
Stateless-Recipient Certified E-mail System

based on Verifiable Encryption

Giuseppe Ateniese and Cristina Nita-Rotaru

Department of Computer Science
The Johns Hopkins University
{ateniese,crisn}@cs.jhu.edu

Abstract. In this paper we present a certified e-mail system which pro-
vides fairness while making use of a TTP only in exceptional circum-
stances. Our system guarantees that the recipient gets the content of the
e-mail if and only if the sender receives an incontestable proof-of-receipt.
Our protocol involves two communicating parties, a sender and a recip-
ient, but only the recipient is allowed to misbehave. Therefore, in case
of dispute, the sender solicits TTP ’s arbitration without involving the
recipient. This feature makes our protocols very attractive in real-world
environments in which recipients would prefer to assume a passive role
rather than being actively involved in dispute resolutions caused by mali-
cious senders. In addition, in our protocol, the recipient can be stateless,
i.e., it does not need to keep state to ensure fairness.

1 Introduction

The Internet has revolutionized the computer and communications world like
nothing before and it is today an important global resource for millions of people.
With its continue growing, it generated tremendous benefits for the economy and
our society. However, the Internet does not provide all the services required by
the business communication model such as secure and fair electronic exchange
or certified electronic delivery.

A fair electronic exchange protocol ensures that, at the end of the exchange,
either each player receives the item it expects or neither part receives any in-
formation about the other’s item. The classical solution to the fair exchange
problem is based on the idea of gradually exchanging small parts of the items.
However, practical solutions to the problem require a trusted third party (TTP)
as arbitrator. More specifically, in on-line protocols the trusted party is employed
as a delivery channel whereas in off-line protocols the trusted party is involved
only in case of dispute. On-line protocols require the presence of the TTP in
every transaction and, usually, do not provide confidentiality of the items ex-
changed. In addition, in some cases, the sender receives a receipt signed by the
TTP rather than by the original recipient of the message. In off-line protocols,
the TTP is invoked only under exceptional circumstances, for example in case
of disputes or emergencies.

In a certified e-mail scheme the intended recipient gets the mail content if
and only if the mail originator receives an irrefutable proof-of-delivery from the
recipient.

In this paper we present a certified e-mail system which implements an off-
line protocol that makes use of verifiable encryption of digital signatures as
building block. A verifiable encryption of a digital signature represents a way to
encrypt a signature under a designated public key and subsequently prove that
the resulting ciphertext indeed contains such a signature.

The rest of the paper is organized as follows. The next section discusses
related work done in the areas of fair exchange and certified e-mail protocols.
Section 3 outlines the certified e-mail protocol used by our system. We analyze
the protocol in Section 4. Finally, we discuss the implementation of the system
in Section 5.

2 Related Work

One approach in solving the fair exchange problem consists of gradually ex-
changing information about the items between the two parties. Works in this
direction generally rely on the unrealistic assumption that the two parties have
equal computational power ([12]) or require many rounds to execute properly
([5]).

Another approach focuses on increasing the overall efficiency by using TTP s.
Notable works in this direction are the three-message off-line protocol for certified
e-mail presented in [18] and the efficient off-line fair exchange protocols in [1, 2,
7]. The protocol in [1] makes use of verifiable escrow schemes implemented via
a cut and choose interactive proof. Although expensive, the protocol provides
timely termination assuming only resilient channels.

A on-line certified e-mail protocol is presented in[24]. The protocol uses as
TTP a number of replicated servers. This has the drawback that each server
must be trusted in order to have the protocol working properly. Having only
one single compromised server would invalidate the entire scheme. Bahreman
and Tygar [6] present an on-line scheme using six messages. The scheme does
not address confidentiality from the TTP . An optimal on-line certified e-mail
protocol using only four messages is described in [11].

Schneier and Riordan [21] present a protocol where the TTP acts as a public
publishing location (which might be implemented as a secure database server).
The authors describe both an on-line and an off-line version of the protocol.
We note that the off-line solution requires a visible TTP , since the form of the
receipt changes depending on whether the trusted entity was invoked or not.
Moreover, the TTP must be directly involved in any secondary adjudication as
it must provide, in the case involving dispute resolution, an additional signed
proof-of-mailing with each query or deposit.

Recently, Ateniese et al. [4] have shown how to realize hybrid schemes that
combine the strengths of both the on-line and off-line approaches to achieve
efficiency while involving parties that are semi-trusted rather than fully trusted.

3 An Efficient Off-line Protocol

In this section, we describe the setting in which we operate and the certified
e-mail protocol built via verifiable encryption of RSA-based digital signatures.

In the rest of the paper, we will assume that the communication is carried
over private and authenticated channels.

A certified e-mail protocol should minimally provide:

– Fairness: No party should be able to interrupt or corrupt the protocol to
force an outcome to his/her advantage. The protocol should terminate with
either party having obtained the desired information, or with neither one
acquiring anything useful.

– Monotonicity: Each exchange of information during the protocol should
add validity to the final outcome. That is, the protocol should not require any
messages, certificates, or signatures to be revoked to guarantee a proper ter-
mination of the protocol. This is important, because if revocation in needed
to ensure fairness, then the verification of the validity of the protocol out-
come becomes a bottleneck as it requires TTP ’s active participation.

– TTP invisibility: A TTP is visible if the end result of an exchange makes
it obvious that the TTP participated during the protocol.

