
1

Pollution Attacks and Defenses in Wireless
Inter-flow Network Coding Systems

Jing Dong, Reza Curtmola, Member, IEEE , Cristina Nita-Rotaru, Senior Member, IEEE ,
and David K. Y. Yau, Member, IEEE

Abstract—We study data pollution attacks in wireless inter-flow network coding systems. Although several defenses for these attacks
are known for intra-flow network coding systems, none of them are applicable to inter-flow coding systems. We formulate a model for
inter-flow network coding that encompasses all the existing systems, and use it to analyze the impact of pollution attacks. Our analysis
shows that the effects of pollution attacks depend not only on the network topology, but also on the location and strategy of the attacker
nodes. We propose CodeGuard, a reactive attestation-based defense mechanism that uses efficient bit-level traceback and a novel
cross-examination technique to unequivocally identify attacker nodes. We analyze the security of CodeGuard and prove that it is always
able to identify and isolate at least one attacker node on every occurrence of a pollution attack. We analyze the overhead of CodeGuard
and show that the storage, computation, and communication overhead are practical. We experimentally demonstrate that CodeGuard
is able to identify attacker nodes quickly (within 500 ms) and restore system throughput to a high level, even in the presence of many
attackers, thus preserving the performance of the underlying network coding system.

Index Terms—Pollution attacks, wireless networks, inter-flow network coding.

F

1 INTRODUCTION

Network coding has been shown to be effective in improving
throughput in wireless networks. The core principle of network
coding is that intermediate nodes actively mix (or code) input
packets to produce output packets. The active mixing of
packets increases packet diversity in the network, resulting
in fewer redundant transmissions and better use of network
resources.

Unfortunately, the very nature of packet mixing makes
network coding systems vulnerable to a severe security threat
known as pollution attacks, in which attackers inject corrupted
packets into the network. Although packet injection is not
a new attack, its impact on network coding is devastating.
Specifically, as long as there is one corrupted packet that an
intermediate node uses during the coding process, then all the
packets that are coded and forwarded by the node will be
corrupted. The result is an epidemic propagation of corrupted
packets, as further nodes code and forward more corrupted
packets.

Based on how packets are selected for coding, existing net-
work coding systems can be classified into intra-flow coding
systems [1]–[6], where nodes mix packets within the same
flow only (i.e., packets coming from one source), and inter-
flow coding systems [7]–[14], where nodes mix packets across
different flows (i.e., packets coming from multiple sources),
but not within the same flow. In intra-flow coding systems,

Manuscript received ???; revised ???; accepted ???; published online ???

• J. Dong is with Knight Equity Markets, 575 Market Street, San Francisco,
CA 94105. E-mail: jingdong@gmail.com.

• R. Curtmola is with the Department of Computer Science, New Jersey
Institute of Technology, Newark, NJ 07102. E-mail: crix@njit.edu.

• C. Nita-Rotaru, and D. K. Y. Yau are with the Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907. E-mail:
crisn@cs.purdue.edu, yau@cs.purdue.edu.

coding occurs at all the nodes. In contrast, in inter-flow coding
systems, coding occurs only at nodes at the intersection of
flows. Nodes that do not perform coding simply forward
packets unchanged.

Network coding introduces new challenges in the detection
of corrupted (or polluted) packets, because it allows inter-
mediate (possibly malicious) nodes to actively mix packets.
Protection mechanisms proposed in the context of traditional
routing (e.g., monitoring [15] or authentication [16]) are not
effective or feasible against pollution attacks under network
coding. Monitoring-based corrupted packet detection requires
nodes to be able to compare that the forwarded packets by
their neighbors are coded from incoming packets. However, in
network coding there are many scenarios in which upstream
nodes cannot decode the packets coded and forwarded by
downstream nodes and therefore cannot detect if coding was
performed correctly. In intra-flow network coding, traditional
authentication solutions based on digital signatures would
require intermediate nodes to verify that each received coded
packet is a valid combination of plain packets from the
source. A brute force approach in which the source generates
and disseminates signatures of all possible combinations of
the plain packets has prohibitive computation/communication
costs.

To address this challenging problem two approaches have
been taken by the security and information theory research
communities: providing an end-to-end defense mechanism and
providing protection at intermediate nodes. The first approach
provides recovery at the receivers by encoding redundant in-
formation at coding time [17]. The second approach primarily
detects and filters packets at intermediate nodes preventing
the propagation of corrupted packets in the network by using
specialized homomorphic digital signatures, MACs, or hash
functions [18]–[26].

Inter-flow network coding introduces additional vulnerabili-
ties because coding across flows results in complex inter-flow
data dependencies and allows pollution attacks in one flow
to contaminate other flows. The impact of such an attack is
thus more devastating than in intra-flow coding systems. For
example, by injecting a corrupted packet into a flow f , an
attacker can corrupt all the flows coded with f . Similarly, an
attacker node at the intersection of several flows can corrupt all
the intersecting flows using a single incorrectly coded packet.
The use of inter-flow coding also makes pollution attacks
more challenging to defend against. Unlike intra-flow network
coding, where coded packets are combinations of packets
from the same source, inter-flow coding combines packets
from different sources. Given these fundamental differences,
cryptographic solutions proposed for intra-flow coding which
assume a single point of trust (the source of the flow) are
not applicable for inter-flow coding systems because there is
no single source that is trusted for all the packets. Ideally,
one needs a signature scheme that is homomorphic for XOR
operations and that could be used to verify packets signed by
different (and independent) sources. Unfortunately, we are not
aware of such a cryptographic primitive (we emphasize that
aggregate signatures [27] cannot be used, as they require the
presence of the original packets used to obtain a coded packet).

In this paper, we focus on pollution attacks and defenses
in inter-flow network coding systems. While most of the
prior work in intra-flow network coding systems focused on
detecting and filtering polluted packets, in inter-flow coding
systems, an additional critical goal is to swiftly identify
attacker nodes. This is because unlike intra-flow coding,
where there are multiple paths from source to destination,
inter-flow coding systems are usually based on single-path
routing; hence it is critical to identify and avoid attacker
nodes. To our knowledge, the only work that focuses on
tracing pollution attackers is SpaceMac [28], which aims at
identifying attackers in intra-flow network coding by relying
on a trusted identity and pre-distributed keys. Instead, we are
interested in mitigating pollution attacks in inter-flow coding
systems by using a minimal set of assumptions. We propose
CodeGuard, a defense mechanism that combines proactive
node attestation and reactive traceback to identify the attacker
nodes unequivocally.

Our contributions are:
•We formulate a general model for inter-flow network coding,
which encompasses all the existing practical systems includ-
ing [7]–[14]. We classify pollution attacks in inter-flow coding
systems based on the type of packets injected by the attacker
and the attacks’ impact on flows in the network. In particular,
we identify a new attack, cross-flow pollution, which exploits
the coding dependencies among flows to propagate pollution
across flows.
•We propose CodeGuard, the first defense mechanism against
packet pollution attacks in inter-flow coding systems. The main
novelty of CodeGuard consists of: (i) a mechanism which
allows nodes to attest the correctness of their prior coding
operations and which incurs a constant bandwidth overhead
regardless of the number of coding nodes involved, and (ii)
a bit-level traceback and cross-examination technique that

efficiently tracks the history of a corrupted packet and iden-
tifies attacker nodes unequivocally. The proposed technique
exploits two unique properties of inter-flow coding: the bit
independence in the coding and decoding operations, and the
sufficiency of packet consistency for the correctness of packet
decoding.
•Using a representative inter-flow coding system, we quantify
the impact of pollution attacks, and evaluate the efficiency and
effectiveness of CodeGuard as a defense strategy. Our results
show that due to cross-flow pollution effects, a pollution attack
can cause nearly zero throughput for a significant number
of affected flows, even if the attacker is not directly on the
path of such a victim flow. Under a random network setting,
the overall throughput of an unprotected network experiences
a steady and severe decrease as the number of attackers
increases. On the other hand, CodeGuard can successfully
restore the system throughput to an extremely high level
even if there are many attacker nodes present. This is due
to CodeGuard’s ability to identify and isolate attacker nodes
quickly (within 500 ms of attack). Furthermore, the overhead
for both the proactive and reactive components of CodeGuard
is small.

Roadmap: Section 2 overviews related work. Section 3
presents a general model for inter-flow coding systems. Sec-
tion 4 presents a detailed analysis of pollution attacks in inter-
flow coding systems. Section 5 presents our pollution defense,
CodeGuard. Section 6 presents simulation experimental re-
sults. Finally, Section 7 concludes the paper.

2 RELATED WORK
To the best of our knowledge, there is no previous work
that addresses pollution attacks in inter-flow network coding
systems. We review related work on secure routing, defenses
against pollution attacks in intra-flow network coding systems,
tracing attackers, and network error correction coding.

Secure packet forwarding. There has been significant work
on designing secure routing protocols in wireless networks,
including secure route establishment and secure packet for-
warding. Secure route establishment [16], [29], [30] protects
the route selection process from being tampered by attacker
nodes. Since pollution attacks are directed against packet for-
warding, secure route establishment is complementary to our
work. Closely related to our work is secure packet forwarding,
which addresses packet injection and dropping attacks [15],
[31]–[33]. However, they are designed for traditional routing
protocols without the use of coding. With network coding,
nodes cannot easily verify the correctness of their received
packets. Hence, monitoring-based defenses (e.g., watchdog
[15]) are no longer effective, as an upstream node usually
cannot decode packets coded by a downstream node.

Pollution attacks under intra-flow network coding. Pre-
vious research on defending against pollution attacks has
focused exclusively on intra-flow coding systems. In such sys-
tems [1]–[3], [5], [6], only packets belonging to the same flow
are coded together using random linear combinations. Solu-
tions to packet pollution attacks for intra-flow coding systems
can be categorized into cryptographic approaches and informa-
tion theoretic approaches. Cryptographic approaches rely on

2

specialized homomorphic hash functions [18], [19], message
authentication codes (MACs) [20], [25], [34], or homomorphic
digital signatures [21]–[24], [26] to allow intermediate nodes
to filter out polluted packets. Other approaches to thwart
pollution attacks include checking if coded packets belong to
the subspace spanned by the original packets (“null keys” [35])
and using time asymmetry and lightweight linear checksums
(DART [36], [37]). Information theoretic approaches do not try
to filter out polluted packets at the intermediate nodes. Rather,
they either encode enough redundant information into packets
so that receivers can detect pollution [38], or use a distributed
protocol to allow the receivers to tolerate the pollution [39].

