain packet symbols. The verification scheme uses hashes, message
authentication codes (MACs), or digital signatures as cryptographic primitves. The
security of each scheme relies on the DLP over a multiplicative group, DLP using
Elliptical Curve Cryptography (ECC), or Pseudo-Random Functions (PRF).

In each scheme the validation of packets ultimately relies on the source generating
the verification information (hashes, MACs, or digital signatures). In some schemes
the source distributes this information before sending the generation, while in other
schemes the verification information is carried by each individual packet. In the latter
case, forwarder nodes also are involved in creating the verification information by com-
bining the verification information carried by each of the coded packets used to code
a new packet. We refer to security related data sent either separate or attached to a
coded packet as the security payload. Each scheme follows the same general procedure:
• Initialize: the source distributes generation independent public security parame-

ters to forwarder nodes. This can be performed off-line.
• Sign: the source calculates a security payload either for each plain packet and

appends it to each coded packet, or for the entire generation and distributes it to the
forwarder nodes.

• Verify: each forwarder node verifies the received coded packets based on the gener-
ation independent security parameters and the security payload received either at the
beginning of the generation or carried on each coded packet, depending on the scheme.

• Combine: the source or forwarder nodes combine the security payloads to create
a security payload for a newly formed coded packet. Only schemes where each coded
packet carries a security payload have a combine step.

Next, we describe each scheme considering only the sign, verify, and combine steps
as the initialize step can be performed off-line and is generation independent. Table II
presents the notation we use in the description of the schemes.
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Table II: Parameters

Name Description

λi size of parameter i in bytes
n number of packets in a generation
m number of symbols per packet
q maximum value of a symbol (λq size of a symbol)
p security parameter (controls modulus size)
v coding vector (n symbols)
x coded data (m symbols)
Ω maximum size of a frame in bytes
s security payload appended to each coded packet
S security payload distributed initially to forwarders
B matrix n by m that represents the plain packets
bi row i of B, i.e., the ith block
bi,j a single symbol within row i and column j of B
c coded packet 〈v,x〉
ci ith coded packet within a node’s buffer
c∗

i plain packets in the form of coded packets c∗

i = 〈v,x〉 where
v = 〈0, ..., 0, 1, 0, ..., 0〉 with 1 in the ith position and x = bi

l number of keys in a key-pool
ω number of keys in a key-chain

3.2. Hash-based schemes

We first present schemes relying on homomorphic hashes [Gkantsidis and Ro-
driguez Rodriguez 2006; Krohn et al. 2004]. The main characteristic of a homomorphic
hash is that the hash of a linear combination of the coded packets is equivalent to the
linear combination of the hashes of coded packets. We classify the hash-based schemes
as asymmetric cryptographic schemes because the homomorphic hashes are generated
and then signed by conventional non-homomorphic signatures.

KFM[Krohn et al. 2004] is a representative example of a homomorphic hash con-
struction. Algorithm 1 presents pseudo-code describing the main steps of the scheme.
KFM consists only of a sign step 1 and a verify step. The source generates a hash for
each plain packet, then distributes the n hashes to all forwarders in an authenticated
manner. In order to verify a received coded packet, a forwarder compares the hash com-
puted on the received coded packet with the hash constructed by linearly combining
the hashes that were distributed by the source in the sign step. Due to the homomor-
phic properties of the hash function, if the coded packet is correct, the two compared
hash values will be equal.

The benefits of this approach are that no security payload is carried by any coded
packet and no extra computations are needed when forwarders generate new coded
packets. The drawbacks are that the security payload sent at the beginning of each
generation is significant, and that the verification process requires a large number of
exponentiations. The security payload has a total size of nλp bytes and the computa-
tion overhead has nm modular exponentiations performed by the source to generate
the hashes. The verifying step requires n + m modular exponentiations. The scheme
requires that the source distributes hashes in an authenticated manner, otherwise an
attacker can inject them and break the data authentication property.

1We use the same name for the step for consistency, even if in this case the operation is hashing.
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Algorithm 1: KFM

Parameters

p and q are primes of size λp and λq respectively
g1, ..., gm are generators of the group Fp of order q

Signing plain packets b1, ...,bn

1: Calculate hash h(bi) =
∏m

j=1 g
bi,j
j mod p for b1, ...,bn

Verifying c = 〈v,x〉

1: Verify that
∏m

i=1 g
xi

i mod p =
∏n

i=1 h(bi)
vi mod p

3.3. Signature-based schemes

The majority of cryptographic defenses against pollution attacks rely on homomorphic
signatures [Yu et al. 2008; Zhao et al. 2007; Li et al. 2006; Charles et al. 2006; Boneh
et al. 2009; Zhang et al. 2011]. The main characteristic of a homomorphic signature is
that the signature of a linear combination of coded packets is equivalent to the linear
combination of signatures. We describe three representative schemes: YWRG [Yu et al.
2008], a scheme based on DLP over a multiplicative group in which coded packets are
signed individually and carry with them the corresponding signature as a security
payload; NCS1[Boneh et al. 2009], a scheme based on DLP using ECC in which, as in
YWRG, coded packets are signed individually and carry the signature; ZKMH[Zhao
et al. 2007], a scheme based on DLP over a multiplicative group in which the source
signs the entire generation instead of individual coded packets.

YWRG[Yu et al. 2008] is shown in Algorithm 2. First, the source signs each plain
packet, then for every coded packet it combines the corresponding signatures to gen-
erate the signature of the coded packet and attaches this signature to the packet.
When receiving a coded packet, a forwarder node verifies the signature included on
the packet by using the security parameters distributed during the initialize step. Be-
fore sending out a new coded packet, the forwarder node computes the corresponding
signature by combining the signatures of the coded packets it used to create the new
coded packet and appends the signature to the new coded packet.