– Timeliness: It guarantees that both parties will achieve their desired items
in the exchange within finite time.

Occasionally, it is desirable to keep the content of confidential e-mails secret
from trusted parties acting as intermediaries. Thus, an optional feature is:

– Confidentiality: In case the exchange is deemed confidential, the protocol
should not need to disclose the message contents to any other party excepting
the sender and the recipient.

3.1 Our Setting and Verifiable Encryption of RSA Signatures

Let n be the product of two large primes p and q, such that factoring n is
computationally infeasible without knowing p or q. It is generally convenient to
work inside some cyclic subgroup of large order. For that reason, we generate
p and q as safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are
primes. We then consider the subgroup QR(n) of quadratic residues, i.e., QR(n)
contains all the elements y such that there exists x with y = x2. It is easy
to see that QR(n) is a cyclic group of order p′q′. Finding a generator is also
straightforward: randomly select ḡ and compute the generator g = ḡ2. Since
elements in QR(n) have orders p′, q′, or p′q′, the order of g will be p′q′ with
overwhelming probability.

We can also describe a proof of knowledge that allows a prover to convince
a verifier of the equality of discrete logarithms. Let g, h ∈ QR(n) be publicly
known generators. The prover selects a secret x and computes y1 = gx and
y2 = hx. The prover must convince the verifier that:

Dlogg y1 = Dlogh y2.

The protocol, drawn from [9], is run as follows:

1. The prover randomly chooses t and sends (a, b) = (gt, ht) to the verifier.
2. The verifier chooses a random challenge c ∈ {0, 1}160 and sends it to the

prover.
3. The prover sends s = t− cx mod p′q′ to the verifier.
4. The verifier accepts the proof if:

a = gsyc
1 and b = hsyc

2.

To turn the protocol above into a signature on an arbitrary message m, the
signer can compute the pair (c, s) as:

c = H(m‖y1‖y2‖g‖h‖g
t‖ht), s = t− cx mod p′q′.

where H(·) is a suitable hash function. To verify the signature (c, s) on m, it is
sufficient to check whether c′ = c, where

c′ = H(m‖y1‖y2‖g‖h‖g
syc

1‖h
syc

2).

Following the notation in [3], we will denote an instance of this signature tech-
nique by EQ DLOG(m;gx

1 , gx
2 ; g1,g2). Substantially, EQ DLOG(·) is a Schnorr-

like signature [23] based on a proof of knowledge performed non-interactively
making use of an ideal hash function H(·) (à la Fiat-Shamir [14]).

In [3] it is shown that it is possible to define very efficient protocols for
verifiable encryption of several digital signature schemes. Given an instance S
of a digital signature on an arbitrary message, we say that V E(S) is a TTP -
verifiable encryption of S, if such an encryption can be verified to contain S in
a way that no useful information is revealed about S itself. Only TTP is able to
recover the signature from the encryption V E(S).

We focus our attention on RSA signatures [22], that is, if (e, n) is a public
key with e prime then the secret key is d such that ed ≡ 1 mod 2p′q′. To sign
a message m, it is sufficient to compute C = R(m)d, where R(·) is a publicly
known redundancy function as defined in PKCS#1, ISO/IEC 9796, etc. (see [17]
p. 442). For the sake of simplicity, we employ the hash-and-sign paradigm and
assume that R(·) is a suitable hash function such as SHA-1. The signature is
accepted only if Ce = R(m). The encryption algorithm used to encrypt the RSA
signature is the ElGamal algorithm: given a secret key x and a corresponding
public key gx, a message s is encrypted by generating a random r and computing
K1 = sgxr, K2 = gr. The value s can be recovered by computing s = K1/(K2)

x.
Each user first runs a one-time initialization phase by which the user and the

trusted third party T agree on common parameters. More specifically (see [3]
for details):

1. The user, U say, sends (e, n) to T ;
2. T authenticates the user then selects a random base ḡ and a random expo-

nent x. It computes g = ḡ2 and sends CERTT :U = SignT (g, y = gx, U, (e, n))
to the user, where SignT (·) denotes a signature computed by T .

It is assumed that the user provides a proof of n being a product of safe
primes (see [8]). The signature CERTT :U is a publicly known certificate and, in a
real-world implementation, will contain relevant information including protocol
headers, timestamp, transaction ID, and certificate lifetime. Notice that, the
trusted party T does not need to store the secret exponent x for each user. In
fact, such a secret can be inserted into CERTT :U encrypted via a symmetric
encryption algorithm. Thus, T needs to store only one value, the symmetric key,
for all the users.

The computation of a verifiable encryption of a RSA signature on a message
m is performed as shown in [3]. In particular, the user U encrypts via ElGamal
the signature R(m)d by computing a random r and:

K1 = R(m)2dyr and K2 = gr.

Notice that, the signature R(m)d is squared to make sure that the value
encrypted belongs to the set of quadratic residues QR(n). Then, the user provides
evidences that the encryption has been correctly computed by showing that:

Dlogye(Ke
1/R(m)2) = Dlogg(K2),

and this is done via EQ DLOG(·) w.r.t. the message m. (Observe that the
verifier should recover the bases y = gx and g from CERTT :A.) We will denote
the verifiable encryption of a RSA signature, R(m)d, with V ET (R(m)2d). Let U
denote a generic user, the value V ET (R(m)2d) contains: CERTT :U , the ElGamal
encryption of R(m)2d, and the signature of knowledge of the equality of discrete
logarithms (EQ DLOG(·)).