A key assumption in all these approaches is that the source
node is trusted, which is natural for intra-flow coding since the
input packets are all from the same source node. However, in
inter-flow coding systems, packets from different source nodes
are coded together, and any source node can be potentially
malicious against other flows. Consequently, the solutions for
intra-flow coding systems do not apply in inter-flow coding
systems. The only exception is the work of Agrawal et
al. [40], who introduce a security model and propose a generic
construction for the problem of preventing pollution attacks
in multi-source network coding, in which a source may act
adversarially against other sources. They consider a many-
to-many communication model, in which multiple sources
disseminate files to multiple destinations, intermediate nodes
combine file fragments from different sources, and every desti-
nation is interested in receiving the files from all the sources.
This model is different than the one-to-one communication
model (i.e., multiple unicasts, with each destination interested
in the files of a single source) considered by the inter-flow
network coding literature [7]–[14] and also by our paper. As
acknowledged by the authors, the practicality of security in
this model is limited, as the network coding overhead grows
linearly with the number of files of all the sources in the
network; especially in a wireless network, this may reduce
the benefits provided by network coding.

Tracing attackers. A related line of work is that which, in
addition to preventing pollution attacks, takes one step further
and tries to locate the malicious nodes that introduce corrupted
packets. Le and Markopoulou [28] propose SpaceMac, a
scheme for locating polluting attackers in intra-flow network
coding systems, under the assumption of a central entity, the
controller, which knows the complete network topology. The
scheme is based on a novel homomorphic MAC scheme and
on a previously proposed non-repudiation protocol [41]. Each
node in the network is required to send several MAC tags with
each transmitted packet. Any inconsistency between the packet
and the associated tags allows downstream nodes to identify
pollution attacks and alert the controller. The controller then
asks each node in the network to report information about
packets received from its upstream nodes and, based on these
reports, the controller is able to identify all the polluting
nodes. The scheme requires an initialization phase in which
each node shares a secret key with the controller; for the
non-repudiation protocol, the controller serves as a trusted
intermediary to distribute a set of secret keys between each
node and its downstream neighbors. Instead, we are interested

in mitigating pollution attacks in inter-flow coding systems
and in using a minimal set of assumptions (i.e., no need for
key pre-distribution in the initialization phase and no need for
a trusted controller entity).

Another line of work that bears some similarities with our
traceback procedure is that of IP traceback based on prob-
abilistic packet marking (PPM) [42], [43]. In PPM, packets
are marked probabilistically with information about the IP
addresses of the routers they traverse. This allows a victim of
a DDoS attack to trace the attack back to its source. Sattari et
al. [44] combine a PPM scheme with network coding by
marking packets with linear combinations of the router IDs,
instead of individual IDs as in traditional PPM, which allows
to reduce the number of packets required to reconstruct the
attack paths.

Network error correction coding. Recent work [45]–[48]
has developed a network error correction coding theory for
detecting and correcting corrupted packets in network coding
systems. In principle, the network error correction coding
theory is parallel to classic coding theory for traditional
communication networks, and also exhibits a fundamental
trade-off between coding rate (bandwidth overhead of coding)
and the error correction ability. Such schemes have limited
error correcting ability and are inherently oriented toward
network environments where errors only occur infrequently. In
an adversarial wireless environment, the attackers are capable
of injecting a large number of polluted packets that can easily
overwhelm the error correction scheme and result in incorrect
decoding.

3 SYSTEM MODEL

In this section, we present a general model for inter-flow
coding systems that encompasses all previously proposed
systems [7]–[14], and discuss in details the packet forwarding
and coding component, which is the target of pollution attacks.
The attacks in Sec. 4 and the proposed defense in Sec. 5 are
based on this general model.

3.1 Inter-flow Coding System Overview

The main idea of inter-flow coding is to leverage the abun-
dant packet overhearing opportunities in wireless networks
in order to reduce redundant transmissions, and to improve
performance by having a node combine multiple unicasts into
a single broadcast. For example, in Fig. 1(a), node A needs
to deliver packet mi to each neighboring node Ri. If each Ri

has overheard all the other packets except mi, node A can
code (by XOR-ing) all the packets together and broadcast the
resulting coded packet, from which every Ri can recover its
desired mi.

Like in all proposed inter-flow network coding systems for
wireless networks [7]–[14], we consider a model in which a
flow is defined between a source and a destination node (i.e.,
a destination node is interested in receiving packets from a
single source). However, nodes can leverage network coding
and mix packets from different individual flows.

In general, an inter-flow coding system consists of three
components: path selection, coding opportunity discovery,

3

and packet forwarding. The path selection component is re-
sponsible for selecting data delivery paths for flows. Coding
opportunity discovery is responsible for deciding, for each
node on the path of one or more flows, whether the node will
perform coding, decoding, or simply packet forwarding for
the flow(s). The packet forwarding component is responsible
for the actual coding/forwarding of packets. Path selection
and coding opportunity discovery may be performed indepen-
dently [7], [8], [12], [13], or in an integrated manner [9]–[11],
[14] in order to increase the overall coding opportunities.

Packets transmitted in the network can be either plain
packets or coded packets. A plain packet is an (uncoded)
packet as sent by the source node. A coded packet is a bit-wise
XOR of a set of plain packets from distinct flows, denoted as
e = m1 ⊕m2 ⊕ · · · ⊕mk, where each mi is a plain packet.1

Since bit-wise XOR is equivalent to addition modulo 2, we
also write e as e =

∑
1≤i≤k mi, where the summation is

performed modulo 2. We note that all the existing inter-flow
coding systems use XOR as the coding operation.

Nodes on the path of one or more flows can be classified
as forwarding, coding, or decoding nodes. A forwarding node
simply forwards received coded/plain packets unmodified to
its downstream node. For example, in Fig. 1(b) node B acts
as a forwarder for the flow from source S2 to receiver R2.
A coding node is a node that lies at the intersection of two
or more flows. It codes received packets from the different
flows into a single coded packet, which it broadcasts to the
downstream nodes. For example, in Fig. 1(b) node A is on the
flows from S1 to R1 and from S2 to R2. After receiving m1

and m2, node A produces a coded packet e = m1 ⊕m2 and
broadcasts it to R1 and B for both flows. A decoding node
decodes a received coded packet by XOR-ing it with previ-
ously overheard plain/coded packets. For example, in Fig. 1(b)
node R1 decodes e = m1⊕m2 by using the overheard packet
m2 to compute e ⊕ m2 and recover m1. A decoding node
may also perform partial decoding which results in another
coded packet. For example, if a node receives a coded message
e1 = m1⊕m2⊕m3 and overhears m1, the node can perform a
partial decoding of e1 by computing e1⊕m1 to obtain another
(more simple) coded packet e2 = m2 ⊕m3.

Based on the location of packet decoding, inter-flow coding
systems can be classified as single-hop coding systems and
multi-hop coding systems. In single-hop coding systems [8],
[10], packet decoding occurs in the immediate next hop of the
coding node, while in multi-hop coding systems [9], [12], [13].
decoding occurs at nodes several hops away from a coding
node. Previous studies have shown that single-hop coding can
improve system throughput by up to 70% [8] when compared
with traditional routing. Multi-hop coding is able to further
improve the throughput obtained by single-hop network coding
systems by up to 20% [9].

3.2 General Coding Condition
A key component of an inter-flow coding system is the coding
condition being used, which decides the set of packets that

1. We assume that all the plain packets are of equal length, which is a
standard assumption in inter-flow coding systems.

R1

Rk

A R2

...

Has m2, m3, …, mk

Has m1, m3, …, mk

Has m1, m2, …, mk-1

A can broadcast
m1 m2 … mk

(a) Single-hop coding systems

R2

S1

A
21

1

1

B
2

R1S2

2

broadcast m1 m2

forward m1 m2

m2
decode m1

decode m2

(b) Multi-hop coding systems
Fig. 1. Different types of inter-flow coding systems.
The number on an edge represents the ID of the flow
that traverses the edge. Dashed lines represent packet
overhearing.

can be coded (XOR-ed) together at a node for transmission.
Intuitively, in an inter-flow coding system, a node can code
a set of packets for different flows to produce a single
coded packet for broadcast transmission if and only if the
downstream nodes will have the necessary packets to recover,
from the coded packet, the respective plain packets for their
flow. In this section, we formalize this condition and present
a general coding condition considered in this work.

We model the network as a directed graph G = (V,E),
where V is the set of nodes in the network and E is the set of
directed edges such that (v1, v2) ∈ E whenever v2 is within
the communication range of v1. A flow f is a simple path in
the network s → v1 → · · · → vk → r, where s is the source
node and r is the receiver node. We also denote the set of all
downstream nodes of a node v on flow f as D(v, f). We use
H(v) to denote the set of packets (both plain and coded) that
a node v has received or overheard. Let S be a set of nodes.
With a slight abuse of notation, we will use H(S) to denote
the union of packets that have been received by each node in
the set, i.e., H(S) =

⋃
vi∈S H(vi). In Appendix A, we prove:

Theorem 1. General Coding Condition. A node v can
broadcast a coded packet e = m1⊕m2⊕· · ·⊕mk such that it
is decodable by the downstream nodes at flows f1, f2, · · · , fu
if and only if for each flow fi, 1 ≤ i ≤ u, there exists a
subset of packets P of H(D(v, fi)) such that

∑
p∈P p =∑

1≤j≤k,j 6=i mj .

Theorem 1 specifies a basic condition that must be satisfied
for coding to be useful in any inter-flow coding system. As
such, it provides a general framework that encompasses all
existing inter-flow coding systems [7]–[14]. By Theorem 1, to
decide whether a coded packet e satisfies the coding condition,
we need to decide the existence of a subset in a set of packets
that can be summed to some given value. In Appendix B, we
present a polynomial time algorithm for checking the existence
of this subset and for finding this subset if it exists.

3.3 Specific Coding Systems

To illustrate the generality of our system model, we present
two representative instantiations of the model.

