
Steward: Scaling Byzantine Fault-Tolerant Systems
to Wide Area Networks

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, David Zage

Technical Report CNDS-2005-3 - December 2005
http://www.dsn.jhu.edu

Abstract— This paper presents the first hierarchical Byzantine
tolerant replication architecture suitable to systems that span
multiple wide area sites. The architecture confines the effects of
any malicious replica to its local site, reduces message complexity
of wide area communication, and allows read-only queries to
be performed locally within a site for the price of additional
hardware. A prototype implementation is evaluated over several
network topologies and is compared with a flat Byzantine tolerant
approach.

I. INTRODUCTION

During the last few years, there has been considerable
progress in the design of Byzantine tolerant replication sys-
tems. The current state of the art protocols perform very well
on small-scale systems that are usually confined to local area
networks. However, current solutions employ flat architectures
that introduce several limitations: Message complexity limits
their ability to scale, and strong connectivity requirements
limit their availability on wide area networks that usually
have lower bandwidth, higher latencies, and exhibit network
partitions.

This paper presents Steward, the first hierarchical Byzantine
tolerant replication architecture suitable for systems that span
multiple wide area sites, each consisting of several server
replicas. Steward assumes no trusted component in the en-
tire system, other than a valid mechanism to pre-distribute
private/public keys.

Steward uses a Byzantine tolerant protocol within each site
and a lightweight, benign fault tolerant protocol among wide
area sites. Each site, consisting of several potentially malicious
replicas, is converted into a single logical trusted participant in
the wide area fault-tolerant protocol. Servers within a site run
a Byzantine agreement protocol to order operations locally,
and agree upon the content of any message leaving the site
for the global protocol.

Guaranteeing a consistent agreement within a site is not
enough. The protocol needs to eliminate the ability of mali-
cious replicas to misrepresent decisions that took place in their
site. To that end, messages between servers at different sites
carry a threshold signature attesting that enough servers at the
originating site agreed with the content of the message. Using
threshold signatures allows Steward to save the space and
computation associated with sending and verifying multiple
individual signatures. Moreover, it allows for a practical key

management scheme where servers need to know only a single
public key for each remote site and not the individual public
keys of all remote servers.

The main benefits of our architecture are:
1) It reduces the message complexity on wide area ex-

changes from N2 (N being the total number of replicas
in the system) to S2 (S being the number of wide area
sites), considerably increasing the system’s ability to
scale.

2) It confines the effects of any malicious replica to its
local site, enabling the use of a benign fault-tolerant
algorithm over the wide area network. This improves the
availability of the system over wide area networks that
are prone to partitions, as only a majority of connected
sites is needed to make progress, compared with at
least 2f + 1 servers (out of 3f + 1) in flat Byzantine
architectures.

3) It allows read-only queries to be performed locally
within a site, enabling the system to continue serving
read-only requests even in sites that are partitioned.

4) It enables a practical key management scheme where
public keys of specific replicas need to be known only
within their own site.

These benefits come with a price. If the requirement is to
protect against any f Byzantine servers in the system, Steward
requires 3f + 1 servers in each site. However, in return, it is
able to overcome up to f malicious servers in each site.

Steward further optimizes the above approach based on the
observation that not all messages associated with the wide area
fault-tolerant protocol require a complete Byzantine ordering
agreement in the local site. A considerable amount of these
wide area messages require a much lighter local site step,
reducing the communication and computation cost on the
critical path.

The paper demonstrates that the performance of Steward
with 3f +1 servers in each site is much better even compared
with a flat Byzantine architecture with a smaller system of
3f + 1 total servers spread over the same wide area topology.
The paper further demonstrates that Steward exhibits perfor-
mance comparable (though somewhat lower) with common
benign fault-tolerant protocols on wide area networks.

The Steward system is completely implemented and is
currently undergoing a DARPA red-team experiment to assess

Fig. 1. Normal-case operation of the Paxos algorithm when f = 1. Server
0 is the current leader.

its practical survivability in the face of white-box attacks
(where the red team has complete knowledge of system design,
access to its source code, and control of up to f replicas in
each site). We hope to be able to report on the insight gained
from this activity in a final version of this paper.