3.2 The Protocol

A certified e-mail protocol using verifiable encryption is shown in Figure 1. Con-
sider a scenario in which the sender A sends a message to B and wants a receipt
signed by B in exchange. The recipient B has to generate and sign the receipt
before being able to read the content of the message. The protocol has to provide
fairness, specifically, it must ensure that the sender receives the receipt if and
only if the recipient can read the message. The protocol is designed so that the
TTP is invoked only in case of dispute. As long as both A and B are honest,
there is no need to involve the trusted entity in the protocol. This is a big ad-
vantage compared to on-line protocols in which a trusted entity is needed for
each transaction.

Moreover, the protocol is designed to make sure that A cannot misbehave.
Only B is allowed to cheat by not sending the message in the last step. This
feature is highly desirable in the setting of certified e-mail, as the recipient would
prefer to assume a passive role rather than being actively involved in dispute
resolutions. Notice that, in a certified e-mail protocol, the sender initiates the
exchange process, thus it is natural to desire that the recipient of the message
be relieved by any burden caused by malicious senders.

User B receives the certificate CERTT :B by engaging in an initialization
phase with the trusted party T as explained in the previous section. Similarly,
B’s public key is (e, n) with e prime and n product of safe primes and QR(n)
is the subgroup of squares in which we operate. The protocol consists of the
following steps (operations are taken modulo n):

– Step 1 The sender A selects a random r, computes y = reR(m), and signs
it including a protocol header PH. Such a signature, denoted by SA, is sent
to B.

– Step 2 The recipient B squares y and computes (y2)d = r2R(m)2d. It then
computes the verifiable encryption of y2d, V ET (y

2d), and sends the result to
A. However, B has to sign the result in order to include a protocol header PH
and the sender’s signature SA. More importantly, B’s signature (SB) makes
it possible to neutralize malleability attacks against the ElGamal encryption
and also preserves B’s protocol view at that specific point in time.

– Step 3 After receiving the message from B, A verifies the signature and
that the encryption contains the correct receipt. If that is the case, A sends
m to B.

– Step 4 The recipient B reads the message m and sends the receipt Rec =
R(m)d to A.

A B
m

Rec = R(m)d

SA = SignA(PH, y = reR(m))

SB = SignB(PH, SA, VET(y2d))

Fig. 1. Off-line certified e-mail protocol via verifiable encryption of RSA signatures

Notice that, a certified e-mail protocol is not a simultaneous exchange of
items but rather a asymmetric exchange since the message has to be sent first
to allow the recipient to compute a corresponding receipt based on the message
received. This fact has some positive side effects on our scheme. For instance,
the recipient does not need to include any time limit into the signature SB since
the decisions of sending a particular message and when this has to happen are
taken exclusively by the sender.

If B does not send the receipt in Step 4, then A contacts the trusted entity
and both run the following protocol:

– Step 1 A sends B’s signature, SB , to the TTP along with r and m.
– Step 2 The TTP verifies first the signatures SA and SB (SA is contained in

SB). Then, it recovers y2d from the verifiable encryption and computes yd

(see Remark 2 below). Finally, the TTP checks whether the value s = yd/r
is indeed a valid signature of the message m under B’s public key (i.e, it
checks whether se = R(m)). If so, it sends s to A and forwards m to B.

The TTP has to forward the message m to B to nullify any attempts of the
sender A to successfully retrieve a receipt without revealing the message m to
B. Specifically, A may not have sent the message m in Step 3 above.

The protocol fairness is built around the assumption that the sender A can
verify that the verifiable encryption indeed contains a valid receipt. Only the
TTP can recover the receipt from the verifiable encryption.

Remark 1. The protocol headers, PH and PH, contain relevant information
such as the identities of the parties involved (A,B, and TTP), the cryptographic
algorithms employed, timestamps and transaction IDs to prevent replay attacks,
and other pertinent information about the protocol.

Remark 2. Notice that, the recipient B squares the value y = reR(m) sent by
A to make sure that it is signing an element of the set QR(n) (d is odd since
e is prime). Only the recipient B knows the factorization of n and it is usually
infeasible to compute square roots modulo n without knowing the factors of
n. However, given z = y2d, the TTP can efficiently compute yd by employing
the following well-known method, based on the Euclidean algorithm, which we
report here for convenience:

1. observe that ze = y2 and that gcd(e, 2) = 1;
2. we can use the extended Euclidean algorithm to compute two integers u, v

such that u2 = 1 + ve in ZZ;
3. raising both terms of the equation ze = y2 by u, we obtain: zue = yu2 =

y1+ve = yyve

4. thus we have: zuey−ve = y, or (zuy−v)e = y;
5. it is now clear that the term zuy−v is congruent to yd (modulo n).

Remark 3. In our protocol, the sender A has to reveal the message m to the
TTP in case of dispute. If message privacy has to be preserved, it is sufficient

to substitute m with PH||PB(m) in the protocol above, where PB(·) represents

the public-key encryption under B’s public key and PH is a protocol header.
Notice that the receipt assumes a new format:

Rec = R(PH||PB(m))d,

which has to be interpreted in a special way: it is considered a valid receipt

of the message m only when accompanied by m and PH such that:

(Rec)e = R(PH||PB(m)).