Single-hop coding systems. Single-hop coding systems
represent a basic form of inter-flow coding in which the
coding condition at a node is only checked among its one-hop
neighbors. More formally, in a single-hop coding system, to
transmit k plain packets m1,m2, · · · ,mk to k next-hop nodes,
a node can transmit a coded packet e = m1⊕m2⊕ · · · ⊕mk

only if each intended next hop has all the k−1 packets mj for
j 6= i (see Fig. 1(a)). Although single-hop coding systems use

4

only a subset of the possible coding opportunities allowed by
the general coding condition, they have the benefit of a simple
system design. Examples of single-hop coding systems include
[7], [8], [10], [11], [14].

Multi-hop coding systems. Unlike single-hop coding sys-
tems, multi-hop coding systems use coding opportunities
across multiple hops, providing increased coding performance
gains. More formally, in a multi-hop coding system, to send
k plain packets, m1,m2, · · · ,mk for k flows, a node can
transmit a coded packet e = m1 ⊕ m2 ⊕ · · · ⊕ mk only if
for each flow fi, the union of all the plain packets recoverable
at the downstream nodes contains all the k−1 packets mj for
j 6= i. For example, in Fig. 1(b), node A can code packets
m1 and m2 together, since R1 and R2 (two hops away)
have overheard necessary packets to decode the coded packet.
Examples of multi-hop coding systems include [9], [12].

4 POLLUTION ATTACKS ON INTER-FLOW NET-
WORK CODING SYSTEMS
In this section, we first present an adversarial model for pollu-
tion attacks in inter-flow coding systems. We then analyze the
impact of pollution attacks under different network scenarios.

4.1 Adversarial Model
We consider a network in which malicious nodes may conduct
packet pollution attacks. An attacker node can be any node on
any flow in the network. Attackers may collude.

We define packet pollution attacks as the injection of
corrupted packets into the network by malicious nodes. A
corrupted packet can be either a plain packet or a coded
packet. A corrupted plain packet is a packet that is labeled
to be a plain packet p from a source but differs from the
original p. A corrupted coded packet is a packet e′ that is
labeled as coded from plain packets m1,m2, · · · ,mk, but
e′ 6= m1 ⊕m2 ⊕ · · · ⊕mk.

We assume that a pollution attacker can inject corrupted
packets to cause the corruption of packets in any flow. An at-
tacker can always inject packets to corrupt its own flow, which
is similar to attacks in intra-flow coding systems. In inter-
flow network coding, an attacker node can also exploit the
coding dependencies among flows to cause packet corruption
of other flows, even if the attacker node is not on the data path
of a victim flow. For example, an attacker can create coding
opportunities to attack a victim flow by first establishing a
fictitious flow that is to be coded with the victim flow and then
injecting corrupted packets into the fictitious flow. Because any
node can become the source of a flow, we assume that source
nodes are not trusted to behave correctly towards other flows.

As discussed in [49], [50], besides pollution attacks, inter-
flow coding systems are vulnerable to a wide range of other
attacks. For example, attackers can subvert the path selec-
tion and coding opportunity discovery process by advertising
fake routing or topology information. The packet forwarding
process is vulnerable to other types of attack as well, such
as packet dropping, refusal to decode packets, and coding
too many packets together. In addition, wireless networks are
vulnerable to attacks on the physical and MAC layers.

In this paper, we focus exclusively on pollution attacks,
which pose as a generic and potent threat to any network
coding system. Defending against pollution attacks is a critical
step in any comprehensive solution to secure these systems.

4.2 Pollution Attacks

Pollution attacks can have different levels of severity depend-
ing on the strategy of the attacker, the network topology, and
the specific network coding system under consideration. In
this section, we present two classifications of pollution attacks,
based on the type of packets used in the attack and based on
the attack’s effect.

Attack classification based on the type of packets used
in the attack. In a pollution attack, an attacker node can inject
either corrupted plain packets or corrupted coded packets. We
refer to these two types of attack as plain packet pollution and
coded packet pollution, respectively.

Plain packet pollution. An attacker node conducts plain
packet pollution attacks by directly injecting corrupted plain
packets, modifying plain packets, or injecting inconsistent
plain packets into the network. Direct packet injection and
modification attacks are similar to the respective attacks in
traditional routing protocols, where an attacker node injects
corrupted packets or maliciously modifies en-route packets to
cause packet corruptions of a target flow.

The possibility to inject inconsistent plain packets is unique
to attacks on inter-flow coding systems. In such an attack, the
attacker injects different plain packets but labels them as the
same packet, in order to cause inconsistency in the coding and
decoding operations. One example is shown in Fig. 2(a), where
two colluding attacker nodes M1 and M2 send a packet m1

to node A and a different packet m′1 to node B, respectively,
but both packets are labeled as m1. If A codes the packet
m0 with the injected packet m1 and sends the coded packet
e = m0⊕m1 to B, then when B tries to decode e with packet
m′1, it will recover a corrupted packet for m0.

Note that in attacks using inconsistent plain packets, the
injected packets originate from colluding attacker nodes who
may share a single identity. Since attacker nodes are free to
be the source of flows, the injected packets will pass message
authentication, and circumvent authentication-based defenses.

Coded packet pollution. In coded packet pollution, attackers
inject corrupted coded packets into the network, either at a
malicious coding node or at a malicious forwarding node. In
both cases, the attack can cause all the downstream nodes to
decode incorrect packets. However, executing the attack at a
coding node allows the attacker to corrupt multiple flows by
injecting a single corrupted packet. For example, in Fig. 2(b)
the attacker node A is a coding node, and a corrupted packet
injected by A can cause both receiver nodes R1 and R2 to
decode incorrect packets. On the other hand, if the attacker
were the forwarding node B, then the attack would cause only
receiver node R2 to decode incorrect packets.

A key feature of coded packet pollution attacks is that
they are difficult to address using cryptographic techniques.
In inter-flow coding systems, each coded packet is an XOR
of packets from different source nodes. Furthermore, the

5

m0 m1S1 CBA

M1

m1 m1’

m0

M2

(a) Plain packet pollution attacks
with inconsistent packets.

R2

S1

A
2

1

1

m1

B
2

R1S2

2

broadcast e’

forward e’

m2
decode m1'

decode m2'

(b) Coded packet pollution
attacks at a coding node

R2

S1

A

2

1

1

m1

C

2

R1S2

2

broadcast m1' m2

m2 decode m1'

decode m2'

B
1

forward m1’
forward m1' m2

(c) Cross-flow pollution attacks.

R2

S1

A

2

1

1

m1'

R1S2

2

broadcast m1’ m2

m2 decode m1'

decode m2

B
1

(d) Same-flow pollution attacks.

Fig. 2. Pollution attacks on inter-flow coding systems. The node in red is the attacker node and the shaded nodes are
victim receiver nodes that receive or decode corrupted packets. The number on an edge represents the ID of the flow
that traverses the edge. Dashed lines represent packet overhearing.

source nodes do not trust each other. Taking a cryptographic
approach would require a cryptographic scheme that can
combine authentication information from multiple mutually
distrusting entities and is homomorphic with respect to the
XOR operation. We are not aware of the existence of any
such cryptographic scheme.

Attack classification based on the effects on flows in
the network. Based on the scope of the flows affected,
we classify pollution attacks into cross-flow pollution and
same-flow pollution. The cross-flow pollution phenomenon we
identify here is unique to inter-flow network coding.

Cross-flow pollution attacks exploit the coding dependencies
among flows to cause an epidemic propagation of packet
pollution across the flows. To execute such an attack, the
attacker arranges for corrupted packets that it generates to be
coded with (valid) packets of other flows. As an example, in
Fig. 2(c), attacker node B injects corrupted packets into flow 1
for receiver R1. These packets are to be coded by node A with
the flow 2 packets for receiver R2. As a result, both R1 and
R2 will receive corrupted packets. A severe consequence of
the cross-flow pollution is that the attack can bypass existing
security mechanisms that try to ensure the correctness of nodes
on a selected path [31], [51]. This is because even if the
attacker is not selected for the path, it can still establish its
own flow to corrupt the target flow.

In contrast to cross-flow pollution, packet corruption in
a same-flow pollution attack is confined only to the flows
directly modified by the attacker. Such an attack occurs either
when the corrupted packet generated by the attacker is not
coded with packets of other flows, or if the corrupted packet is
used in such a coding so that its effects happen to be cancelled
out by the operations of some other flow(s). For example in
Fig. 2(d), although the corrupted packet from node B is coded
with a packet for flow 2 at node A, the polluted packet is also
overheard by node R2 and used for decoding. The consistent
use of the corrupted packet in both the coding and decoding
cancels out the pollution effect for flow 2.

The above examples for cross-flow and same-flow pollution
show that the effect of a pollution attack is sensitive to
the location of the attacker node and to the overhearing
relationships among nodes. They also show that in general,
it is difficult to predict the impact of these attacks.

5 POLLUTION DEFENSE: CODEGUARD
In this section, we present CodeGuard, our approach to defend
against pollution attacks in inter-flow network coding systems.
We first state several assumptions. We then describe the

General definitions for inter-flow network coding systems
Types of packets
• plain packet: packet sent by the source
• coded packet: bitwise XOR of a set of plain packets
Types of nodes
• forwarding node: forwards plain or coded packets unmodified
• coding node: codes packets from different flows into a single
coded packet, which is then forwarded
• decoding node: decodes a coded packet either into a plain
packet (full decoding) or into another coded packet (partial decoding)
Types of corrupted packets
• corrupted plain packet: a packet that is labeled as a plain
packet from a source, but is different than the original packet sent
by that source
• corrupted coded packet: a packet e that is labeled to be coded
from packets m1,m2, . . . ,mk , but e 6= m1 ⊕m2 ⊕ . . .⊕mk

Definitions for CodeGuard
Types of signed packets
• signed plain packet: a packet p̂ = ((p, idS , sigS), 0, 0), where p
is the plain packet, idS is the ID of the source node, and sigS
is the signature of S over p
• signed coded packet: a packet ê = (e, idC , sigC), where e
is the (component-wise) XOR of two or more signed plain
packets, idC is the ID of the coding node C, and
sigC is the signature of C over e

Fig. 3. Reference sheet for various definitions

defense scheme and analyze its security and its overhead. To
facilitate the exposition, we include a reference sheet with
various definitions in Fig. 3.