The remainder of the paper is presented as follows. We
provide a more detailed problem statement in Section II. We
present our assumptions and the service model in Section
III. We describe our protocol, Steward, and provide a sketch
for a proof that it meets the specified safety and liveness
properties, in Sections V and VI. We present experimental
results demonstrating the improved scalability of Steward on
wide area networks in Section VII. We discuss previous work
in several related research areas in Section VIII. We summarize
our conclusions in Section IX.

II. BACKGROUND

Our work uses concepts from fault tolerance, Byzantine
fault tolerance and threshold cryptography. To facilitate the
presentation of our protocol, Steward, we first provide an
overview of the state-of-art work in these areas: Paxos, BFT
and RSA Threshold Signatures in Sections II-A,II-B and II-C.
Steward used ideas and concepts from all these algorithms.

A. Paxos Overview
Paxos [1], [2] is a well-known fault-tolerant protocol that

allows a set of distributed servers, exchanging messages via
asynchronous communication, to totally order client requests
in the benign-fault, crash-recovery model. One server, referred
to as the leader, has the task of coordinating the protocol. If
the leader crashes or becomes unreachable, a new leader is
elected. Paxos requires at least 2f + 1 servers to tolerate f

faulty servers. Since servers are not Byzantine, only one reply
needs to be delivered to the client.

In the common case, in which a single leader exists and
can communicate with a majority of servers, Paxos uses two
asynchronous communication rounds to globally order client
updates. In the first round, Proposal, the leader assigns a
sequence number to a client update, and proposes this assign-
ment to the rest of the servers. In the second round, Accept,
any server receiving the proposal assents to the assigned
sequence number, or accepts the proposal, by sending an
acknowledgment to the rest of the servers. When a server
receives a majority of acknowledgments – indicating that a
majority of servers have accepted the proposal – the server

Fig. 2. Normal-case operation of the BFT algorithm when f = 1. Server 0
is the current leader.

orders the corresponding update. Common case operation is
presented in Figure II-A.

If the leader crashes or is partitioned away, the servers run
a leader election protocol to replace the old leader, allowing
progress to resume. The leader election protocol follows a
similar two-round, proposal-accept pattern, where the value
proposed will be a new leader. The protocol associates a
unique view number with the reign of a leader (i.e. view) and
defines a one-to-one mapping between the view number and
the identifier of the server acting as the leader in this view.
The system proceeds through a series of views, with a view
change occurring each time a new leader is elected. Proposals
are thus made in the context of a given view.

Since the communication is asynchronous, multiple leaders
may coexist, each issuing proposals for client requests. Paxos
ensures that saftey is preserved in the face of multiple leaders
in two ways. First, it defines a total ordering on all proposals
by attaching the view number and sequence number to each
proposal. Second, with this total ordering in place, the algo-
rithm uses an additional round of communication whenever
a view change occurs to prevent conflicting requests from
being ordered with the same sequence number. This round,
Prepare, ensures that the new leader learns of any outstanding
proposals that may have been ordered by a server that crashed
or partitioned away. The leader collects information from a
majority of servers. Since any ordered proposal was accepted
by a majority of servers, and since any two majorities intersect,
the ordered proposal is guaranteed to be reported to the new
leader. The leader then protects a server that may have ordered
the proposal (if one exists) by replaying the proposal with the
same sequence number in the new view.

In summary, Paxos uses two communication rounds in the
normal case (Proposal and Accept) and one additional round,
Prepare, in addition to the leader election protocol, when a
new leader is needed and a view change must take place. View
changes are triggered by timeouts.

B. BFT Overview
The BFT [3] protocol addresses the problem of replication

in the Byzantine model where a number of the servers can be
compromised and exhibit arbitrary behavior. Similar to Paxos,
BFT uses an elected leader to coordinate the protocol, and
proceeds through a series of views. BFT extends Paxos into
the Byzantine environment by using an additional round of
communication in the common case to ensure consistency both

2

in and across views, and by constructing strong majorities in
each round of the protocol. Specifically, BFT requires end-to-
end acknowledgments from 2f + 1 out of 3f + 1 servers to
mask the behavior of f Byzantine servers. A client must wait
for f +1 identical responses to be guaranteed that at least one
correct server assented to the returned value.