The public-key encryption PB(·) should be deterministic or, if randomized,
the sender A must reveal the random parameters used to encrypt the message.
The approach we have taken for the implementation of the protocol is to encrypt
the message m as Ek(MACl(m)||m), PB(k||l), where: k, l are random secret val-
ues; MACl(·) is a MAC function, such as HMAC-SHA-1; PB(·) is a deterministic
public-key encryption algorithm, such as plain RSA; Ek(·) is a symmetric-key
encryption algorithm, such as AES in CBC mode.

The new protocol header PH has to be checked, either by B or the TTP ,
to contain the correct information relevant to the protocol. Moreover, it has
to clearly state that the receipt Rec has to be interpreted in the special way
described above.

Remark 4. The certified e-mail protocol presented above works for RSA signa-
tures but can easily be extended to work for other schemes based on a similar
setting such as Rabin and Guillou-Quisquater [16] signature schemes, or provably
unforgeable signature schemes such as Cramer-Shoup [10] and Gennaro-Halevi-
Rabin [15]. In [3], it is shown how to extend the verifiable encryption protocol
to work with such popular signature schemes.

4 Analysis and Comparisons

In this section we present an analysis of our protocol and we compare it with
the state-of-the-art in the field. Our claim is the following:

Claim: The protocol above is a certified e-mail protocol which provides fairness,

monotonicity, timeliness, and TTP invisibility. Moreover, the protocol optionally

provides confidentiality of the message, i.e., the arbitration can be performed

without revealing the e-mail content to the trusted intermediary.

Sketch: Clearly our protocol provides TTP invisibility since the structure of the
receipt does not indicate whether the TTP was involved or not in dispute reso-
lutions. The protocol provides also monotonicity since any signature (including
the receipt) will not be revoked in order to guarantee a proper termination of the
protocol. Confidentiality is achieved by encrypting the actual message content
in such a way that only the recipient can open it and this is achieved through
standard encryption technology.

We assume only resilient channels. A resilient channel will eventually deliver
a message sent through it within a time lapse which may be arbitrarily long, yet
finite. Moreover, the recipient does not need to include any time limit into the
signature SB and the sender A has the ability to decide to abort the protocol and
adopt a scheme for protocol resolution that can be executed in a finite period of
time. Therefore, our protocol provides timeliness.

Regarding fairness, it is sufficient to prove that: a message is read by the
recipient B if and only if the sender A gets the corresponding receipt. Observe
that the first two messages of our protocol are used just to collect evidences
by which the sender A can solve disputes by interacting with the TTP . If the
TTP is not invoked then the relevant protocol messages are only those in Step 3
and Step 4 where a message m is sent in exchange of the corresponding receipt.
Therefore, fairness is preserved in this case. If the TTP is invoked (by A) then
B’s signature (SB) will be sent to the TTP along with the message m and the
blinding factor r. The TTP will compute yd from the verifiable encryption and
will check whether:

(yd/r)e = R(m).

If that is the case, then A and B receive yd/r and m, respectively. Hence,
even in this case fairness is preserved since the sender will receive a signature on
a message which is forwarded to the recipient. ut

It is interesting to notice that the recipient does not need to contact the
TTP in case of dispute. This feature makes our protocols very attractive in real-
world environments in which recipients would prefer to assume a passive role
rather than being actively involved in dispute resolutions caused by malicious
senders. More importantly, the recipient is stateless in the sense that it does
not need to store state information regarding the transactions in which he is
involved1. Indeed, the recipient may not store anything about the first two steps
of the protocol and, in principle, the message embedded by the sender in the
value y in Step 1 of the protocol could be different from the message sent in
Step 3. Obviously, this does not violate the fairness property since the sender A
cannot use the message in Step 2, since it is encrypted, unless he contacts the
TTP . However, the TTP will always forward the corresponding message to B,
thus neutralizing de facto any attempt of the sender to force an outcome of the
protocol to his advantage.

We compare now our protocol with previously proposed protocols. Some of
the off-line protocols are not monotonic, for instance, the protocol in [2] requires
signatures to be revoked in order to guarantee fairness. Among monotonic and
off-line protocols, we believe those in [18, 1] represent the state-of-the-art in the
field. The work of Micali [18] shows that it is possible to achieve a simple certified
e-mail protocol with only three messages (one less than our protocol). However,
it should be noticed that:

1. the recipient of the message has to be actively involved in the dispute reso-
lution and is forced to keep state;

2. a time limit has to be incorporated into the message by the sender to force
the recipient to send the receipt within a specified period of time. This has
to be done in order to guarantee fairness;

3. a reliable channel (as opposed to a resilient channel) is required between the
recipient and the trusted third party.

1 Notice however that implementations of the certified email scheme may require the
recipient to store certain state information.

A channel is reliable when it is always operational and operates without de-
lays. It is very difficult to build a reliable channel in some network environments,
such as wireless networks. This fact may limit the applicability of the protocol in
[18]. Furthermore, for each message received, the recipient is forced to communi-
cate with the trusted intermediary in case of dispute and such a communication
has to happen before the time limit expires.