5.1 Assumptions
We assume that each node can authenticate its messages
by using digital signatures. We further assume the existence
of a reliable end-to-end communication path between every
pair of nodes. Reliable end-to-end communication in wireless
networks has been a subject of extensive study with numerous
proposals [16], [29]–[31], any of which may be used with our
protocol. Also, since reliable communication is required in
our defense only after an attacker is positively identified, a
straightforward implementation using flooding can be used.

We assume that mechanisms are deployed to prevent a node
from conducting a Sybil attack, in which a single attacker node
owns multiple (bogus) identities and their associated credential
information. However, attackers may collude. Each receiver
of a flow trusts only the source of the flow; it does not trust
intermediate nodes or sources of other flows.

5.2 CodeGuard Overview
In CodeGuard, nodes use digital signatures as a means to
unequivocally identify pollution attackers. Specifically, the
source signs every plain packet to ensure the authenticity and

6

integrity of each plain packet; a coding/decoding node signs
each coded packet it generates to attest to the correctness of
the coding/decoding operation. Forwarding nodes verify the
signature of the received packets and if the signature is valid,
forward the packets unchanged. When any node receives a
packet with an invalid signature on a link from one of its
neighbors, it sends a bad link notification to the source so
that the link is avoided in the future. We emphasize that in
CodeGuard forwarding nodes do not have to sign the packets
they forward; only nodes that participate in the coding and
decoding process must sign the coded packets they generate.

Note that under our adversarial model, packets that pass
the digital signature verification are not necessarily valid. For
example, a malicious coding node can sign and inject polluted
coded packets with its own signature. Alternatively, colluding
attacker nodes can conduct the inconsistent plain packet attack
by injecting two (or more) inconsistent plain packets signed
using their shared identity as discussed in Sec. 4.2. However,
in these cases, the attack will eventually cause a downstream
node d to recover a corrupted plain packet which d can detect
by checking the signature on the plain packet from its source.
When that happens, node d will send a pollution notification
to the source of the flow, including the corrupted packet
in the notification. The source will then initiate a traceback
procedure to identify the responsible attacker. Traceback is
initiated by the source because coding and forwarding nodes
are not trusted.

Thus, the source of a flow may receive two types of
notifications. A bad link notification is sent by a node A that
received a (plain or coded) packet with an invalid signature
from node B, and contains the link between A and B2;
the source will avoid that link in the future. A pollution
notification occurs when a decoding node receives a coded
packet with a valid signature, and after decoding it, the result
is a plain packet which has an invalid signature. The decoding
node alerts the source with a pollution notification, which
includes the corrupted packet; as a result, the source initiates
the traceback procedure. Note that the source node stores the
plain packets it sends for a certain amount of time, in order
to successfully trace attackers if pollution attacks occur. Also,
coding/decoding nodes store the input packets in order to be
able to exonerate themselves during a traceback.

A straight-forward, but expensive approach, is to traceback
the entire packet. Instead, CodeGuard relies on the observation
that each bit in a packet is coded/decoded independently. As a
result, it is sufficient to trace the history of a single corrupted
bit to identify the attacker. During the bit-level traceback
procedure, the source queries iteratively each involved coding
node about the bit in question. Upon being queried, a coding
node reveals the bit values of the corresponding input packets
used to create the coded packet as a proof of its correct coding.
CodeGuard uses a novel cross-examination technique to ensure
the consistency of the bit value answered by a node with
the value reported by the node that sent the packet, and to
ensure that nodes do not conduct inconsistent packet attacks

2. Note that node A cannot report node B as an attacker to the source,
because A cannot prove that B is the originator of the corrupted packet.

Algorithm 1 Coding/decoding (⊕̂) executed at node C
Input: packets ê1, . . . , êk; (where êi is either a signed plain packet

(ei, 0, 0) = ((p, id, sig), 0, 0) or a signed coded packet (ei, id, sig))
Output: a signed plain or coded packet ê1⊕̂ . . . ⊕̂ êk
1: Check if the signatures on all input packets are valid; for each input packet

that has an invalid signature, send a bad link notification to the source
containing the link on which the packet was received

2: Compute e = e1 ⊕ . . .⊕ ek; (apply ⊕ component-wise)
3: if e is a signed plain packet then
4: if the signature on e is valid then
5: Output (e, 0, 0)
6: else
7: Send pollution notification to the source
8: else
9: Compute signature sigC over e

10: Output (e, idC , sigC)

(i.e they sent different packets to different nodes labeled with
the same packet identifier). The cross-examination relies on
the observation that in inter-flow coding, consistency in using
packets is sufficient for the correct recovery of plain packets.
We prove that during the traceback, either a coding node will
be unable to produce a correctness proof or a node injecting
inconsistent plain packets will be found. In either case, the
source node can always identify one attacker node and exclude
it from the network because of the digital signature carried by
each packet.

CodeGuard is independent of the route selection process
and only assumes that the routing and coding can avoid
the identified malicious links and nodes. Such avoidance can
be easily achieved, e.g., by including the list of identified
malicious links and nodes in the route request messages.

Finally, we note that most of the defenses proposed for
intra-flow network coding attempt to achieve hop-by-hop con-
tainment of polluted packets. However, in inter-flow network
coding the nature of the coding/decoding operations and
the existence of malicious sources makes efficient hop-by-
hop containment more challenging. Unlike the approach of
Agrawal et al. [40], which achieves hop-by-hop containment
at the cost of network overhead linear with the number of
sources in the network, CodeGuard has the advantage of
constant-size network overhead due to coding; the trade-off is
that CodeGuard may not always detect immediately polluted
packets (although when decoded, corrupted plain packets are
always detected).

5.3 Detection of Polluted Packets
In this section, we present in details the detection of pol-
luted packets in CodeGuard. This detection relies on digital
signatures. Each plain packet is signed by its source node
and each coded packet is signed by the node that creates it
(i.e., codes/decodes it). A signed plain packet created by a
source S is denoted by p̂ = (p, idS , sigS), where p is the
plain packet, idS is the ID of S, and sigS is the signature
of S over p. A signed coded packet created by a node C is
denoted by ê = (e, idC , sigC), where e is the XOR of two or
more signed plain packets, idC is the ID of C, and sigC is
the signature of C over e. For consistency, we write a signed
plain packet in the same format as a signed coded packet,
as p̂ = ((p, idS , sigS), 0, 0). Using this notation, we define an
XOR-like operation ⊕̂ for coding and decoding signed packets
as shown in Algorithm 1.

7

For example, coding two signed plain packets p̂1 =
((p1, idS1 , sigS1), 0, 0) and p̂2 = ((p2, idS2 , sigS2), 0, 0) at
node C produces a signed coded packet ê = (e, idC , sigC),
with e = (p1 ⊕ p2, idS1

⊕ idS2
, sigS1

⊕ sigS2
). To decode ê

using p̂2, we compute e⊕(p2, idS2
, sigS2

) = (p1, idS1
, sigS1

),
which is a plain packet, and so the output packet of ê
⊕̂ p̂2 is ((p1, idS1 , sigS1), 0, 0) = p̂1 as expected. Since a
signed coded packet always has only one attached signature
(from the coding node), we stress that the size of a coded
packet remains the same regardless of the number of coding
operations performed to obtain it.

A signed plain packet p̂ and a signed coded packet ê can
be verified by checking the validity of sigS over p, and the
validity of sigC over e, respectively. Note that the verification
of a signed coded packet does not involve the verification of
the plain packets used to obtain it; indeed, these plain packets
may not be available. Each node performs the following
actions:
• Source node: For every plain packet p, the source com-

putes the signed version p̂ = ((p, id, sig), 0, 0) and forwards
it to the next hop node. The source also stores the packet p
for use in the traceback for attacker nodes in case of a packet
pollution notification.
• Forwarding node: When a forwarding node receives

a (plain or coded) packet, it verifies the packet’s attached
signature. If the verification passes, the node forwards the
packet unchanged to its next hop node via an authenticated
channel. Otherwise, the packet is dropped and the node sends
a bad link notification to the source in order to report the
link on which the packet is received as a malicious link to be
avoided.
• Coding/decoding node: Like a forwarding node, a cod-

ing/decoding node first verifies the signatures of its received
plain and coded packets. If a packet with an invalid signature
is found, the node sends a bad link notification to the source.
Only input packets with valid signatures are kept for further
coding/decoding operations. If the result of an operation is
another coded packet (e.g., after coding or partial decoding),
the node computes the signed version of the coded packet and
forwards the signed packet downstream. The node also stores
the input packets in case it needs to provide a correctness
proof during a possible traceback in case some pollution
attack will be detected. If the result of an operation is a
plain packet, the node verifies the source signature on the
packet. If the verification fails, then the packet is corrupted
and the node sends to the appropriate source node a pollution
notification, which includes the corrupted packet. The actions
of a coding/decoding node are specified in Algorithm 1.
5.4 Tracing Pollution Attackers
There are cases in which coded packets passing the signature
verification are not necessarily valid, but their pollution cannot
be detected at that hop, but only downstream when they
eventually result in the recovery of a plain packet with an
invalid signature. When such an event occurs, the node that
detects the invalid signed plain packet triggers a traceback
procedure by sending to the source of the corresponding flow
a pollution notification which contains the corrupted plain
packet.

Algorithm 2 The traceback procedure
Input: A corrupted plain packet p̂′ and the pollution reporting node R
Output: The identified attacker node
Note: All query and response messages are signed by their originator nodes.