In the common case, BFT uses three communication rounds:
Pre-Prepare, Prepare and Commit. In the first round, the leader
assigns a sequence number to a client update and proposes
this assignment to the rest of the servers by multicasting a
pre-prepare message to all servers. In the second round, a
server accepts the proposed assignment by sending an ac-
knowledgment, prepare, to all servers. Since a malicious leader
may propose conflicting assignments, both the pre-prepare and
prepare messages include the digest of the client update; this
allows correct servers to differentiate acknowledgments sent
in response to different pre-prepare messages. The first two
communication rounds guarantee that correct servers agree on
a total order of the updates proposed within the same view.
When a server receives 2f+1 prepare messages with the same
view number, sequence number, and digest as the pre-prepare,
it begins the third round, Commit, by multicasting a commit
message to all servers. A server commits the corresponding
update when it receives 2f + 1 matching commit messages.
The third communication round, in combination with the view
change protocol, ensures the total ordering of updates across
views.

If the leader crashes, or if no progress is made, the servers
initiate a view change protocol to replace the leader. View
changes are triggered by timeouts. A server initiates a view
change by sending a view-change message to all servers,
suggesting a new view number (with its associated leader).
When the new leader receives 2f + 1 view-change messages
for the same view number, it initiates a reconciliation process
by sending a new-view message. In this process, the new leader
solicits information about committed and outstanding updates
from 2f+1 servers. Since any committed update is known to at
least f+1 correct servers, any set of 2f+1 servers will contain
at least one of these correct servers; thus, the committed update
will be reported to the new leader. The leader then protects
servers that may have committed an update by replaying the
pre-prepare message with the same sequence number in the
new view.

In summary, BFT requires three communication rounds –
Pre-prepare, Prepare and Commit – in the normal case, and
two more communication rounds when a new leader is needed
and a view change must take place.

C. Threshold Digital Signatures
Threshold cryptography [4] distributes trust among a group

of participants to protect information (e.g. threshold secret
sharing [5]) or computation (e.g. threshold digital signatures
[6]). Threshold schemes define a threshold parameter, k, such
that any set of at least k (out of n) participants can work
together to perform a desired task (such as computing a digital
signature), while any subset of fewer than k participants is

unable to do so. In this way, threshold cryptography offers a
tunable degree of fault-tolerance: in the benign fault model, the
system can function despite (n-k) faults, and in the Byzantine
fault model, an adversary must corrupt k participants to break
the system. In particular, corrupting fewer than k participants
yields no useful information. There is a natural connection
between Byzantine fault-tolerance and threshold cryptography,
since both distribute trust among participants and make as-
sumptions about the number of honest participants required in
order to guarantee correctness.

A (k, n) threshold digital signature scheme allows a set of
n servers to generate a digital signature as a single logical
entity despite f = (k − 1) Byzantine faults. In a (k, n)
threshold digital signature scheme, a private key is divided
into n partial shares, each owned by a server, such that any
set of k servers can pool their shares to generate a valid
threshold signature, while any set of fewer than k servers
is unable to do so. To sign a message m, each server uses
its share to generate a partial signature on m, and sends the
partial signature to a combiner server. The combiner combines
the partial signatures into a threshold signature on m. The
threshold signature is verified in the standard way, using the
public key corresponding to the divided private key. Shares can
be changed proactively [7], [8] without changing the public
key, allowing for increased security and fault-tolerance, since
an adversary must compromise k partial shares within a certain
time window to break the system.

Since the participants can be malicious, it is important to
be able to verify that the partial signature provided by any
participant is valid – that is, it was generated with a share from
the initial key split. This property, known as verifiable secret
sharing [9], guarantees the robustness [10] of the threshold
signature generation.

A representative example of practical threshold digital sig-
nature schemes is the RSA Shoup [6] scheme, which allows
participants to generate threshold signatures based on the
standard RSA[11] digital signature. The scheme defines a (k,
n) RSA threshold signature scheme, and provides verifiable
secret sharing. The computational overhead of verifying that
the partial signatures were generated using correct shares
is significant. The resulting threshold signature can be non-
interactively verified using the same technique as the standard
RSA signature.

In summary, generating a threshold signature requires one
communication round and verifying the correctness of shares
is an expensive operation that can be omitted in the optimistic
case.