Algorithm 2: YWRG

Parameters

p and q are primes of size λp and λq respectively
g1, ..., gm+n are generators of Fp of order q
r (modulus), e (public key), and d (private key) of RSA

Signing plain packets formed as coded packets c∗

1, ..., c
∗

n

1: Calculate signature σ(c) = (
∏m+n

j=1 g
cj
j mod p)d mod r for c∗

1, ...,c
∗

n

Verifying c with signature σ(c)

1: Verify that σ(c)e mod r = (
∏m+n

j=1 g
cj
j mod p) mod r

Combining σ(ci) for i = 1, ..., n to produce σ(c) where c = 〈v,x〉

1: Calculate σ(c) =
∏n

i=1 σ(ci)
vi mod r

YWRG has the benefit of not requiring any security payload to be distributed to for-
warder nodes each generation. Instead, a security payload is appended to each coded
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packet. The drawbacks are the additional computational overhead of the combining
step and the communication overhead of a security payload appended to each coded
packet. The combining step requires an exponentiation for each coded packet being
combined, and n(n +m + 1) exponentiations to generate signatures for an entire gen-
eration. The verifying step requires n+m+ 1 exponentiations.

NCS1[Boneh et al. 2009] (presented in Algorithm 3) is a scheme similar to YWRG
in that each coded packet carries its corresponding signature. However, the signature
construction relies on ECC. As in YWRG, the source signs the plain packets and when
coding a packet, the source combines the signatures of the coded packets to generate
the signature of the newly formed coded packet. When verifying a coded packet, a
forwarder computes the product of bilinear maps based upon the coded packet contents
and checks the equivalence of this value with a bilinear map of the signature. When
combining coded packets, a forwarder computes a new signature by performing ECC
group operations on the coded packets’ signatures.

Algorithm 3: NCS1

Parameters

q is a prime of size λq

α is an element of Fq

P1, ..., Pm, and Q are random elliptical curve points
U is an elliptical curve point such that U = αQ
H(∗, ∗) hash that outputs an elliptical curve point
e(∗, ∗) is a bilinear pairing function
id is a unique identifier for a generation

Signing plain packets formed as coded packets c∗

1, ..., c
∗

n

1: Calculate the signature σ(c) = α ∗ (
∑n

i=1 viH(id, i) +
∑m

i=1 xiPi) for each c∗

1, ...,c
∗

n

Verifying c with signature σ(c)

1: Verify that e(σ(c), Q) = e(
∑n

i=1 viH(id, i) +
∑m

i=1 xiPi, U)

Combining coded packet signatures σ(ci) for i = 1, ..., n to produce σ(c) where
c = 〈v,x〉

1: Calculate σ(c) where σ(c) =
∑n

i=1 viσ(ci)

The main benefits of NCS1 are that the sizes of the signature and a symbol (λq)
are smaller given the use of ECC. The drawbacks are the increased computational
times for ECC operations and bilinear mappings over modular exponentiations. Even
though NCS1 has a comparable number of costly operations as other schemes, each
ECC or bilinear mapping operation requires extra time.

ZKMH[Zhao et al. 2007] is a scheme that signs the entire generation instead of in-
dividual coded packets. Algorithm 4 presents pseudo-code describing the main steps
of the scheme, signing and verifying. The source signs the entire generation and dis-
tributes this security payload to the forwarder nodes. The signature is generated over
the linear subspace formed by treating c∗

1, ...,c
∗

n as basis vectors. In order to verify a
coded packet, a forwarder node checks whether the coded packet belongs to the lin-
ear subspace, i.e., a coded packet is valid if and only if the coded packet is a linear
combination of c∗

1, ...,c
∗

n.
ZKMH shares the main benefits of KFM in that there is no security payload ap-

pended to coded packets and no combining of security payloads. In addition, because
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Algorithm 4: ZKMH

Parameters

p and q are primes of size λp and λq respectively
g is a generator of Fp

α1, ..., αn+m are elements of Fq of order q
t1, ..., tn+m are elements of Fp where ti = gαi mod p

Signing plain packets formed as coded packets c∗

1, ..., c
∗

n

1: Generate a new αi and calculate ti = gαi mod p for some i = 1, ..., n+m
2: Generate u where c∗

i · u = 0 for i = 1, ..., n
3: Calculate the signature σ where σ = (u1/α1, u2/α2, ..., un+m/αn+m)

Verifying c

1: Verify that
∏n+m

i=1 tσici
i mod p = 1

the ZKHM scheme is based on a signature construction, the security payload dis-
tributed to forwarders does not have to be authenticated as the source is the only
node capable of generating valid signatures. The drawback of computational overhead
still exists as n+m exponentiations are required to verify a coded packet.

3.4. MAC-based schemes

A third type of cryptographic defense against pollution attacks relies on homomor-
phic MACs [Agrawal and Boneh 2009; Zhang et al. 2011]. We describe HOMOMAC
[Agrawal and Boneh 2009] as a representative scheme for MACs. The main character-
istic of a homomorphic MAC is that the MAC of a linear combination of coded packets
is equivalent to the linear combination of MACs of each coded packet. MAC-based
schemes rely on a symmetric cryptographic primitive which requires the verifier to
have the same key that the source used to create the MAC. Several approaches are
possible: (1) have the source share symmetric keys with each forwarder such that
if one node is compromised the security of the network is not affected, (2) have the
source and all forwarders sharing only one key in which case the compromise of one
node compromises the security of the entire network, or (3) have the source share a set
of keys from a key-pool, and use a set of MACs one for each key. In the third case the
scheme trades off security for performance. It can tolerate a certain number of com-
promised nodes without requiring secret keys between the source and each forwarder.
When the number of compromised nodes is higher than what the scheme can tolerate,
the compromised nodes can collude to forge a coded packet that will pass as valid. HO-
MOMAC, the representative scheme that we choose, utilizes the third method of dis-
tributing keys to ensure a trade-off between resilience to byzantine nodes and number
of keys maintained by each node.