The work in [1] presents a fair-exchange protocol which is provably secure
in the random oracle model. The authors specialize their protocol to work as
an off-line certified e-mail scheme that, similarly to our protocol, requires only
resilient channels. Their protocol is based on verifiable escrow schemes, which
essentially are verifiable encryptions where each encryption comes with an at-
tached condition that specifies a decryption policy. As our scheme, their protocol
works for a broad range of signature schemes. However, the scheme in [1] has
some drawbacks, in particular:

1. it is expensive in terms of communication complexity, performance, and
amount of data transmitted. This is mainly due to the cut-and-choose inter-
active proof technique employed to achieve a verifiable escrow.

2. the recipient has to keep state and both the sender and the recipient have
to be actively involved in dispute resolutions;

3. the trusted third party needs to keep state.

Notice that both protocols [18, 1] and the version of our protocol that provides
confidentiality are invasive, that is, the receipt generated by the receiver is not
a regular signature but has to be interpreted in a special way. Our original
protocol, however, is non-invasive as the receipt is precisely the signature of the
recipient on the message received.

We believe it is important to have a stateless recipient who is not involved in
dispute resolution protocols. Imagine a scenario in which a user receives hundreds
of messages and is forced to keep track of all of them, store state information,
and engage in protocol resolutions with the TTP in case of dispute. This may
be very unappealing for users, in particular for those operating in environments
where servers may frequently crash, losing state information. In some case (such
as in [18]), operations have to be made before a time limit expires which may
make even impossible to guarantee fairness in some environments.

Stateless-recipient protocols may be very useful when users are equipped with
mobile devices such as cellular phones or wireless PDAs. Indeed, mobile devices
are often switched off, which may cause some time limits to expire without giving
the possibility to run any dispute resolution protocol 2.

5 System Architecture

In this section we present a description of the system we implemented. First,
we give a brief overview of the technology behind electronic mail systems, then
2 For instance, it is required to leave mobile devices off in proximity of hospitals or
inside airplanes. Devices could also turn themselves off when, for instance, batteries
are flat.

we show how to establish forms of interaction between our system and other
standard modules involved in the process of delivering electronic mail contents
and, finally, we describe in detail our system. We called our prototype imple-
mentation TURMS, an Etruscan god, messenger of the gods and guide of the
deceased to the underworld.

5.1 Overview of Electronic Mail

Electronic mail is today probably one of the most used services on the Internet.
It provides support to send a message to a destination. The message is passed
from one computer to another, often through computer networks and/or via
modems over telephone lines. The process of sending, delivering and receiving
e-mail is specified in some standards and makes use of three types of programs,
each of them with a specific task.

A Mail User Agent (MUA) is a program that allows the user to compose and
read electronic mail messages. It provides the interface between the user and the
Mail Transfer Agent (MTA). Outgoing mail is passed to an MTA for delivery
while the incoming messages are picked up from a MTA. A MUA can also pick
up mail remotely from, for instance, a POP3 server, via POP3 protocol.

A Mail Transfer Agent (MTA) is a system program which accepts messages
from the MUA and routes them to their destinations. It sometimes delivers mail
into each user’s system mailbox. A MTA can also communicate with other MTA
programs via the SMTP protocol, in order to deliver mail remotely. MTAs are
responsible for properly routing messages to their destination, using so-called
Mail eXchanger (MX) records. Mail eXchanger records are maintained by do-
main name servers (DNS) and tell MTAs where to send mail messages. More
precisely, they tell an MTA which intermediate hosts should be used to deliver
a message to the target host. The MX records vary depending on the domain.

A Mail Delivery Agent (MDA) is used to place a message into a user’s mail-
box. When the message arrives at its destination, the MTA will give the message
to the appropriate MDA, who will add the message to the user’s mail-box.

Our system works at the transport level, in connection with Exim [13], a mail
transport agent. This approach has the advantage that allows a TURMS user to
handle mail using theoretically any MUA.

5.2 TURMS and Exim

Exim [13] is a mail transfer agent developed at the University of Cambridge
designed to work efficiently on systems that are permanently connected to the
Internet and are handling a general mix of mail. In addition, with special con-
figuration, Exim can act as a mail delivery agent.

Exim was built having a decentralized architecture, so there is no central
process performing overall management of mail delivery, but some DBM files
are maintained to make the delivery more efficient in some cases. The system
implements flexible retry algorithms, used for directing and routing addresses
and for delivery.

The system can handle a number of independent local domains on the same
machine and provides support for multiple user mailboxes controlled by prefixes
or suffixes on the user name.

Mail User Agent

Exim

Mail Delivery Agent
Turms Agent Turms Agent

Mail Transfer Agent

Mail Delivery Agent

Mail Transfer Agent

Mail User Agent

Exim

Fig. 2. TURMS and Exim communication

The main delivery processing elements (drivers) of Exim are called directors,
routers, and transports.

A director is a driver that operates on a local address, either determining how
to deliver the message, or converting the address into one or more new addresses
(for example, via an alias file). A local address is one whose domain matches an
entry in the list given in the ‘local domains’ option, or has been determined to
be local by a router. The fact that an address is local does not imply that the
message has to be delivered locally; it can be directed either to a local or to a
remote transport.

A transport is a driver that transmits a copy of the message from Exim to
some destination. There are two kinds of transport: for a local transport, the
destination is a file or a pipe on the local host, while for a remote transport the
destination is some other host. A message is passed to a specific transport as a
result of successful directing or routing. If a message has several recipients, it
may be passed to a number of different transports.