III. SYSTEM MODEL

Servers are implemented as deterministic state machines.
All correct servers begin in the same initial state. Servers
transition from one state to the next by applying updates
to their state machines. We assume that the next state is
completely determined by the current state and the next action
to be applied.

3

We assume a Byzantine fault model. Servers are classified
as either correct or faulty. Faulty servers may behave in an
arbitrary manner. In particular, they can: exhibit two-faced
behavior, fail to send messages, collude with other faulty
servers, etc. We assume that correct servers do not crash.

Communication is asynchronous. Messages can be delayed,
lost, or duplicated, but those messages that do arrive are not
corrupted.

Servers are organized into wide area sites. Each site is
identified by a unique identifier. Each server belongs to exactly
one site. The network may partition into multiple disjoint
components, each containing one or more sites. Components
may subsequently remerge. Servers from sites in different
components are unable to communicate with each other.

We assume that communication latency within a site is
smaller than communication encountered in communication
between sites.

Each site Si has at least 3 ∗ (fi) + 1 servers, where fi is
the maximum number of servers that may be faulty within Si.
For simplicity, we assume in what follows that all sites may
have f faulty servers.

Clients are distinguished by unique identifiers. Clients send
updates to servers within their local site, and receive responses
from these servers. Each update is uniquely identified by a
pair consisting of the identifier of the client that generated
the update and a unique, monotonically increasing logical
timestamp. Clients propose updates sequentially: a client may
propose an update with timestamp i + 1 only after it has
received a response for an update with timestamp i.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected against
modifications. We assume that all adversaries, including faulty
servers are computationally bounded such that they cannot
subvert these cryptographic mechanisms.

We also use (k,n) threshold signatures. Each site has a public
key, while each server receives shares and the corresponding
proofs that can be used to generate threshold signatures on
behalf of the site. We assume the threshold signature scheme
is cryptographically secure such that threshold signatures are
unforgeable without knowing k or more secret shares.

IV. SERVICE SAFETY AND LIVENESS PROPERTIES

The protocol assigns global, monotonically increasing se-
quence numbers to updates to establish a global, total order.
Below we define the safety and liveness properties of the
STEWARD protocol. We say that:

• a client proposes an update when the client sends the
update to a server in the local site.

• the update with sequence number i is the ith update.
• a server initiates an update when, upon receiving the

update from a client, the server forwards the update for
global ordering.

• a site initiates an update when the leading site locally
orders the update in the current global view (creating

a threshold signed proposal message which binds a se-
quence number to the update), and then a correct server
from the site sends the proposal on the wide area for
global ordering.

• a server executes an update with sequence i when it
applies the update to its state machine. A server executes
update i only after having executed all updates with a
lower sequence in the global total order.

• a site executes an update when some correct server in the
site executes the update.

• two servers within a site are connected if they can
communicate with no communication failures.

• two sites are connected if every correct server of each site
can communicate with every correct server of the other
site with no communication failures.

DEFINITION 4.1: S1 - SAFETY: If two correct servers
execute the ith update, then these updates are identical.

DEFINITION 4.2: S2 - VALIDITY: Only an update that was
proposed by a client (and subsequently initiated by a server)
may be executed.

DEFINITION 4.3: LL1- LOCAL PROGRESS: If there exists
a set, within a site, consisting of at least 2f +1 correct servers,
and a time after which the correct members of this set are
connected, then if a correct server in the set initiates an update,
the site will eventually initiate the update.

DEFINITION 4.4: GL1 - GLOBAL PROGRESS: If there
exists a set consisting of a majority of sites, each meeting
LL1, and a time after which all sites in the set are connected,
then if a site in the set initiates an update, some site in the set
eventually executes the update.

V. PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale Byzan-
tine replication to the high-latency, low-bandwidth links char-
acteristic of wide area networks. It employs more costly
Byzantine fault-tolerant protocols within a site, confining
Byzantine behavior to a site and allowing a more lightweight,
fault-tolerant protocol to be run among sites. This results in
fewer messages and communication rounds on the wide area
compared to a flat Byzantine solution. The price is the need to
have enough hardware within a site to overcome f malicious
servers.