HOMOMAC[Agrawal and Boneh 2009] uses homomorphic MACs to defend against
pollution attacks. Algorithm 5 contains pseudo-code describing the main steps of the
scheme. The scheme is similar with the YWRG and NCS1 schemes in the sense that
each coded packet carries a security payload, with the difference that this security
payload is not a digital signature but a set of l MACs. First, the source generates l
MACs for each plain packet, and when generating a coded packet combines the MACs
of the plain packets to generate the MACs for the coded packet. When receiving a coded
packet, a forwarder checks that ω MACs are all correct by using the ω MACs from the
forwarder’s key-chain. When creating new coded packets, a forwarder node computes a
linear combination of each of the l MACs to form l new MACs for the new coded packet.
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Algorithm 5: HOMOMAC

Parameters

q is a power of a prime where q is of size λq

k1, ..., kl are keys generated at the source
id is a unique identifier for a generation
PRG(∗) is a pseudo-random generator that outputs a vector F

n+m
q

PRF (∗, ∗, ∗) is a pseudo-random function that outputs an element of Fq

Signing plain packets formed as coded packets c∗

1, ..., c
∗

n

1: Calculate MACs for i = 1, ..., l MACi(cj) = (PRG(ki) · cj) + PRF (ki, id, j) mod q
for each c∗

1, ...,c
∗

n

Verifying c = 〈v,x〉 with MAC1(c), ...,MACl(c) using a key-chain of keys kz1 , ..., kzω
1: Verify that PRG(kzi) · c +

∑n

j=1 vjPRF (kzi , id, j) mod q = MACzi(c) for i = 1, ..., ω

Combining MACi(cj) for i = 1, ..., l and j = 1, ..., n to produce MACi(c) for
i = 1, ..., l where c = 〈v,x〉

1: Calculate MACs for i = 1, ..., l MACi(c) =
∑n

j=1 vjMACi(cj) mod q for i = 1, ..., l

The approach has the benefits that it has no costly operations during the compu-
tational steps and no constraint on the symbol size. The majority of operations are
modular multiplications and the security relies on pseudo-random functions (PRF)
which places no restrictions on the symbol size. The major drawback is the weaker de-
fense it provides in the presence of multiple byzantine adversaries due to the special
key distribution. This is the only scheme where the maximum number of byzantine
adversaries within the network must be known and bounded. The scheme provides
a defense when the adversary has a limited number of key-chains such that only a
limited number of MACs can be created for an invalid coded packet. This constraint
is broken when enough colluding adversarial nodes combine several key-chains. The
value of the maximum number of adversaries is an input to the initial key distribution.
This value must also be bounded because as the value increases so does the number
of MACs necessary to compute and append to coded packets. To tolerate a larger num-
ber of adversaries the communication cost of the size of the security payload appended
to each coded packet is quadratic with the number of adversaries. See Section 4.5 for
details.

4. ANALYTICAL COMPARISON

In this section we compare the schemes that we presented in the previous section.
We define metrics that reflect the overhead imposed by each scheme and summarize
these metrics using realistic system parameters for a typical wireless network coding
system. Table II presents the variables used by our metric definitions.

4.1. Analysis metrics

Communication overhead. We quantify the communication overhead using two
metrics: relative security overhead and relative coding overhead. Relative security over-
head reflects the overhead imposed by distributing the security payload. Relative cod-
ing overhead reflects the overhead to send coding coefficients. Different schemes may
result in higher network coding overhead due to the relationship that exists between
the symbol size used by the network coding and the constraints imposed by the cryp-
tographic scheme on the symbol size in order to preserve its security properties.
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We define relative security overhead as the fraction between the total security pay-
load (data sent initially by the source and security payload for all the packets in a gen-
eration), and the total data sent for a generation (security payload and all the coded
packets in a generation). We define relative security overhead for a generation and
not for a packet to capture all the additional security overhead imposed by a security
scheme.

Rel Security Overhead =
nλs + λS

n(λv + λx + λs) + λS

(1)

We define the relative coding overhead as the fraction between the coding vector for
a packet and the total data for that secure coded packet (coding vector, coded data, and
security payload for that packet). We define relative coding overhead for a packet to
capture the cost per packet imposed on coding by a security scheme.

Rel Coding Overhead =
λv

λv + λx + λs

(2)

Computation overhead. We breakdown the computational overhead imposed by
each security scheme during the different steps: signing which is performed only at the
source, verifying which is performed only at a forwarder node, and combining which
is performed at either the source or a forwarder node. We use two sets of metrics: one
that accounts for the number of expensive operations involved in each step, and a more
precise one, that accounts for the actual time required to perform each step.

The first set of metrics consists of signing operations, verifying operations, and com-
bining operations which count the following expensive operations: modular exponenti-
ations, ECC scalar operations, and bilinear mappings. Benchmarking tests show that
these three operations require relatively similar time; therefore, we group them to-
gether to provide a comparison among different schemes. Signing operations counts
the number of cryptographic operations performed by the source to sign a generation.
Verifying operations counts the number of operations performed by a forwarder node
to verify a coded packet. The number of expensive operations for the signing and veri-
fying steps remains constant for each scheme. The number of operations varies for the
combining step based upon the number of coded packets used to create a new coded
packet. As this number may vary from 1 to n, we assume that on average a forwarder
node combines n

2 packets to generate a new coded packet and define combining op-
erations as the number of operations performed by a forwarder node to generate the
security payload needed for a new coded packet based on n

2 buffered packets.2

The second set of metrics consists of signing time, verifying time, and combining
time which are calculated from benchmarking tests of these operations using a crypto-
graphic library and averaged over 100 runs.

4.2. Parameter settings

We assign values to the parameters Ω, λq, λp, n, m, l, and ω from Table II match-
ing realistic wireless settings. The values assigned ensure that network coding gains
are possible, security holds for each scheme, and the level of security is comparable
between different schemes. We give priority to security for parameters that have im-
plications on both security and network coding gains. Our assigned parameter values
are shown in Table III, and these choices are justified below.