A router is a driver that operates on an apparently remote address, that
is an address whose domain does not match anything in the list given in ‘lo-
cal domains’. When a router succeeds it can route an address either to a local
or to a remote transport, or it can change the domain, and pass the address on
to subsequent routers.

Our system takes advantage of the following features of Exim: the ability to
allow a message to be piped to another program, the possibility to have multiple
user mailboxes controlled by prefixes or suffixes on the user name and the ability
to send messages (to remote or local e-mail addresses) using Exim.

These features allow a process, the Turms agent, to intercept messages before
they are delivered to a user and process them. Also, when needed, auxiliary
messages can be generated by the TURMS agent and sent using Exim.

The message exchange mechanism between a local TURMS agent and Exim
is presented in Figure 2. Special entries in Exim’s configuration file indicate to

directors configuration section
turms_handler:
 driver = pipe
 command =‘‘/bin/turms_agent$ {local_part}’’
 user = crisn
 group = users

t r anspor t conf i gur at i on sect i on
t ur ms:
 dr i ver = smar t user
 t r anspor t = t ur ms_handl er
 pr ef i x = t ur ms−

11

22

33

Fig. 3. Exim configuration file - TURMS entries

Exim that mail delivered to an user containing a certain prefix, turms- in our case
(see Figure 3, Mark3), to be delivered using a specific transport, turms handler
in our case (see Figure 3, Mark 2). The transport specified for that prefix is a
pipe to a program, Turms agent (see Figure 3, Mark 1). This way, the message
send to a local or remote user is delivered to a local Turms agent program.

When Turms agent receives a message, it processes it according to the pro-
tocol specifications, it generates a new message and it sends it to the real user
using Exim. If the message is sent to a domain for which Exim does not do
local delivery, the message will be sent via SMTP to another Exim server on
another machine. There, because of the prefix mechanism, the message will be
delivered to a local Turms agent process which in turn will send a message to
the local user, by using Exim. If the message is sent to a domain for which Exim
does local delivery, the message will be delivered either to the end user or the
Turms agent, depending on the protocol. The delivery address specifies to Exim
if the destination is a Turms agent process or a local user inbox. Note that all
the Exim servers running the certified e-mail protocol need to be configured to
deliver special messages to a local TURMS agent, responsible of implementing
the certified e-mail protocol.

5.3 System Implementation

We have actually implemented a slightly modified version of the protocol in
Section 3.2. In particular, the value y in Step 1 is now MACk(m), for a suitable
MAC function such as HMAC-SHA-1. In Step 3, the sender reveals m and also
k and the recipient checks whether the message m is the same received in Step
1. The receipt is a signature on the MAC function.

The protocol itself requires an initialization phase which has to be done
only once, and in case of dispute, a recovery phase. We provide support for all
of these operations. The system consists of a web-based interface, Turms CA,
providing support for the initialization and recovery off-line phases, and of an
MTA, Turms agent, implementing the certified e-mail protocol.

One of the design features we considered was encapsulating all the crypto-
graphic operations in a library, used by both Turms CA and Turms agent. The
library makes use of the openssl [19] library and provides facilities such as: strong
RSA keys generation and managing, TURMS certificate definition and manage-
ment (generating, signing, verifying), operations on Schnorr-like objects used in
our protocol, RSA verifiable encryption definition and management (generation,
verifying, ability to extract the RSA signature out of the verifiable encryption).
In addition, the library also provides conversion from the computation data for-
mat (openssl specific data structure) to communication format for both verifiable
encryption and TURMS certificate entities. For each of these data structures,
the library provides a simple and easy to use API.

Turms CA provides an interface allowing users to register and to obtain a
certificate. The user submits his public RSA key along with some additional
information and will receive the corresponding TURMS certificate In addition,
for each user, we have decided to save the corresponding secret of the CA rather
than incorporating it into the certificate This secret is used to extract RSA
signatures out of a verifiable encryptions.

Turms CA can also solve disputes. A user can submit a claim including the
verifiable encryption file and the message. The CA computes the signature out of
the verifiable encryption information, then sends the signature to the user that
submitted the claim and the message to the user whose verifiable encryption was
submitted.

The core of the system is the Turms agent program which implements the
certified e-mail protocol. Turms agent is a stateless program, a different instance
of the program is invoked with every new message. The state of the protocol for
different messages is saved on the disk. Every state of the protocol for a message
has a correspondent file saved on disk. A message is uniquely identified by a
concatenation of the process id, host id and current time. Every state also has
a unique identifier associated with it. The security of the channel between two
Turms agents is achieved via Blowfish encryption with a size key of 16 bytes.
We used an HMAC with a key size of 10 bytes to obtain a randomized one-way
function of the message. Turms agent also logs for each transaction information
about the main important steps.

The protocol consists of a sequence of actions taken by a Turms agent pro-
gram upon receiving a message. Every message is associated with a specific
transaction. The type of the message along with the transaction identifier are
specified in the destination address. A transaction is opened when a user at-
tempts to send a certified e-mail message and it ends in one of the following
cases: the exchange was performed correctly, the exchange was canceled, or the
exchange started but the recipient did not send the receipt. The protocol uses
the following types of messages:

– Original Mess is the message that has to be sent. It is generated by a MUA,
no transaction identifier or type is associated with it.