A site is made to behave as a single logical participant in
the wide area fault-tolerant protocol through a combination
of Byzantine agreement and threshold digital signatures. The
servers within a site agree upon the content of any message
leaving the site, and then construct a threshold signature on the
message to prevent a malicious server from misrepresenting
the site. One server in each site, referred to as the repre-
sentative, coordinates the internal agreement and threshold
signing protocols within the site. The representative of one
site, referred to as the leading site, coordinates the wide area
agreement protocol. If the representative of a site acts mali-
ciously, the servers of that site will elect a new representative.
If the leading site is partitioned away, the servers in the other
sites will elect a new leading site.

4

At a higher level, Steward uses a wide area Paxos-like
algorithm to globally order updates. However, the entities
participating in our protocol are not single trusted participants
like in Paxos. Each site entity in our wide area protocol is
composed of a set of potentially malicious servers. Steward
employs several intra-site protocols as building blocks at
each site, to emulate a correct Paxos participant in each of
the wide area algorithm steps, based on need. For example,
the leader participant in Paxos unilaterally assigns a unique
sequence number to an update. Instead, Steward uses an intra-
site protocol that employs a BFT-like mechanism to assign a
global sequence number in agreement with the servers inside
the leading site. The leading site will need to present to other
sites a proof that the sequence indeed was assigned. Steward
uses a different intra-site protocol to threshold-sign the Paxos
proposal message demonstrating that f + 1 correct servers in
the leading site agreed to that global sequence number. The
same threshold signature intra-site protocol is used to issue
Paxos-like acknowledgments in non-leader sites.

In addition, Steward uses intra-site protocols that serve for
Byzantine election of the new representative inside each site,
as well as for proposing a new leading site.

The intra-site protocols used by Steward are as follows:
• P1-THRESHOLD-SIGN: this protocol signs a message with

a threshold signature composed of 2f +1 shares, within a
site. After executing this protocol, every correct process
has a message that was signed with a threshold signature
composed of 2f + 1 shares.

• P2-ASSIGN-SEQUENCE: this protocol assigns a sequence
number to an update received within a site, in the case
when the representative is not suspected, and no internal
view change takes place. It is invoked at the leading site
to assign a unique sequence number to an update such that
at least f + 1 correct servers will agree on the sequence
number.

• P3-PROPOSE-LEADER-SITE: this protocol is used to gen-
erate an agreement inside a site regarding which wide
area site should be the next leading site in the global
ordering protocol.

• P4-CONSTRUCT-COLLECTIVE-STATE: this protocol pro-
vides reconciliation during a view change and generates a
message describing the current state of the site, as agreed
by at least f + 1 correct servers inside the site.

The high-level inter-site protocols used by Steward are listed
below. Servers in multiple sites participate in these protocols.

• P5-ASSIGN-GLOBAL-ORDER: this protocol assigns a
global order to each update. It uses the ASSIGN-
SEQUENCE and THRESHOLD-SIGN intra-site protocols.
Note its similarity to the normal-case operation of Paxos.

• P6-LAN-VIEW-CHANGE: this protocol changes the view
within a site and, therefore, the local representative. A
server invokes this protocol when it suspects that the
current representative may be malicious. Servers in the
leading site that complete this protocol are constrained
such that safety is preserved across local views. A correct

constrained server will not assign a sequence number i

to update u if u′ may have been locally ordered wiht i

in a previous view.
• P7-WAN-VIEW-CHANGE: this protocol changes the

global view and, therefore, the leading site. A server
invokes this protocol when it suspects that it is not
connected to the leading site. Servers that complete this
protocol are constrained such that safety is preserved
across global views.

Below we provide a short description of the common case of
operation of Steward, the view changes algorithms, the timers
used by our protocols, and the inter-dependency between the
global protocol and intra-site timeouts.

A. Data Structures and Message Types
Each server maintains several variables and data structures

listed in Figure 4.
Each server can compute the Aru based on the correspond-

ing history. For example, Local update aru can be computed
based on the Local History.

An entry in the Pending Proposals is erased when it
becomes less updated than the corresponding item in
Global History.

Each server maintains two variables Installed global view
and Installed local view. Their purpose is to indicate what is
the next view to be installed when there is a view change. They
are set to 0 when the global or local view change protocol is
invoked and 1 when the protocol ends. If Installed global view
or Installed local view are 0, then Global view is the new
global view to be installed, and Local view is the new local
view, respectively.