The values for the security parameters λq, λp, l, and ω shown in Table III are as-
signed such that security holds for each scheme and the level of security is similar for

2Adjusting the number of coded packets being combined does not affect our results significantly. The over-
head of combining is correlated linearly with the number of coded packets in a buffer.
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Table III: Parameter values

Scheme λq λp l ω n m Ω

KFM 32 128 N/A N/A 16 30 1500
YWRG 32 128 N/A N/A 16 26 1500
ZKMH 32 128 N/A N/A 16 30 1500
NCS1 20 N/A N/A N/A 16 57 1500

HOMOMAC 1 N/A 121 11 16 1363 1500

Table IV: Communication overhead analysis

Scheme Relative security overhead Relative coding overhead

KFM
λp

(n+m)λq+λp

** nλq

(n+m)λq+λs

YWRG
λp

(n+m)λq+λp

* nλq

(n+m)λq+λs

ZKMH n+m+1
(n+1)(n+m)+1

** nλq

(n+m)λq+λs

NCS1
2

n+m+2
* nλq

(n+m)λq+λs

HOMOMAC l
n+m+l

* nλq

(n+m)λq+λs

* appended to coded packets (s)
** distributed to forwarders (S)

each scheme. Security refers to the inability of an adversary to bypass the verification
scheme by forging hashes, digital-signatures, or MACs. KFM, YWRG, and ZKMH each
rely on the DLP over the group Fp for security, so the field size λp is set to 1024 bits,
and the symbol size λq is set to 256 bits. NCS1 uses ECC, so its group size (the group
size is also the symbol size for this scheme) λq is set to 160 bits which is comparable
to the DLP over the group Fp that has a modulus of 1024 bits. HOMOMAC relies on
pseudo-random functions for its security, and in [Agrawal and Boneh 2009] the au-
thors show that a key-pool size l of 121, a key-chain size ω of 11, and a symbol size
λq of 1 gives a ( 12 )

40 probability of successfully forging a coded packet in the presence
of two byzantine adversaries. HOMOMAC has a lower level of security than the other
schemes due to the fact that this is the only scheme whose security depends on the
number of colluding adversaries.

The values for the network coding parameters Ω, n, and m are assigned to ensure
that network coding gains are possible, these choices are shown in Table III. The num-
ber of plain packets per generation, n, is set to 16. Smaller values of n reduce the rel-
ative coding overhead, and n = 16 was the smallest value for n shown to still provide
network coding gains in [Chachulski et al. 2007]. We chose to use for Ω the standard
maximum transmission frame size of 1500 bytes. Transmission frames of this size were
used to measure packet loss rates for wireless links of Roofnet [MIT 2006], which we
use for our topology later in the evaluation section.3 With all of these parameters set,
m is maximized for each scheme such that the network coding coefficients, any secu-
rity payload appended to a coded packet, and the coded data fit within the maximum
transmission frame size.

3Higher transmission size reduces relative coding overhead, but results in increased packet loss [Lettieri
and Srivastava 1998].
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Table V: Computation overhead analysis

Scheme Sign Verify Combine

KFM nm n+m 0
YWRG n(n+m+ 1) n+m+ 1 n

2
ZKMH 1 n+m 0
NCS1 n(n+m+ 1) n+m+ 2 n

2
HOMOMAC 0 0 0
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Fig. 1: Relative security overhead; values generated with parameters from Table III
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Fig. 2: Coded packet contents which show the relative coding overhead for all schemes and rel-
ative security overhead for YWRG, NCS1, and HOMOMAC; values generated with parameters
from Table III

4.3. Communication overhead

We summarize the communication overhead in Table IV. Figures 1 and 2 show concrete
values for the communication overhead metrics by plugging in the values of Table III
into the metrics from Table IV.

Relative security overhead. YWRG, NCS1, and HOMOMAC induce communication
overhead by appending security payloads to packets. As seen in Table IV, HOMOMAC

has a potentially larger relative security overhead of l
n+m+l

as opposed to
λp

(n+m)λq+λp

and 2
n+m+2 for YWRG and NCS1, respectively. However, the values of a typical sce-

nario shown in Figure 1 demonstrate that HOMOMAC’s relative security overhead is
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quite small due to the large size of m for HOMOMAC used in typical scenarios. KFM
and YWRG induce communication overhead by distributing the security payload to
forwarders at the start of each generation. The values of relative security overhead

are
λp

(n+m)λq+λp
and n+m+1

(n+1)(n+m)+1 for KFM and ZKMH, respectively. Both of these val-

ues result in a low relative security overhead for each scheme which is reaffirmed by
results from a typical scenario shown in Figure 1.

Relative coding overhead. It may appear from Table IV that all schemes have a sim-

ilar relative coding overhead
nλq

(n+m)λq+λs
, and (n +m)λq + λs = Ω. However, the value

λq varies for each scheme and has a major impact on relative coding overhead. Fig-
ure 2 shows that roughly one third of a coded packet is required for the coding vector
in KFM, YWRG, and ZKMH, and roughly one fourth of a coded packet is required for
the coding vector in NCS1.

Overall, relative coding overhead is the dominating factor of communication over-
head for KFM, YWRG, ZKMH, and NCS1. These schemes suffer from large relative
coding overhead due to the large values imposed on symbol size by security require-
ments.

4.4. Computation overhead

We present the overhead of signing, verifying, and combining both in terms of the num-
ber of expensive operations from Table V and in terms of time required from Figure 3
deduced from benchmarking results.

For benchmarking we implemented the operations of the signing, verifying, and com-
bining steps for each scheme by using OpenSSL [OpenSSL 2010] and pbc [PBC 2010]
libraries. The parameter values from Table III are used in our benchmarking. Fig-
ure 3 shows the results which are averaged over 100 runs on an Intel 2.2 GHz Linux
machine.

Signing. As seen in Table V, YWRG and NCS1 require the most signing operations
n(n+m+1) with KFM following them at nm operations. These are significantly larger
when comparing with 1 and 0 for ZKMH and HOMOMAC respectively. The bench-
marking results of a typical scenario for signing are shown in Figure 3a. These results
reveal a similar trend to our equations derived analytically; however, they do show
that HOMOMAC has a larger signing time than ZKMH even though only modular
multiplications are required for HOMOMAC. The creation of multiple MACs per plain
packet results in a significant number of modular multiplications. These benchmark-
ing results show that KFM, YWRG, and NCS1 require time on the order of seconds to
sign a generation. In our simulations, we observe time on the order of hundreds of mil-
liseconds for the insecure system to deliver an entire generation. Thus, KFM, YWRG,
and NCS1 sign data at a slower rate than MORE distributes data which will result in
a loss in throughput.