– Hmac Mess contains the value of an HMAC function applied on the body of
an Original Mess. It is generated by a Turms agent.

– Invitation Mess is the message that notifies a user about a certified e-mail
message. It is generated by a Turms agent.

– Cancel Mess is an Invitation Mess which has the Subject field consisting
only of the word ’Cancel’ indicating that the transaction was refused. The
body of the message is ignored. It is generated by a MUA, in reply to an
Invitation Mess coming from a Turms agent.

– Accept Mess message is similar as structure with the Cancel Mess, but the
Subject field consists of the word ’Accept’ indicating that the transaction
was accepted. The body of the message is ignored. It is generated by a MUA,
in reply to an Invitation Mess coming from a Turms agent.

– Transaction Canceled Mess indicates that a transaction was canceled. It is
generated by a Turms agent.

– Verifiable Encryption Mess contains a verifiable encryption message. It is
generated by a Turms agent.

– Original Mess and Key contains the body of an Original Mess and the key
used to compute the HMAC value applied on the Original Mess that was
sent in the corresponding (has the same transaction identifier) Hmac Mess.
It is generated by a Turms agent.

– Signature Mess contains a RSA signature of an HMAC value of an Origi-
nal Mess message. It is generated by a Turms agent.

In response to an event, a Turms agent can take actions that will result in
sending messages and/or saving additional data on the disk. Consider a scenario
in which the sender A wants to send a certified e-mail to B. We make use of
the following notation: A’s domain is denoted by domainA and B’s domain is
denoted by domainB , the Turms agent programs corresponding to A’s mail
server and B’s mail server are denoted by turms agentA and turms agentB ,
respectively . Finally, userA and userB represent the MUAs at A’s site and B’s
site, respectively.
The protocol consists of the following steps:
Step 1. userA sends the Original Mess message. userA sends the Original Mess
message to an alias defined for B, certified B say, which includes the address to
which the mail is sent. The address should be prefixed with the prefix specified
in the Exim configuration file (see Figure 3), should be sent to the local mail
server and should contain enough information to allow to recover the actual
remote address. Exim will deliver the message via the pipe transport to the
turms agentA program. The result of this step is that turms agentA will receive
the Original Mess.
Step 2. turms agentA receives the Original Mess message. When the message
is received by turms agentA, the agent creates a unique identifier for this new
transaction: timestamp − process id − host id. Then it processes the message,
saves the body of the message along with some header information. It generates
a key that will be used to compute a HMAC of the body of the message, saves
the key on the disk, computes HMAC of the message, saves the content of the
message, recovers the real address, generates a Hmac Mess with the HMAC value
just computed and sends it to turms agentB . The type of the message along with

the identifier is specified in the address. Also the reply address is updated such
that the mail appears as coming from a turms agent (by adding the prefix). The
result of this step is that turms agentB will receive a Hmac Mess.

Step 3. turms agentB receives the Hmac Mess message. When turms agentB

receives the Hmac Mess, it saves this information on the disk and generates an
Invitation Mess, and sends it to userB , notifying about a certified e-mail message
for him, and asking him to reply to this message with ’Accept’ written in the
subject, if he accepts the message, or ’Cancel’ if he refuses it. The result of this
step is that userB will receive an Invitation Mess.

Step 4. userB receives the Invitation Mess message. When userB receives the
Invitation Mess, he will reply either with ’Accept’ or ’Cancel’ in the subject.
The result of this step is that turms agentB will receive either an Accept Mess
or a Cancel Mess.

Step 5. turms agentB receives the Cancel Mess message. When turms agentB

receives the Cancel Mess, it generates and sends two Transaction Canceled-
Mess messages, one to userB and the other to turms agentA. The transaction
is closed. The result of this step is that both userB and turms userA will receive
a Transaction Canceled Mess.

Step 6. turms agentB receives the Accept Mess message. When turms agentB

receives the Accept Mess, it recovers the HMAC value of the message from the
disk, then computes the verifiable encryption of B’s signature, and generates a
Verifiable Encryption Mess message and sends it to turms agentA. The result
of this step is that turms agentA will receive a Verifiable Encryption Mess.

Step 7. turms agentB receives the Transaction Canceled Mess message. When
turms agentB receives the Transaction Canceled Mess, he sends it to userA and
deletes the HMAC and the OriginalL Mess information saved on the disk in step
2. The result of this step is that userA will receive a Transaction Canceled Mess.

Step 8. turms agentA receives the Verifiable Encryption Mess message. When
turms agentA receives the Verifiable Encryption Mess, it verifies that the mes-
sage indeed contains a RSA signature. If yes, it recovers from the disk both the
body of the Original Mess and the key used to compute HMAC value, generates
the Original Mess and Key message by concatenating the key to the message
and then sends it to turms agentB . Also the Verifiable Encryption Mess is sent
to userA. The result of this step is that turms agentB will receive an Origi-
nal Mess and Key message and userA will receive a Verifiable Encryption Mess.