When a query times out, the queried node is identified as the attacker.
1: Let p̂ the correct packet stored by the source
2: if p̂′ and p̂ are identical then // Fake pollution notification
3: return node R
4: Set P = R
5: Let bPu be any bit in p̂′ that differs from the corresponding bit in the

correct packet p̂
6: Let u be the differing bit position
7: Set coded set = ∅, plain set = ∅
8: loop
9: Query P for tuples for bit u of its input packets

10: Let S = {(bi, pidi, ptypei, ni)} be the set of tuples returned by P
11: if

∑
bi 6= bPu then // Check if P codes correctly

12: return node P
13: for each tuple Ti = (bi, pidi, ptypei, ni) in S do
14: Query ni with tuple Ti for cross examination
15: if ni returns “NO” then // Either P or ni is lying
16: Query P for the signed packet p̂i containing the bit
17: if p̂i is from ni and bit u is bi then
18: return node ni

19: else
20: return node P
21: // Node P is now exonerated
22: Add to coded set all Ti’s returned by P whose ptypei is “coded”
23: Add to plain set all Ti’s returned by P whose ptypei is “plain”
24: if plain set contains two consistent tuples for the same packet then
25: return the originator node of the tuples
26: Remove a tuple (bi, pidi, ptypei, ni) from coded set
27: Set P = ni and bPu = bi to repeat the traceback procedure

Upon receiving a pollution notification, the source starts
a bit-level traceback procedure to identify the attacker that
injected the polluted packet and caused the corrupted plain
packet recovery. A key observation in this step is that each
bit in a packet is coded/decoded independently (i.e., the i-th
bit of a coded packet is obtained by XOR-ing the i-th bits
of the input packets). It is hence sufficient to perform a bit-
level traceback instead of a more costly packet-level traceback.
In bit-level traceback, each node only responds with a single
bit in a packet, and so packet signatures cannot be used to
ensure the correctness of the response. Instead, CodeGuard
leverages another key observation in inter-flow coding, namely
that consistency in using packets is sufficient for the correct
recovery of plain packets. In other words, as long as a packet
is used consistently in the coding and decoding process, even
if the packet is corrupted, its effect will be cancelled out
(for a concrete example, see the same-flow pollution attack
in Fig. 2(d)). This observation motivates a cross-examination
technique to ensure the consistency of the bit in question.

The bit-level traceback works as follows. On receiving a
pollution notification from a node R for a corrupted plain
packet p̂′, the source first finds an incorrect bit, say bit u, in
p̂′ by comparing it with the signed plain packet p̂ it originally
sent. Then the source starts tracing back the history of bit
u by contacting all the involved coding nodes iteratively and
asking them to prove their innocence by providing the input
bits they used to create the coded bit that is traced. The detailed
procedure is shown in Algorithm 2. The procedure terminates
when an attacker node is identified.3

3. In case of n (possibly colluding) attackers, the source node can identify
all of them with at most n invocations of the traceback procedure.

8

The source maintains two sets, coded set and plain set,
containing information on coded and plain packets, respec-
tively. At each step of the traceback, the source selects a node
P to be a prover node and queries it for a proof of innocence.
If the node proves its innocence, it is exonerated, otherwise it
is identified as an attacker node. For each prover node P , the
source also has a target bit value bPu for bit u of the packet
output by that node. Initially, P is set to be the node R which
sent the pollution notification, and the target bit value bPu is
set to be bit u of p̂′ (lines 4–5). The source queries P for
the u-th bit of the input packets coded to produce p̂′ (line
9). In response, P sends for each input packet p̂i a tuple
Ti = (bi, pidi, ptypei, ni), where bi is the value of bit u in p̂i,
pidi is the packet ID of p̂i, ptypei is a bit indicating whether
p̂i is a coded or plain packet, and ni is the ID of the node
that originated p̂i (line 10).

On receiving the set of tuples, the source verifies that
P coded correctly by checking if

∑
bi = bPu , where the

summation is performed over modulo 2. If the verification
fails, P is identified as an attacker (lines 11–12), as P performs
the coding incorrectly.

Otherwise, the source cross-examines the bit value bi re-
ported by P with its claimed originator node ni (lines 13–
20). To do this, the source forwards each tuple Ti to ni,
which responds with an indication of whether it has indeed
generated a packet with ID pidi and whose bit u is indeed bi
(line 14). A positive response indicates that node ni accepts
the responsibility for generating the bit. If all the responses
are positive, then node P is exonerated, since the coding
operations are consistent up to node P .

If any response from ni is negative, that is, if ni disagrees
with the claim made by P regarding the bit value bi, then
either P or ni is lying and can be identified as the attacker. To
find out which one, the source queries P for the signed input
packet from ni, which P should have stored in its buffer. If P
is able to return a packet correctly signed by ni whose u-th
bit is bi, then node ni is identified as the attacker. Otherwise,
P is identified as the attacker (lines 17–20).

The source adds all the received tuples Ti to coded set or
plain set according to their ptypei field (lines 22–23). It then
checks the consistency of the tuples in plain set to ensure
that no node has claimed conflicting bits for the same plain
packet, that is, there do not exist two tuples Ti and Tj in
plain set with i 6= j, ni = nj , pidi = pidj , but bi 6= bj .
If such a conflict is found, the responsible node is identified
as the attacker (lines 24–25). This consistency check handles
the inconsistent plain packet attacks (described in Sec. 4.2).
Otherwise, the source removes a tuple from coded set, sets
P and bPu to be ni and bi in the removed tuple, respectively,
and then repeats the traceback procedure on the coding node
ni (lines 26-27).

5.5 Security Analysis

In a pollution attack, an attacker can inject corrupted packets
carrying an invalid signature but also a valid signature (e.g.,
inconsistent plain packets or incorrectly coded packets, signed
by itself). In the following, we show that CodeGuard can

effectively address both types of attack. In addition, we show
that repeatedly invoking the traceback procedure in an attempt
to cause a potential DoS attack can only have limited impact.

Lemma 1. Corrupted packets with invalid signatures do not
propagate in the network and links involving the pollution
attacker are identified.

Proof: Since all honest nodes perform packet signature
verification before processing a received packet, packets with
invalid signatures are immediately identified and dropped at
the attacker’s first hop neighbor node. Thus, the polluted
packet does not propagate. The link between the receiving
node and the attacker node is also reported to the source as
a malicious link to be avoided. There is no danger of false
accusation, as the reporting node is required to be one end of
the reported malicious link. Thus, an attacker node can only
cause links adjacent to itself to be avoided (this is in fact
desirable).

Lemma 2. For every occurrence of a pollution attack which
uses packets with correct signatures and causes incorrect
packet decoding at an honest node, a traceback procedure
is always invoked.

Proof: Plain packets are attached with the signatures from
their corresponding source nodes. When a pollution attack
causes a corruption during packet decoding at some down-
stream honest node, the invalid signature on the decoded plain
packet will cause the node to send a notification to the source
node to invoke the traceback procedure. In the worst case,
the attack will be detected at the receiver. The delivery of the
notification message is ensured based on the reliable end-to-
end communication assumption discussed in Section 5.1.

Lemma 3. A traceback procedure always results in the
identification of one attacker node, even in the presence of
colluding attackers, and there are no false positives.

Proof: In inter-flow coding systems, we can visualize the
history of a decoded plain packet using a coding tree as in
Fig. 4. If the decoded plain packet is incorrect, observe that one
of the following two cases must have occurred: an incorrect
XOR was performed at some interior node, or an inconsistent
plain packet was used at a leaf node. The traceback performs a
breadth-first search of the coding tree, verifying the correctness
of an XOR operation and the consistency of plain packets
at each step. Thus, eventually one attacker node will be
identified.

We now explain the concept of a coding tree and illustrate it
with an example in Fig. 4. First, we observe that in inter-flow
coding systems, coding and decoding operations are essentially
the same operation, i.e., an XOR over multiple input packets.
Thus, in the following, we use the term coding to mean both
coding and decoding. Given a plain packet which is obtained
from a decoding operation, we can trace back the history of
the packet by constructing a coding tree recursively from top
to bottom as follows. Each tree node represents a packet, with
interior nodes being coded packets and leaf nodes being plain
packets. The root of the tree is the target plain packet. The
children of each node in the tree are the input packets that
are coded together (using XOR) to obtain the node. A plain

9

E

D C

A B
p1 p2

p1e

p2 Packet represented
by the node

p1

Fig. 4. An example coding tree. p2 is a decoded plain
packet which is incorrect. The leaf nodes represent plain
packets and the interior nodes represent the XOR of
their child nodes. In order to produce an incorrect plain
packet at the root, it must be the case that either an
XOR is performed incorrectly at some interior node (e.g.,
e 6= p1⊕ p2), or there are inconsistent plain packets at the
leaves (e.g., packets represented by node A and C are
not the same even though they are both labeled as p1).

packet node, except for the root node, does not have children.
Such a coding tree can always be constructed for any plain
packet.

Each tree node has a signature attached to it: the signature
for a plain packet node is created by its source node, and the
signature for a coded packet node is created by the coding node
that coded the packet. Since CodeGuard requires each node
to verify the validity of the attached signatures prior to the
coding operation, if there is a node with an invalid signature,
then its parent node is identified as the attacker node. Next,
we assume all nodes in the tree have valid signatures. Since
the root plain packet is a corrupted packet, it must be the
case that at least one of the following occurs: i) some interior
coding node does not label correctly the packet it codes using
its children nodes, or ii) some plain packet nodes (at leaves)
are inconsistent. In the first case, the incorrect interior node is
the culprit attacker node, while in the second case, the source
that signs inconsistent packets is the attacker node. During
the traceback procedure of CodeGuard, the source performs a
breadth first search from the root node of the coding tree, and
is able to always find one attacker node.

Attacks on the traceback procedure. Below we analyze
the effects of possible attacks on the traceback process:
attacker collusion, packet dropping, reporting pollution on old
packets, and DoS attacks.

In the presence of multiple (possibly colluding) attacker
nodes, one attacker node may be able to prove the correctness
of its coding by blaming another attacker node for providing
incorrect input packets. However, regardless of how the attack-
ers pass off responsibilities among themselves, the traceback
procedure will always identify one attacker node.

Two attackers may collude to deceive the source about the
bit being traced in the cross-examination procedure. However,
in inter-flow network coding, as long as the bit is used
consistently in both the coding and decoding processes, its
impact cancels out and does not result in packet corruption.
Such consistency of bits is examined at each step of the
traceback; hence, collusion attacks on the cross-examination
are ineffective.

An attacker may incriminate an honest node by dropping
either a traceback query request or response message. How-
ever, such an attack is ruled out by the reliable end-to-end
communication assumption discussed in Sec. 5.1.

An attacker may report a packet pollution for a packet long

in the past such that the input packets stored at an honest node
for generating the coding correctness proof have been purged,
due to limited storage space. As shown in the storage overhead
analysis (Sec. 5.6), a node is able to store packets for 1000
seconds even with a moderate storage space. Thus, the source
can ignore pollution reports for old plain packets (e.g., older
than 1000 seconds) to avoid such attacks.