Verifying. From Table V, we can see there are roughly n+m verifying operations for
each scheme except HOMOMAC. This is intuitive as there are n+m symbols within a
coded packet. The benchmarking results in Figure 3b show that ZKMH requires much
more verifying time. This is due to the exponent size in the modular exponentiations
for this step. From the verification step in Algorithm 4, the exponent is a series of
modular multiplications which results in a value of size λp not λq. Given that verifying
is performed multiple times throughout the network in any generation, the verifying
time required for ZKMH will have a severe impact on the system. Note that verifying
time can potentially be reduced by probabilistically verifying which sacrifices some
defense as polluted packets may be forwarded.

Combining. Table V shows that only YWRG and NCS1 require costly operations
for combining, an average of n

2 costly operations. The benchmarking results of Fig-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



On the Practicality Cryptographic Defenses against Pollution Attacks A:15

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

KFM
YW

RG

ZKM
H

NCS
HOM

OM
AC

M
ill

is
ec

on
ds

Security scheme

 0

 50

 100

 150

 200

 250

KFM
YW

RG

ZKM
H

NCS
HOM

OM
AC

M
ill

is
ec

on
ds

Security scheme

(a) Signing time (b) Verifying time

 0

 5

 10

 15

 20

 25

 30

 35

 40

KFM
YW

RG

ZKM
H

NCS
HOM

OM
AC

M
ill

is
ec

on
ds

Security scheme

(c) Combining time

Fig. 3: Signing time, verifying time, and combining time of each security scheme with a 95%
confidence interval; values generated from benchmarking tests

ure 3c show that in a typical scenario, NCS1 performs better than YWRG due to
the nature of ECC operations compared to modular exponentiations. Combining pack-
ets occurs more often than verifying a coded packet since verification can be done in
batches. Therefore, every packet sent must be delayed for the combining time which
significantly penalizes YWRG and NCS1. Overall, HOMOMAC achieves an acceptable
amount of computational overhead because it does not base its security on a DLP.

HOMOMAC has another advantage in terms of computation; the symbol size of HO-
MOMAC is so small that the modular multiplications can be stored in a lookup table,
avoiding arithmetic operations for network coding. When comparing the schemes that
require a combining operation (YWRG, NCS1, and HOMOMAC) versus those that do
not (KFM and ZKMH), the schemes that do not require a combining step still incur ex-
tra computation to create packets due to network coding operations requiring several
addition/multiplication operations to be computed over the large finite fields.

4.5. Resilience to multiple adversaries

HOMOMAC is the only defense scheme that is sensitive to the number of adversaries
in the network. The tolerance to colluding adversaries of HOMOMAC is based on a
cover-free family construction [Kumar et al. 1999; Stinson and Wei 2004]. Cover-free
families are utilized to define how to distribute key-chains to forwarders such that no
collusion of adversarial forwarders’ key-chains can cover a certain number of keys in
any legitimate node’s key-chain. The number of keys not covered in an honest node’s
key-chain controls the probability that an adversary can successfully forge a coded
packet that passes this nodes verification test. Increasing the tolerance to more byzan-
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Table VI: HOMOMAC’s overhead vs Byzantine adversaries tolerated

Byzantine adversaries tolerated ω l Relative security overhead

2 11 121 .08
4 17 306 .20
6 23 552 .37
8 29 870 .58

10 37 1406 .94
11 39 1560 N/A

tine adversaries increases the communication and computational overhead of HOMO-
MAC because the number of keys increases.

We use a combinatorial based cover-free family construction [Stinson and Wei 2004]
to keep the false verification rate constant at ( 12 )

40 while increasing the tolerance to
byzantine adversaries to reveal the increased communication overhead. The results in
Table VI show that the size of the key-chain ω grows linearly with respect to the num-
ber of tolerated byzantine adversaries, while the size of the key-pool l grows quadrati-
cally with respect to the number of byzantine adversaries tolerated.

As shown in Table VI the scheme cannot tolerate more than 11 byzantine adver-
saries due to the limited size of the wireless transmission frame (1500 bytes), and tol-
erating more than 2 byzantine adversaries becomes infeasible due to the relative secu-
rity overhead. The drastic increase in relative security overhead is due to the quadratic
increase in the size of the key-pool with respect to the number of tolerated byzantine
adversaries, and the key-pool corresponds to the number of MACs per coded packet.

5. EXPERIMENTAL EVALUATION

In the previous section we analyzed KFM, YWRG, ZKMH, NCS1, and HOMOMAC
based on each type of overhead. In this section we evaluate the schemes through sim-
ulations. We show the overall performance and overhead for a network which imple-
ments each of these schemes. First, we detail our simulation methodology which in-
volves the routing protocol, simulator, topology, and metrics used to produce results.
Then, we present the results of our simulations. Lastly, we summarize and rationalize
the results.

5.1. Simulation methodology

Our experiments are based on the Glomosim [GloMoSim 2000] simulator. We use a
raw link bandwidth of 5.5 Mbps and 802.11 as the MAC layer protocol. For a realistic
network topology and link quality, we use the link quality measurements from Roofnet
[MIT 2006] which is a 38-node 802.11b/g mesh network at MIT.

We select a well-known, wireless, intra-flow network coding protocol, MORE
[Chachulski et al. 2007], as a representative network coding system for multi-hop
wireless networks. In the high level, the MORE protocol works as follows. Once coded
packets are initialized for a generation, The source node continuously broadcasts coded
packets for a generation until it receives an acknowledgement from each destination.
Each forwarder node has a broadcast rate, i.e., the number of coded packets to broad-
cast per received coded packet. The selection of the broadcast rate is based on the
position of the node and the overall topology of the network. Once the destination
node receives enough coded packets for decoding, it sends an acknowledgement mes-
sage back to the source. The acknowledgement alerts the source to initialize and start
broadcasting the next generation of packets.
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For each simulation, we setup a random flow in the network by designating two ran-
dom nodes as the source node and the destination node. We simulate each flow without
interference from other flows. Simulating flows independently creates the best possi-
ble scenario for the defense schemes as the communication and computation overhead
of a given flow does not impact other flows. For a given simulation, the source begins
transmission at 100 seconds until 400 seconds. We observed no significant difference
in results when varying the amount of transmission time. For each defense scheme,
we repeat the simulation for 200 random flows.