Step 9. turms agentB receives an Original Mess and Key message. Upon re-
ceiving an Original Mess and Key message, turms− agentB computes a HMAC
on the body the received message with the key he just received and it compares
it with the HMAC data saved on the disk in Step 2. If they are the same, it
computes B’s RSA signature on the HMAC, generates a Signature Mess mes-
sage and sends it to turms agentA. If the two HMAC values are not the same,
then turms agentB generates and sends two Transaction Canceled Mess mes-
sages, one to userB and the other to turms agentA. The result of this step
consists of two messages: userB receives the Original Mess and turms agentA

receives a Signature Mess, or both userB and turms agentA receive a Transac-
tion Canceled Mess.
Step 10. turms agentA receives a Signature Mess message. When turms agentA

receives Signature Mess, it sends it to userA and cleans all the auxiliary files used
during the transaction.

In order to have the protocol described above working correctly in the case
when the message contains one or more attached files, some additional processing
needs to be done: the corresponding MIME information from the message header
needs to be saved when the original message is processed. This information is
used when the message is finally sent to the user (step 7), to make sure that
MUA understands that the message carries some attached files.

We used the following set up for developing and testing our system. The web
interface running on a Linux machine dual 450MHz Pentium II, 128MB RAM,
running Apache Web Server. We tested our system in a configuration of two
virtual domain names (securemail1.cs.jhu.edu and securemail2.cs.jhu.edu), each
served by an Exim server version 3.14. The machines were 300MHz Pentium II,
256 Mb RAM, Linux boxes (2.16 kernel). The program PINE [20] was used as
Mail User Agent.

6 Conclusions

We presented a very efficient off-line certified e-mail system. Both the recipient
and the TTP can be set to be stateless and the recipient can assume a passive
role without being involved in dispute resolutions so that the burden of solving
a dispute is given only to the sender, the initiator of the protocol.

We implemented a prototype (TURMS) of the protocol and we reviewed
some of the technology available today that could be employed to effectively
build any certified e-mail system.

Acknowledgements

We would like to thank Theo Schlossnagle for his helpful suggestions on setting
up the testing environment. Many thanks to the anonymous referees for their
insightful comments.

References

1. N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signa-
tures,” IEEE Journal on Selected Area in Communications, 2000.

2. N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for optimistic
fair exchange,” in Proceedings of the IEEE Symposium on Research in Security
and Privacy (I. C. S. Press, ed.), pp. 86–99, May 1998.

3. G. Ateniese, “Efficient verifiable encryption (and fair exchange) of digital signa-
tures,” in Proceedings of the 6th ACM Conference on Computer and Communica-
tions Security, ACM Press, 1999.

4. G. Ateniese, B. de Medeiros, M.T.Goodrich. TRICERT: Distributed Certified E-
mail Schemes. In ISOC 2001 Network and Distributed System Security Symposium
(NDSS’01), San Diego, CA, USA, 2001.

5. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest, “A fair protocol for signing
contracts,” IEEE Transactions on Information Theory IT-36(1), pp. 40–46, 1990.

6. A. Bahreman and J. D. Tygar, “Certified electronic mail,” in Proceedings of Sym-
posium on Network and Distributed Systems Security (I. Society, ed.), pp. 3–19,
February 1994.

7. F. Bao, R. H. Deng, and W. Mao. Efficient and Practical Fair Exchange Proto-
cols with Off-line TTP. In IEEE Symposium on Security and Privacy, Oakland,
California, 1998.

8. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In Advances in Cryptology – EUROCRYPT ’99, Lecture
Notes in Computer Science, Springer-Verlag, 1999.

9. D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in Cryp-
tology – Crypto ’92, pages 89-105, 1992.

10. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. In 6th ACM Conference on Computer and Communication Security, ACM
Press, 1999.

11. R. H. Deng, L. Gong, A. Lazar, and W. Wang, “Practical protocols for certified
electronic e-mail,” Journal of Networks and Systems Management, vol. 4, no. 3,
pp. 279–297, 1996.

12. S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing con-
tracts,” Comm. ACM 28, no. 6, pp. 637–647, 1985.

13. “http://www.exim.org.”
14. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification

and signature problems. In Advances in Cryptology – CRYPTO ’86, volume 263 of
Lecture Notes in Computer Science, pages 186–194, Springer-Verlag, 1987.

15. R. Gennaro, S. Halevi, and T. Rabin. Secure signatures, without trees or random
oracles. In Advances in Cryptology – EUROCRYPT ’99, volume 1592 of Lecture
Notes in Computer Science, pages 123–139, Springer-Verlag, 1999.

16. L. C. Guillou and J. J. Quisquater. A paradoxical identity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology – CRYPTO ’88, volume
403 of Lecture Notes in Computer Science, pages 216–231, Springer-Verlag, 1988.

17. A. J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC Press, 1996. ISBN 0-8493-8523-7.

18. S. Micali. Simultaneous electronic transactions. Technical Report 566420,
http://www.delphion.com/cgi-bin/viewpat.cmd/US566420 , 1997.

19. OpenSSL Project team, “Openssl,” May 1999. http://www.openssl.org/.
20. Pine Information Center, http://www.washington.edu/pine/.
21. J. Riordan and B. Schneier, “A certified e-mail protocol,” in 13th Annual Computer

Security Applications Conference, pp. 100–106, December 1998.
22. R. L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

23. C.P. Schnorr. Efficient signature generation by smart-cards. Journal of Cryptology,
4(3):161–174, 1991.

24. J. Zhou and D. Gollmann, “Certified electronic mail,” in Proceedings of Computer
Security - ESORICS’96 (S. Verlag, ed.), pp. 55–61, 1996.