Finally, an attacker may try to invoke frequent and lengthy
traceback procedures by injecting corrupted packets in order
to exhaust the network bandwidth. However, the number of
nodes contacted by the source during traceback is upper-
bounded by the number of coding nodes involved, which is
typically a small number. Furthermore, even if such an attack
is executed, its effect cannot be sustained since at least one
attacker node will be removed from the network after each
traceback invocation. Note that attacks from malicious source
nodes that repeatedly initiate tracebacks are a form of DoS
attack and can be addressed by limiting the rate at which a
source node is allowed to initiate tracebacks.

5.6 Overhead Analysis

We now analyze the storage, computation, and bandwidth
overhead of the proposed defense.

Storage. CodeGuard requires each coding and decoding
node to store its received packets because they may be needed
for verification during traceback. Since the packets are needed
only for traceback, they can be stored in secondary storage
(which is increasingly abundant and cheaper), instead of in the
more premium memory. For example, for a storage capacity
of 1 GB, a packet size of 1 KB, and a packet rate of 1000
packets per second (equivalent to around 8 Mbps goodput), a
packet can be stored for over 1000 seconds before it becomes
unavailable. In Appendix C, we rigorously analyse the lower
bound on the time duration that a node needs to store the input
packets and the level of tolerance to packet delaying attacks.

Computation. The computation overhead of CodeGuard
consists of signature generation at the source and coding
nodes, and signature verification at the intermediate nodes.
With increasingly more powerful CPUs and more prevalent
use of cryptographic hardware accelerators, computing per-
packet digital signatures is becoming practical. For instance,
using the 160-bit Elliptic Curve DSA signature (ECDSA)4,
current consumer-grade processors can perform one signature
generation/verification operation in less than 1 ms5. With
hardware acceleration, rates exceeding 10,000 operations per
second have been reported [52], [53], which would allow our
protocol to accommodate rates that far exceed current wireless
mesh network bandwidths. The computation overhead consists
of two components: Proactive overhead (incurred regardless
of the presence of attack, it is primarily due to the use of
digital signatures on packets) and reactive overhead(incurred
by efforts to identify and isolate attacker nodes). The reactive
overhead is small, as it is bounded by the number of attackers
in the network (each invocation of the traceback procedure

4. Equivalent to the security level of 1024-bit DSA.
5. Based on OpenSSL version 0.9.8g on 2.26 GHz Intel Core 2 Duo CPU.

10

results in one attacker being identified and excluded); more-
over, typical wireless mesh networks have relatively small path
lengths. We evaluate the computation overhead in Section VI.C

Communication. The communication overhead of Code-
Guard under normal operation is due to signatures attached
to packets. The size of a 160-bit ECDSA signature is 320
bits. Hence, for a data packet size of 1500 bytes, the signature
incurs a bandwidth overhead of 2.7% for a signed plain packet
and 5.4% for a signed coded packet.6 The communication
overhead of the traceback process is also small, because both
query and response messages are only a few bytes long.

Overhead observation. Finally, we would like to empha-
size that in CodeGuard only nodes that participate in the
coding and decoding process incur the storage overhead and
the computation overhead of signing packets. In flows that do
not have coding opportunities, CodeGuard only imposes the
overhead of the source signing its packets and intermediate
nodes verifying their received packets. Such overhead is neces-
sary even for addressing the conventional packet modification
attacks.

6 EXPERIMENTAL EVALUATIONS

In this section, we present simulation results to evaluate
the effectiveness and overhead of CodeGuard in identifying
attacker nodes.

6.1 Experimental Methodology
Simulator setup. We use the Glomosim simulator [54] con-
figured with 802.11 as the MAC layer protocol and a raw
link bandwidth of 2 Mbps. We augment the physical layer
of Glomosim to use the measurement-based model from [55],
which empirically maps the link distance to the transmission
success probability, considering physical layer effects such as
path-loss, shadowing, and multi-path fading.

Coding system. We implement an inter-flow coding pro-
tocol based on the general coding condition in Sec. 3 and
refer to it as ICODE. It encompasses all existing protocols,
including [7]–[14]. As we are only interested in the impact of
pollution attacks, ICODE is implemented in an off-line manner
using global knowledge of the network. Specifically, we first
select a set of source and destination pairs and establish a
path between each pair using the ETX metric [56]. Then
each node on a path is examined for coding opportunities.
At runtime, nodes forward or code packets according to the
off-line analysis results.

Experiment scenarios. We first examine the impact of
pollution attacks using the network configurations in Fig-
ures 2(b) and 2(c). These configurations demonstrate coded
packet pollution attacks and plain packet pollution attacks with
cross-flow pollution. For each experiment, we vary the offered
load in the network by varying the packet sending rate at the
source nodes.

We then examine the impact of pollution attacks and the
effectiveness and overhead of CodeGuard under a general net-
work configuration. The network consists of 100 honest nodes

6. Because a signed coded packet contains two signatures. See Sec. 5.3.

and up to 30 attacker nodes distributed randomly in a 1500m
by 1500m area. Attacker nodes selected on a data delivery path
always send corrupted packets to their downstream nodes. A
variable number of flows are established between randomly
selected source and destination pairs. The total offered load
of all the flows is kept at 1 Mbps, which is sufficient for
full utilization of the network bandwidth without causing
over-congestion. We present results for 25 flows (results for
different number of flows are similar). Each simulation is run
for 300 seconds and is repeated 20 times with different random
seeds.

Metrics. We use the following metrics for evaluating the
impact of pollution attacks and the effectiveness and overhead
of CodeGuard.

Network throughput. This is the aggregate data receiving rate
(in kbps) of all receivers in the network.

Bandwidth overhead. This is the amount of data transmitted
due to CodeGuard, including both signatures attached to
packets and the data sent during traceback.

Computation overhead. We measure computation overhead
in terms of the number of digital signatures performed at a
source or a coding node, because digital signatures are the
most computation-intensive operations in CodeGuard.

Delay in attacker identification. This is the average time over
all attackers from when an attacker starts the pollution attack
to when the attacker is identified by a source node.

6.2 Results for Illustrative Scenarios
In Fig. 5, we show the impact of coded packet pollution and
cross-flow pollution using the illustrative network scenario
in Fig. 2(b) and 2(c) as presented in Sec. 4.2, respectively.
The figure shows that inter-flow coding improves performance
significantly. In particular, when the offered load is high,
network congestion causes the throughput to decrease for
traditional routing, while with network coding, the throughput
can be sustained at a much higher level. Also, the pollution
attack has a significant impact on the network throughput:
It degrades the throughput to nearly zero for both scenarios,
especially when the offered load is high.

The network throughput under pollution attacks in Fig. 5(b)
exhibits an interesting trend: it first increases and then de-
creases as the offered load increases. This demonstrates the
cross-flow impact of packet pollution attacks. In the network
scenario in Fig. 2(c), flow 2 has no attacker on its path. When
the network is under a lighter load, packets do not accumulate
in the output queue of node A. Thus, as soon as node A
receives a packet, it forwards the packet immediately without
inter-flow coding, and flow 2 is not affected by the pollution
attack on flow 1. As the offered load increases, node A starts
to have packets queuing up, which enables inter-flow coding
of the packets. As a result, the polluted packets in flow 1 start
to contaminate the packets in flow 2, bringing the throughput
of both flows to nearly zero.

6.3 Results for Random Network Scenarios
In this section, we present the impact of pollution attacks and
the effectiveness and overhead of CodeGuard under random
network topologies.

11

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

kb
ps

)

Offered load (kbps)

ICODE
ICODE-pollution

(a) Scenario in Fig. 2(b)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

kb
ps

)

Offered load (kbps)

ICODE
ICODE-pollution

(b) Scenario in Fig. 2(c)
Fig. 5. Throughput for different offered loads with and without using network
coding, and the impact of pollution attacks on network coding for illustrative
scenarios in Fig. 2(b) and 2(c).

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

kb
ps

)

Number of attackers

With defense
No defense

Fig. 6. Throughput with and without
CodeGuard defense in a random net-
work.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12

B
an

dw
id

th
 (

kb
ps

)

Path length

No attack
With defense

No defense

Fig. 7. Attack impact on ag-
gregate throughput of flows
with 20 attackers.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

Id
en

ti
fi

ca
ti

on
 l

at
en

cy
 (

m
s)

Number of attackers

Identification latency

Fig. 8. Average delay of
attacker identification.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30
 0

 2

 4

 6

 8

 10

 12

B
an

dw
id

th
 o

ve
rh

ea
d

(%
)

M
ax

 n
um

be
r

of
 s

ig
na

tu
re

s
pe

r
se

c

Number of attackers

Bandwidth overhead
Computation overhead

Fig. 9. Proactive band-
width (left-Y) and computa-
tion (right-Y) overheads.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

T
ot

al
 d

ef
en

se
 d

at
a

se
nt

 (
K

B
)

T
ot

al
 n

um
be

r
of

 s
ig

na
tu

re
s

Number of attackers

Bandwidth overhead
Computation overhead

Fig. 10. Reactive band-
width (left-Y) and computa-
tion (right-Y) overheads.

Impact of pollution. Fig. 6 shows the total throughput
achievable in the network under the presence of different
numbers of pollution attackers, with and without the use of
CodeGuard in a general network setting. We observe that with-
out the defense, pollution attacks cause a steady degradation
of network throughput as the number of attackers increases.
However, the impact is not as drastic as in the illustrative
examples where the throughput drops to nearly zero. The
reason is that since the sources and destinations of flows are
randomly selected and attackers are randomly placed, shorter
flows have a smaller chance of having an attacker on their path.
They are thus less likely to be affected by an attack, but they
usually contribute more towards the total network throughput.
Fig. 7 demonstrates the phenomenon by showing the effects of
pollution attacks on flows of different path lengths, when there
are 20 attacker nodes. We see that flows of only one or two
hops are only marginally affected by the attack, while longer
flows may experience a severe degradation in throughput.

Effectiveness of defense. From Fig. 6, observe that with
the use of CodeGuard, the throughput is maintained at a high
level similar to the case of no attack. CodeGuard is highly
effective in restoring the throughput because of its ability
to identify and isolate attacker nodes quickly after a single
polluted packet is injected. To demonstrate this, Fig. 8 shows
the average delay of attacker detection for different numbers
of attackers. This latency is independent of the number of
attackers; it is a function of the number of coding nodes on
the path and the time required for a round trip between any
two nodes in the network, both of which are small in typical
wireless mesh networks. From the figure we see that the time
to identify an attacker node is relatively stable at less than 500
ms. Thus, the overall impact that an attacker can inflict on a
flow is minimum.