We use throughput as our metric for performance. Throughput is measured as the
rate (in kbps) of data being decoded at the receiver. More precisely, the throughput is
the total amount of data decoded at the receiver (r bits) divided by the transfer time
(T seconds):

Throughput =
r

1000 ∗ T
(3)

We use latency as our metric for overhead of time taken to receive the first data
at the destination. Latency is measured as the difference in time between the start
of the first generation at the source and the decoding of the first generation at the
destination. More precisely, latency is the time when the first generation is decoded at
the destination (td) minus the time when the source starts transferring (ts):

Latency = td − ts (4)

We use communication overhead as our metric for overhead of additional commu-
nication in the network. Communication overhead is measured as the rate (in kbps)
summed over all nodes of overhead data being broadcasted where overhead data in-
cludes both security payloads and coding vectors. More precisely, communication over-
head is the security payload data si and coding vector data vi broadcasted by each node
i is summed and then divided by the transfer time (T seconds):

Communication Overhead =

∑
i si + vi

1000 ∗ T
(5)

We simulate the computation overhead of a security scheme as a packet processing
delay on the node as determined by the benchmarking results shown in Figure 3. The
communication overhead is simulated by setting up the contents of a coded packet
as specified in Figure 2. HOMOMAC is the only scheme where the security param-
eters differ based on the number of byzantine adversaries in the network. Thus, we
represent HOMOMAC as HOMOMAC-X where X stands for the number of byzantine
adversaries HOMOMAC is resilient to.

We define practicality of a secure network coding protocol (pollution defense) as the
ability to outperform a secure shortest path routing protocol. For this definition, we
let security be data integrity at forwarder nodes against byzantine adversaries. The
purpose for switching from a shortest path routing system to a network coding system
is the performance gains of network coding. Thus, a network that may have byzan-
tine adversaries should have the same goal; that is, the purpose of switching from a
secure shortest path routing system to a secure network coding system is also the per-
formance gains of network coding. If the secure network coding system imposes high
overhead and all network coding gains are negated as a consequence of the overhead,
then the secure network coding system is impractical.

We determine the flows that offer possible network coding gains. Network coding
gains are not possible on all flows, because network coding is most advantageous when
the source and destination are far apart and many paths exist from the source to the
destination. We select source and destination pairs randomly, so some sources may
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Fig. 4: Throughput CDF of MORE, AODV, and ARAN. The flows below the horizontal, dotted-
dashed line represent flows in which network coding outperforms shortest path routing, and
these are the only flows considered in the remainder of our experiments.

end up close to the destination. We first verify that flows in our network offer net-
work coding gains by comparing MORE with a shortest path routing protocol, and we
choose AODV [Perkins et al. 2003] as a representative shortest path routing protocol.
As a shortest path routing protocol with data integrity to compare with pollution de-
fenses, we select ARAN [Sanzgiri et al. 2002] as a secure variant of AODV. For our
comparison with the pollution defenses, we exclude flows in which MORE without de-
fense performs worse than ARAN. The flows are excluded because a pollution defense
degrades the performance of MORE, and a pollution defense on top of MORE has no
chance of outperforming ARAN in these cases. The schemes we compare are:

— KFM, YWRG, ZKMH, NCS1, and HOMOMAC are the representative cryptographic
pollution defenses that we are comparing in this work.

— MORE is the wireless network coding protocol that we implement pollution defenses
on top of.

— AODV is the shortest path routing protocol that we use as a reference to determine
that our network allows network coding gains.

— ARAN is a secure shortest path routing protocol that we use to compare the perfor-
mance of representative cryptographic pollution defenses with.

5.2. Simulation results

We present the performance of three different experiments in this section. First, we
show that our network does allow for network coding gains. Second, we show the per-
formance of each scheme versus ARAN. Third, we show the performance of HOMO-
MAC in the presence of multiple byzantine adversaries.

Network coding performance. Our network setup does permit network coding
gains in the majority of flows as the MORE protocol outperforms the best path routing
protocols in many flows as shown in Figure 4. Specifically, MORE is able to outperform
AODV in 106 of 200 flows. The overhead of the ARAN protocol does not reduce through-
put by more than 50 kbps compared to AODV in all flows. Thus, as shown in Figure 5
the MORE protocol outperforms ARAN in 119 of 200 flows which is slightly more than
compared with AODV. Upon further investigation, the flows where ARAN outperforms
MORE are the more trivial flows where the source and destination are close or even
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Fig. 5: Throughput scatter plot of throughput for each flow with MORE and ARAN. The values
lying above the dashed line indicate a flow in which MORE outperforms ARAN, and below the
line indicates that ARAN outperforms MORE.
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Fig. 6: Throughput CDF of the pollution defense schemes, KFM, YWRG, ZKMH, NCS1, and
HOMOMAC, and secure shortest path routing, ARAN. A scheme must outperform ARAN in a
significant portion of flows to be considered practical; otherwise, ARAN provides better perfor-
mance with the same defense.

neighbors in the network topology. In these flows, a network coding protocol has little
opportunity to leverage network coding gains. In the rest of our experiments we only
consider the 119 flows which MORE outperforms ARAN as these are the only flows
where it is possible for MORE with the overhead of a pollution defense to outperform
ARAN.

Defense scheme performance. Figure 6 shows the performance of the network
coding system under different defense schemes compared with ARAN, the secure
shortest path routing protocol. We observe that out of defense schemes based on asym-
metric primitives, KFM, YWRG, ZKMH, and NCS1, only ZKMH and KFM outperform
ARAN in any flow. ZKMH and KFM perform slightly better than ARAN in only 10% of
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Fig. 7: Throughput CDF of HOMOMAC with resilience to multiple byzantine adversaries and
ARAN.

flows. The MORE protocol with no defense had higher throughput than ARAN in every
flow of this experiment; thus, these defense schemes negate the performance benefits
of network coding.

HOMOMAC has an acceptable performance when resilient to two adversaries. HO-
MOMAC maintains the performance benefits of network coding in over 90% of flows.
HOMOMAC has a drastically lower overhead than the other schemes due to the dif-
ferences in computation and communication overhead seen in Figures 2 and 3.

Multiple byzantine adversaries. Only HOMOMAC’s security parameters are
sensitive to the number of byzantine adversaries in the network. The security pa-
rameters directly affect the performance of the system. Our experimental results in
Figure 7 show that HOMOMAC performance degrades with resilience to increasing
numbers of byzantine adversaries. The fraction of flows where HOMOMAC performs
better than ARAN with resilience to 2, 4, 6, 8, and 10 adversaries is 90%, 60%, 35%,
15%, and 2% respectively. For 11 adversaries, the security parameters do not fit into a
transmission frame anymore.

Defense scheme latency overhead. The latency results are shown in Figure 8.
The schemes KFM, YWRG, ZKMH, and NCS1 incur latency overheads that are at
least twice the amount of latency overhead of MORE for the majority of flows. The
latencies of the scheme ZKMH differ significantly based on the flow which can be seen
by the sharp spikes in the figure. This pattern is a result of the flows varying in the
number of hops and the ZKMH scheme requires higher computational overhead at
each forwarder as opposed to the source. The additional latency of HOMOMAC over
MORE is between 50-70 milliseconds for all flows which is quite low considering the
latency of MORE.

Defense scheme communication overhead. The communication overhead re-
sults are shown in Figure 9. It is important to note that communication overhead is im-
pacted by both the communication overhead analysis of Table IV and the throughput of
a scheme. Throughput has an impact on the communication overhead because higher
throughput implies more traffic in the network. Thus, it is significant that the schemes
KFM, YWRG, ZKMH, and NCS1 impose higher communication overhead than HOMO-
MAC and MORE given that HOMOMAC and MORE have much higher throughput as
seen in Figure 6. The scheme HOMOMAC has higher communication overhead than
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Fig. 9: Communication overhead CDF of MORE, KFM, YWRG, ZKMH, NCS1, and HOMOMAC.

MORE by a factor of 5 which is due to the overhead imposed by the numerous homo-
morphic MACs being appended to each coded packet. The communication overhead
rate of HOMOMAC is 5% of the throughput rate in the median flow which is low for
many applications.

5.3. Summary of experimental evaluation

Our experiments show that the schemes KFM, YWRG, ZKMH, and NCS1 are impracti-
cal due to the performance degradation they impose. The throughput is affected mostly
by the computational overhead required by each scheme. Requiring seconds for signing
a generation, hundreds of milliseconds for verifying coded packets that are received,
and tens of milliseconds for combining coded packets results in significant throughput
loss. The relative coding overhead also contributes to the poor performance by reduc-
ing overall throughput by a proportion similar to the relative coding overhead shown
in Figure 2.
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These same schemes KFM, YWRG, ZKMH, and NCS1 also impose significantly
higher overhead than MORE in terms of latency and communication. The latency over-
head is mainly a result of the computationally expensive signing, verifying, and com-
bining that must be completed before the destination can decode the first generation.
The communication overhead is mainly a product of the high relative coding overhead
which imposes a significant communication overhead from the coding header of each
coded packet being broadcast.

HOMOMAC has better performance and lower overhead than other schemes when
configured to tolerate a small number of attackers. The reasons are that HOMOMAC
has a smaller lower-bound on symbol size and requires no costly operations for secu-
rity steps, which results in low communication overhead and computational overhead
respectively. We conclude that when a very small number of attackers exist in the
network, HOMOMAC can offer a viable solution to defend against pollution attacks.

Finally, we note that HOMOMAC has a weaker security property than the other
four schemes. The other schemes supply a secure verification mechanism for honest
forwarder nodes in the presence of an arbitrary number of adversaries. Part of HOMO-
MAC’s key-distribution establishes a threshold for the number of adversaries within
the network, so if the number of adversaries increases beyond this threshold then
the scheme does not supply a secure verification mechanism to forwarders. Increas-
ing this threshold value imposes more communication overhead on the network. This
special aspect of HOMOMAC also requires more delicate mechanisms for handling
node dynamics in the network because of the need of key-distribution. For example,
an adversary can mount a Sybil attack by repetitively joining the network and re-
ceive key-chains until the adversary gains the knowledge of the entire key-pool. Then,
the adversary has the ability to break the security scheme and mount a successful
pollution attack. We showed that in the presence of multiple attackers, HOMOMAC’s
configuration makes it impractical for wireless network coding systems.

6. RELATED WORK

In this section we review related work. We classify related work into information-
theoretic defenses against pollution, monitoring-based pollution detection, timing-
based defenses against pollution, null-space based defenses against pollution, and
lattice-based defenses against pollution, and optimizations of cryptographic pollution
defenses.

Information-theoretic defenses against pollution. The work [Ho et al. 2004]
aims to detect that modification by a byzantine adversary has occurred after decoding
at the receiver. However, detection after decoding does not prevent the loss of net-
work resources caused by pollution attacks. Another approach [Jaggi et al. 2007] is
able to reconstruct the valid coded packets at the destination in the presence of a
byzantine adversary that injects invalid coded packets. The reconstruction requires
sending redundant information that enforces an upper-bound on the throughput. This
upper-bound is reduced by the adversary’s network capacity to the receiver, that can
potentially degrade the throughput to zero when the adversary has high bandwidth.
The work [Wang et al. 2007] proposes to ensure high throughput with the approach
of [Jaggi et al. 2007] by reducing the potential network capacity of an adversary. The
solution enforces a limit of one coded packet to be broadcast per generation by each
forwarder node which is inconsistent with practical wireless network coding systems.

Network error correction codes are another type of pollution defense. Work in this
area [Silva et al. 2008; Yeung and Cai 2006; Cai and Yeung 2006] encodes extra in-
formation into each packet that allows for the recovery of the original packets even
in the presence of invalid packets. The amount of extra encoding is dependent on the
error correction ability. Thus, it is more appropriate to utilize error correction tech-
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niques to fix errors that occur rarely, such as transmission errors. It is impractical
to utilize these techniques against a pollution attack because an adversary is capa-
ble of injecting many polluted packets resulting in far too many errors to correct with
reasonable-sized encoding.

Work on information-theoretic defenses against byzantine nodes mainly consider
linear network coding. The work [Kosut et al. 2009] shows that there are cases where
nonlinear network coding achieves higher network capacity than linear network cod-
ing when some nodes are malicious. This work defines specific classes of nonlinear
codes that are necessary to achieve higher network capacity than linear codes in mali-
cious networks. Further work on this topic [Liang et al. 2009] shows that connectivity
information is necessary to define a tight bound on network capacity in the presence
of byzantine nodes when using nonlinear network coding.