Overhead evaluation. We evaluate both the proactive and
reactive overhead of CodeGuard. Fig. 9 shows the proactive
bandwidth and computation overheads of CodeGuard in terms

of the percentage of data transmitted due to the defense and
the maximum number of signatures performed at a node,
respectively. We see that CodeGuard has a proactive bandwidth
overhead of only around 3%, while the maximum number of
signatures performed at a node is around 8 per second. We
note that the proactive computation overhead will increase
proportionally as the data rate increases. However, as discussed
in Sec. 5.6, we do not expect it to become a performance
bottleneck given the power of current processors and the use
of cryptographic hardware.

Fig. 10 shows the reactive bandwidth and computation
overheads in terms of the total number of bytes delivered and
the total number of signatures performed for defense packets,
respectively. The results are shown for different numbers of
attacker nodes in the network. Both the reactive bandwidth and
computation overheads exhibit a trend of linear increase as the
number of attackers increases, but both remain at a low level.
For example, with as many as 30 attacker nodes, CodeGuard
incurs a bandwidth overhead of less than 25 KB and it uses
less than 70 total signature operations for the entire network.

7 CONCLUSION
We have studied packet pollution as a potentially devastating
attack against wireless inter-flow coding systems. We first
presented a general framework that captures the essential
properties of these systems. We then studied the impact of
pollution attacks within the framework for different network
configurations and attacker strategies. Finally, we proposed a
pollution defense, CodeGuard, that uses node attestation and
bit-level trace-back to efficiently identify attackers. Through
analysis and simulation experiments, we showed that Code-
Guard provides highly effective protection while incurring
small computation and communication overheads.

REFERENCES
[1] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure

for randomness in wireless opportunistic routing,” in SIGCOMM, 2007.

12

[2] X. Zhang and B. Li, “Optimized multipath network coding in lossy
wireless networks,” in Proc. of ICDCS ’08, 2008.

[3] X. Zhang and B. Li, “DICE: a game theoretic framework for wireless
multipath network coding,” in Proc. of Mobihoc, 2008.

[4] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level
network coding for wireless mesh networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, 2008.

[5] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, “Codecast: a
network-coding-based ad hoc multicast protocol,” Wirel. Commu., 06.

[6] C. Gkantsidis et al., “Multipath code casting for wireless mesh net-
works,” in CoNEXT ’07.

[7] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The importance
of being opportunistic: Practical network coding for wireless environ-
ments,” in In Proc. of Allerton Conference, 2005.

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” in SIGCOMM, ’06.

[9] J. Le, J. C. S. Lui, and D. M. Chiu, “DCAR: Distributed coding-aware
routing in wireless networks,” in Proc. of ICDCS ’08, 2008.

[10] S. Das, Y. Wu, R. Chandra, and Y. C. Hu, “Context-based routing:
Technique, applications, and experience,” in Proc. of NSDI ’08, 2008.

[11] Q. Dong, J. Wu, W. Hu, and J. Crowcroft, “Practical network coding in
wireless networks,” in Proc. of MobiCom, 2007.

[12] S. Omiwade, R. Zheng, and C. Hua, “Practical localized network coding
in wireless mesh networks,” In Proc. of SECON 2008.

[13] S. Omiwade, R. Zheng, and C. Hua, “Butteries in the mesh: Lightweight
localized wireless network coding,” in Proc. of NetCod 2008, Jan. 2008,
pp. 1–6.

[14] B. Ni, N. Santhapuri, Z. Zhong, and S. Nelakuditi, “Routing with
opportunistically coded exchanges in wireless mesh networks,” Wireless
Mesh Networks, 2006. WiMesh 2006. 2nd IEEE Workshop on.

[15] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior
in mobile ad hoc networks,” in Proc. of MOBICOM, August 2000.

[16] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand
routing protocol for ad hoc networks,” Wirel. Netw., 2005.

[17] T. Ho, B. Leong, R. Koetter, M. Mdard, M. Effros, and D. R. Karger,
“Byzantine modification detection in multicast networks with random
network coding,” IEEE Trans. on Inform. Theory, vol. 54, no. 6, 2008.

[18] M. Krohn, M. Freedman, and D. Mazieres, “On-the-fly verification of
rateless erasure codes for efficient content distribution,” in Proc. of
Symposium on Security and Privacy, 2004.

[19] C. Gkantsidis and P. Rodriguez Rodriguez, “Cooperative security for
network coding file distribution,” Proc. of INFOCOM 2006.

[20] S. Agrawal and D. Boneh, “Homomorphic MACs: MAC-based integrity
for network coding,” in Proc. of ACNS ’09.

[21] D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,” in
Proc. of CISS, 2006.

[22] Q. Li, D.-M. Chiu, and J. C. S. Lui, “On the practical and security issues
of batch content distribution via network coding,” in Proc. of ICNP ’06.

[23] F. Zhao, T. Kalker, M. Medard, and K. Han, “Signatures for content
distribution with network coding,” in Proc. of ISIT ’07, 2007.

[24] Z. Yu et al., “An efficient signature-based scheme for securing network
coding against pollution attacks,” in Proc. of INFOCOM ’08, 2008.

[25] Z. Yu, Y. Wei, and Y. Guan, “An efficient scheme for securing XOR
network coding against pollution attacks,” in Proc. of INFOCOM, 2009.

[26] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear
subspace: Signature schemes for network coding,” in Proc. of PKC ’09,
2009.

[27] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifi-
ably encrypted signatures from bilinear maps.” in Proc. of EUROCRYPT
’03.

[28] A. Le and A. Markopoulou, “Locating Byzantine attackers in intra-
session network coding using SpaceMac,” in Proc. of IEEE International
Symposium on Network Coding (NetCod), 2010.

[29] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure efficient distance
vector routing for mobile wireless ad hoc networks,” in WMCSA, 2002.

[30] M. Guerrero Zapata and N. Asokan, “Securing Ad hoc Routing Proto-
cols,” in WiSe, 2002.

[31] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,” ACM Trans. Inf. Syst. Secur., 2008.

[32] R. Curtmola and C. Nita-Rotaru, “BSMR: Byzantine-resilient secure
multicast routing in multi-hop wireless networks,” in SECON, 2007.

[33] J. Dong, R. Curtmola, and C. Nita-Rotaru, “On the pitfalls of using high-
throughput multicast metrics in adversarial wireless mesh networks,” in
Proc. of SECON ’08, June 2008.

[34] Y. Li, H. Yao, M. Chen, S. Jaggi, and A. Rosen, “RIPPLE authentication
for network coding,” in Proc. of INFOCOM’10, 2010.

[35] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null
space properties of network coding,” in Proc. of INFOCOM ’09, 2009.

[36] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against
pollution attacks in wireless network coding,” ACM Trans. Inf. Syst.
Secur., vol. 14, pp. 7:1–7:31, June 2011.

[37] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against
pollution attacks in intra-flow network coding for wireless mesh net-
works,” in Proc. of WiSec ’09, 2009.

[38] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” in Proc. of ISIT ’04, 2004.

[39] S. Jaggi et al., “Resilient network coding in the presence of byzantine
adversaries,” in INFOCOM ’07.

[40] S. Agrawal, D. Boneh, X. Boyen, and D. Freeman, “Preventing pollution
attacks in multi-source network coding,” in Proc. of PKC 2010, 2010.

[41] Q. Wang, L. Vu, K. Nahrstedt, and H. Khurana, “MIS: malicious nodes
identification scheme in network-coding-based peer-to-peer streaming,”
in Proc. of IEEE INFOCOM ’10, 2010.

[42] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support
for IP traceback,” IEEE/ACM Trans. Netw., vol. 9, no. 3, 2001.

[43] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for IP traceback,” in Proc. of IEEE INFOCOM ’01, 2001.

[44] P. Sattari, M. Gjoka, and A. Markopoulou, “A network coding approach
to IP traceback,” in Proc. of IEEE International Symposium on Network
Coding (NetCod), 2010.

[45] D. Silva, F. Kschischang, and R. Koetter, “A rank-metric approach to
error control in random network coding,” IEEE Inf. Theory for Wireless
Ntwks, 2007.

[46] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Trans. on Information Theory, 2008.

[47] R. W. Yeung and N. Cai, “Network error correction, part i: Basic
concepts and upper bounds,” Commun. Inf. Syst., vol. 6, no. 1, pp. 19–36,
2006.

[48] N. Cai and R. W. Yeung, “Network error correction, part ii: Lower
bounds,” Commun. Inf. Syst., vol. 6, no. 1, pp. 37–54, 2006.

[49] J. Dong, R. Curtmola, R. Sethi, and C. Nita-Rotaru, “Toward secure
network coding in wireless networks: Threats and challenges,” in Proc.
of NPSec, 2008.

[50] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Secure network coding for
wireless mesh networks: Threats, challenges, and directions,” Elsevier
Computer Communications, 2009.

[51] R. Curtmola and C. Nita-Rotaru, “BSMR: Byzantine-resilient secure
multicast routing in multi-hop wireless networks,” IEEE Transactions
on Mobile Computing (TMC), vol. 8, no. 4, 2009.

[52] H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sundaram,
“A public-key cryptographic processor for RSA and ECC,” in ASAP ’04.

[53] H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick, and L. Spracklen,
“Accelerating next-generation public-key cryptosystems on general-
purpose CPUs,” IEEE Micro, vol. 25, no. 2, pp. 52–59, 2005.

[54] “Global mobile information systems simulation library - glomosim,”
http://pcl.cs.ucla.edu/projects/glomosim/.

[55] J. Camp, J. Robinson, C. Steger, and E. Knightly, “Measurement driven
deployment of a two-tier urban mesh access network,” in MobiSys ’06.

[56] D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path
metric for multi-hop wireless routing,” in MobiCom ’03.

[57] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[58] J. Dong, R. Curtmola, C. Nita-Rotaru, and D. Yau, “Pollution attacks
and defenses in wireless inter-flow network coding systems,” in Proc.
of IEEE Int’l Workshop on Wireless Network Coding (WiNC), 2010.