Monitoring-based pollution detection. In a wireless setting, by monitoring the
traffic in and out of a given node, it is possible to determine whether it is misbehaving
in terms of its coding. The work [Kim et al. 2010] achieves high accuracy in detecting
misbehavior given certain conditions. The nodes must protect their headers with er-
ror correcting codes such that multiple receivers always receive the header, and each
untrusted node must have multiple trusted nodes monitoring it. Such a solution is
capable of detecting the source of pollution instead of only defending against pollution.

Timing-based defenses against pollution. Broadcast authentication techniques
that rely on timing have been applied for pollution defense. The works in this area
both require accurate time synchronization per node and delay coded packets for ver-
ification. The work [Dong et al. 2009] proposes an alternative to cryptographic-based
schemes by using an inexpensive checksum and time-based synchronization to ensure
defense against pollution. The source continuously creates and disseminates a check-
sum appended with the time of creation (checksum messages are disseminated in an
authenticated manner). Then, the forwarder nodes are able to verify all coded packets
received prior to the time in the checksum message received. Because of the time syn-
chronization, the expensive cryptographic computations are not necessary, and thus
the computational overhead is reduced.

Another work based on timing [Li et al. 2010] proposes homomorphic MACs with
tags based on keys that are disclosed at specified intervals. Such an approach prevents
the problem of colluding attackers that the homomorphic MAC scheme [Agrawal and
Boneh 2009] suffers from as well as preventing a subtle attack, tag pollution. In tag
pollution, an adversary produces invalid tags that result in false positive verifications
at downstream nodes which has the potential have the same detrimental effects as
polluting packets. By disclosing keys such that all nodes verify the same tags prevents
the invalid tag problem.

These defenses utilize computationally cheap homomorphic checksums and MACs.
However, we do not consider their basis to be cryptography since without the timing
aspects, it is trivial to pollute other nodes. The reliance on timing requires two ma-
jor differences. First, the nodes must maintain accurate time synchronization. Second,
coded packets cannot be verified immediately. To ensure a strong pollution defense,
nodes must delay packets to wait for checksums or keys to be disseminated from the
source. The work [Dong et al. 2009] proposed to distribute multiple generations simul-
taneously to mitigate these delays, but this has adverse effects on the latency. Alterna-
tively, nodes can forward before checking packets and adaptively learn when an attack
starts and only delay packets in that case as proposed in the work [Dong et al. 2009].
Timing-based solutions have additional constraints which purely cryptographic-based
schemes do not have.

Null-space defenses against pollution. The work [Kehdi and Li 2009] proposes a
solution to pollution attacks via null space properties. A null space is a set of null keys
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(vectors) such that any coded packet multiplied by a null key will result in a zero vector
and multiplied by a randomly generated coded packet will result in a non-zero vector
with high probability. By relying on the null space properties instead of cryptography,
the scheme does not require larger symbol sizes nor does it require heavy computa-
tions. However, their security analysis does not apply to arbitrary network topologies.
The scheme relies on specific topologies with path diversity so that malicious nodes
do not obtain the same subspace of the null space of legitimate nodes. Constraining
the topology is counter-intuitive for wireless network coding where opportunistic rout-
ing is essential for coding gains. Furthermore, the presence of byzantine adversaries
further reduces the effects of path diversity.

Lattice-based defenses against pollution. Lattice-based cryptography presents
many new and interesting properties [Ajtai 1996]. A work [Boneh and Freeman 2010]
has leveraged the unique characteristics of lattice-based cryptography to provide a sig-
nature scheme for network coding that is secure over arbitrary sized fields and does not
impose expensive computations. However, their proposed scheme suffers from both a
bounded number of hops that a signature is valid for and prohibitively large signatures
and public keys. If the prohibitive signature and key sizes are overcome, lattice-based
cryptography offers a potential practical cryptographic solution that escapes the high
relative network coding overhead and expensive computations.

Optimizations of cryptographic pollution defenses. The work [Gkantsidis and
Rodriguez Rodriguez 2006] presents a cooperative security scheme that reduces the
computational costs of the hashing scheme [Krohn et al. 2004] by probabilistically ver-
ifying the coded packets. In [Zhao et al. 2009], the authors show that GPUs are capa-
ble of reducing the computational costs of the cryptographic-based pollution defenses.
By using GPUs, the computational steps of the homomorphic hash scheme [Krohn
et al. 2004] are 38 times faster compared to the same computations on a CPU. This
speedup would alleviate computational overhead of many defense schemes, but this
does not address the problem of high communication overhead. Both schemes [Gkant-
sidis and Rodriguez Rodriguez 2006; Zhao et al. 2009] are optimizations specifically
for the scheme [Krohn et al. 2004], but the techniques can be generalized to optimize
other cryptographic-based schemes as well.

7. CONCLUSION

We define a framework for comparing cryptographic-based defenses against pollution
attacks in a wireless environment. We use this framework to analytically compare
a representative list of schemes. We then evaluate these schemes through simula-
tions to quantify the performance of a wireless network coding system employing
these schemes. Our detailed analysis and performance evaluation indicate that cryp-
tographic defense schemes are impractical in wireless networks. Schemes utilizing an
asymmetric primitive impose high communication overhead by changing the network
coding parameters and high computation overhead from operations over large finite
fields. The communication overhead is difficult to mitigate as increasing the size of
coded packets significantly reduces the probability they are received. The computation
overhead could be mitigated by probabilistically verifying which sacrifices security,
but this may result in large drops in throughput when an attack occurs and it does not
mitigate the computation overhead of signing and combining packets. The scheme that
utilizes a symmetric primitive relies on redundancy to prevent forwarders from forg-
ing packets. The redundancy of security data is prohibitive when resilience to multiple
byzantine adversaries is desired. There are possible practical solutions to pollution de-
fense outside the area of cryptographic based defenses, but they impose one or more
of the following: additional network constraints, changes to the underlying routing
protocol, and decreased security.
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