APPENDIX A
PROOF OF THEOREM 1
We first prove the sufficiency of the condition, that is, if for
each flow fi, 1 ≤ i ≤ u, there exists a subset P of H(D(v, fi))
such that

∑
p∈P p =

∑
1≤i≤k,i 6=i mi, then the coded packet

e = m1⊕m2⊕· · ·⊕mk can be decoded by some downstream
node of the coding node for the all flows fi, 1 ≤ i ≤ u.
Without loss of generality, consider a specific flow fi, for
some i between 1 and u. Let the subset P of the packets
in H(D(v, fi)) that satisfies the condition. We can divide P
into l disjoint sets Pi, 1 ≤ i ≤ l, such that P =

⋃
1≤i≤l Pi and

each Pi is received at a node vi ∈ D(v, fi). To decode the
packet e, each vi computes e1 = e⊕

∑
p∈Pi

p and forwards the
resulting message to its downstream nodes. Then the resultant
message el at node vl is
el = e⊕

∑
1≤j≤l

∑
p∈Pi

p = e⊕
∑
p∈P

p = e⊕
∑

1≤i≤k,i 6=i

mi = mi

Hence, the packet e is decoded at node vl.
We now prove the necessity of the condition. We show that

if the coded packet e is decodable at flow fi, 1 ≤ i ≤ u,
then there exists a subset P of H(D(v, fi)) that satisfies the
equation

∑
p∈P p =

∑
1≤j≤k,j 6=i mj , for each fi. Without loss

of generality, we consider fi for some 1 ≤ i ≤ u.
Suppose the packet e is decodable to recover the plain

packet mi at some downstream node vl ∈ D(v, fi). Let

13

v1, v2, · · · , vl−1 be the sequence of nodes in D(v, fi) pro-
ceeding vl. Since the only possible operation that a node vi
can perform on the coded packet is to perform xor operation
of the coded packet with some of its received packet, let ei
be the resultant coded packet from node vi, then

ei = ei−1 ⊕
∑
p∈Pi

p, (1)

where e0 = e and Pi is some set of packets received at node
vi. Solve the recursive relation defined in Eqn. 1, we have

el = e⊕
∑

1≤j≤l

∑
p∈Pi

p = e⊕
∑
p∈P

p,

where P is a set of packets consists of all the packets whose
total number of appearance in each Pi is an odd number.
Clearly, P ⊆

⋃
1≤j≤l Pi ⊆ H(D(v, fi)).

Since the packet is decoded at node vl, i.e., el = mi,
we have

∑
p∈P p =

∑
1≤i≤k,i 6=i mi. Hence, there exists a

subset P of H(D(v, fi))i that satisfies the equation
∑

p∈P p =∑
1≤j≤k,j 6=i mj .

APPENDIX B
A POLYNOMIAL TIME ALGORITHM FOR FINDING
A SUBSET P THAT SATISFIES THE CODING CON-
DITION
We formally state the problem as follows. Given a set of
packets S = H(D(v, fi)) containing both plain and coded
packets, a coded packet e = m1 ⊕ m2 ⊕ · · · ⊕ mk, and a
packet mi, 1 ≤ i ≤ k, find a subset of packets P ⊆ S if it
exists, such that

e⊕
∑
p∈P

p = mi. (2)

Naively, one can try all possible subsets of S and see if
Eqn. 2 holds, but this would require an exponential amount
of time. Note that the problem is a specialized form of the
general subset sum problem [57], which is NP-hard. The
special property of XOR operation allows us to solve this
problem in polynomial time by transforming the problem into
solving a system of linear equations as follows.

Without loss of generality, we consider mi = m1 in Eqn. 2.
Let S = {p1, p2, · · · , ps}, where each pi =

∑ui

j=1 m
i
j , with

each mi
j being a plain packet. Due to the property of XOR,

we can assume each mi
j is unique, since otherwise they would

cancel out. Thus, we can also regard pi as a set of plain packets
{mi

1,m
i
2, · · · ,mi

ui
}. Note that if ui = 1, pi is a plain packet.

Assume the subset P ⊆ S exists such that e ⊕
∑

p∈P p =

mi, or equivalently,
∑

p∈P p =
∑k

i=2 mi. We assign a
binary variable bi to each packet pi in S, such that bi =
0 if pi ∈ P , or bi = 1 if pi /∈ P .

Denote the set {m2,m3, · · · ,mk} as T . Regarding pi as a
set of plain packets as discussed above, denote P =

⋃s
i=1 ps.

Observe that for each m ∈ T , it must be the case that the total
number of occurrences of m in all p ∈ P is odd, and for all
m ∈ P and m /∈ T , it must be the case that the total number of
occurrences of m in all p ∈ P is even. Thus, we can establish
a system of linear equations that bi must satisfy as follows. For
each m′j ∈ P , we add the following equation to the system,∑

1≤i≤s,m′
j∈pi

bi = cj , where cj = 1 if m′j ∈ T , or cj =

0 if m′j /∈ T .

If the system of linear equations admits no solution, then the
subset P does not exist. Otherwise, we can determine P by
including only those pi for which their corresponding bi = 1.

Let l = max1≤i≤s(|ps|), then the total number of equations
in the system is at most ls and the total number of variables
per equation is at most s, thus the size of the system of linear
equations is O(ls2), and can be solved in polynomial time
using the standard method of Gaussian elimination.

APPENDIX C
ANALYSIS OF PACKET STORING TIME

We analyze the time duration a node needs to store the input
packets for the coded packets it generates in order to provide
proof of coding correctness to the source node when queried.

Let ∆ be the maximum path latency between any two nodes
in the network, ts, tr, tq be the time when the source sends out
the packet, the node receives the packet, and the source sends
out a query to the node for the proof of coding correctness for
the packet, respectively. Denote T to be the time duration that
a node stores the input packets for a coded packet it generates.
Then in order for the node to be able to supply the input
packets as its proof of coding correctness, we must have tq +
∆ ≤ tr + T , or equivalently, tq ≤ tr + T −∆. Since tr ≥ ts,
it is sufficient to have tq ≤ ts + T − ∆. That is, the source
node should send out query for proof of coding correctness
no later than T −∆ after the time it sends out the packet.

Let the node be the kth node being queried for the proof
of coding correctness. Without considering packet delaying
attacks, the time that the source queries the node for the proof
of its coding correctness is at most ts+2k∆. Thus we need to
have T −∆ ≥ 2k∆, or T ≥ (2k + 1)∆. Since the number of
multi-coding involved for a packet typically is small, we can
assume k ≤ nc, where nc is a system parameter that upper
bounds the maximum number of multi-coding performed for
a packet. For example, in single-hop coding and multi-hop
coding systems, we have nc = 1. By taking k at its maximum
value, we have T ≥ (2nc + 1)∆. In single-hop or multi-hop
coding systems, where nc = 1, we have T ≥ 3∆. In the
general case that includes multi-coding, since it is very rare
for a packet to have more than two or three coding nodes
involved, it is sufficient to set nc to be a small number, e.g.,
5.

Since the only overhead for a large T is more storage space,
which is getting increasing more abundant and less expensive,
we can set T to be much larger than the lower bound we
derived. For example, assuming a packet size of 1KB, a storage
space of 1GB, and a packet rate of 1000 input packets for
coding per second, we can store a packet for over 1000 seconds
before the storage is full. The overly large value for T also
allows tolerance to packet delaying attacks that delay packets
up to T − Tmin, where Tmin = (2nc + 1)∆ is the lower
bound of T . For example, in a typical network with ∆ =
100ms, nc = 5, setting T = 1000 seconds, allows tolerance
of packet delay up to nearly 999 seconds. Such a long packet
delay can be treated as a packet drop, and can be addressed
with existing techniques such as watchdog [15].

14

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in [58]. This
research was sponsored in part by US National Science
Foundation grants NETS 0905266-CNS and CNS-0963715.

Jing Dong received his PhD degree in Com-
puter Science from Purdue University in 2009.
During his PhD study, he was a member of the
Dependable Distributed Systems Laboratory. He
received his BS and MS degree in Computer
Science in 2003 and 2004, both from University
of Massachusetts, Boston. His research inter-
ests are in wireless networks with a focus on
resilience and security of such networks.

Reza Curtmola is an Assistant Professor in the
Department of Computer Science at NJIT. He
received the B.Sc. degree in Computer Science
from the “Politehnica” University of Bucharest,
Romania, in 2001, the M.S. degree in Secu-
rity Informatics in 2003, and the PhD degree
in Computer Science in 2007, both from The
Johns Hopkins University. He spent one year
as a post-doctoral research associate at Pur-
due University. He received the NSF CAREER
award. His research focuses on storage security,

applied cryptography, and security aspects of wireless networks. He is
a member of the ACM and the IEEE Computer Society.

Cristina Nita-Rotaru is an Associate Professor
in the department of Computer Science at Pur-
due University. She leads the Dependable and
Secure Distributed Systems Laboratory. She re-
ceived BS and MS degrees from Politechnica
University of Bucharest, Romania, in 1995 and
1996, and a Ph.D. degree in Computer Science
from The Johns Hopkins University in 2003. She
served on the technical program committee of
over 40 conference in networking, distributed
systems, and security. She received the NSF

CAREER award. Her research interests include security and fault-
tolerance for distributed systems, and networks. She is a member of
the ACM and IEEE Computer Society.

David K. Y. Yau (M’10) received the B.Sc. (first
class honors) from the Chinese University of
Hong Kong, and the M.S. and Ph.D from the
University of Texas at Austin, all in computer
science. He is currently Distinguished Scientist
at the Advanced Digital Sciences Center, Singa-
pore, and Associate Professor of Computer Sci-
ence at Purdue University, West Lafayette, IN,
USA. Dr. Yau was the recipient of an NSF CA-
REER award for research in quality of service.
His other areas of research interest are protocol

design and implementation, wireless and sensor networks, network
security and incentives, and Smart Grid IT. Dr. Yau served as Associate
Editor of IEEE/ACM Trans. Networking (2004–09); Vice General Chair
(2006), TPC co-Chair (2007), and TPC Area Chair (2011) of IEEE Int’l
Conf. Network Protocols; TPC co-Chair (2006) and Steering Committee
member (2007–09) of IEEE Int’l Workshop Quality of Service; and TPC
Track co-Chair of IEEE Int’l Conf. Distributed Computing Systems 2012.

15