B. The Common Case
During the common case, global progress is made and no

leading site or site representative election occurs. As described
above, the protocol run among sites follows a Paxos-like
communication pattern and is coordinated by the leading site.
Each round of the protocol uses one or more intra-site intra-
site protocols to generate the appropriate wide area message
(proposal and accept, respectively). The common case works
as follows:

1) A client located at some site sends an update to a server
in its local site. This server forwards the update to the
local representative.

2) The local representative forwards the update to the
representative of the leading site.

3) The representative of the leading site initiates a Byzan-
tine agreement protocol within the site to assign a
global sequence number to the update; this assignment
is encapsulated in a proposal message. The site then
generates a threshold digital signature on the constructed
proposal, and the representative sends the signed pro-
posal to all other sites for global ordering.

4) Upon receiving a signed proposal, the representative
of each site initiates the process of generating a site

5

Update = (client id, ts, client update)
Server Update

Commit = (server id, seq, local view, digest, t share)

/* Messages used by the THRESHOLD-SIGN */
Sig Share = (server id, data, sig share, proof)
Corrupted Server = (server id, data, sig share, proof)

/* Messages used by ASSIGN-SEQUENCE */
Pre-Prepare = (server id, seq, local view, Update)
Prepare = (server id, seq, local view, digest)

Prepare Certificate(s, v, u)= A set containing a Pre-Prepare(server id, s, loc v, u) message and a
list of 2f distinct Prepare(server id(i), s, loc v’, d(u)) messages with server id 6= server id(i)
and loc v == loc v’

Local Order Proof(s, u)= A set containing a Pre-Prepare(server id, s, loc v, u) message and a list
of Commit(server id(i), s, loc v’, d(u), t share) messages satisfying Local Ordered(s)

Local Ordered Update = (site id, seq, local view, Update, t sig), t sig is computed on the digest of
Update; this message is equivalent to Local Order Proof(s, u)

Local New View(local view, union, t sig)= A view number and a set of Prepare Certificate and
Local Order Proof or Local Ordered Update messages

Proposal = (site id, seq, global view, local view, Update, t sig)
Accept = (site id, seq, global view, local view, digest, t sig)

Global Ordered Update(s, u)= A set containing a Proposal(site id, s, v, u) message and a list of
Accept(site id(i), s, v’, d(u)) messages, satisfying Global Ordered(s)

/* Messages used by LAN-VIEW-CHANGE */
New Rep = (server id, suggested local view)
New Rep Collection = set of New Rep messages
Preinstall Proof = a set of 2f+1 New Rep and the view that the l new rep set proves preinstalled

/* Messages used by the SITE-ATTEMPT-WAN-VIEW-CHANGE */
VC Attempt = (server id, site id, global view, sig share)
Global VC = (site id, global view, thresh sig)
Attempt Proof Request
Global Attempt Proof
VC Share

/* Messages used by the CONSTRUCT-COLLECTIVE-STATE */
Request State = (seq, ctx, ctx.view) , where ctx can be Local or Global depending on the place the
protocol is invoked
Server State = view, aru, server id, all ordered updates and proof of the order, and accepted
proposals with seq greater that a given SEQ
Server State Set = a set of 2f+1 Server State distinct messages that pass validity test that view
numbers is equal to the view of the corresponding Local or Global context.

Fig. 3. Message Types

acknowledgment (accept), and then sends the acknowl-
edgment signed with a threshold signature to the repre-
sentative of all other sites.

5) The representative of each site forwards the incoming
accept messages to all local servers. A server globally
orders the update when it receives signed accepts from
a majority of sites. The server at the client’s local site
that originally received the update sends a reply back to
the client.

6) If the client does not receive a reply to its update within
a certain amount of time, it resends the update, this time
broadcasting it to all servers at its site.

All site-originated messages that are sent as part of the fault-
tolerant global protocol, require threshold digital signatures so
that they may be trusted by other sites.

The THRESHOLD-SIGN intra-site protocol generates a (2f+1,
3f+1) threshold signature on a given message. As described

in Section II, each server is assumed to have a partial share
and a proof that the share was obtained from the initial secret
(i.e. private key). Upon invoking the protocol on a message
to be signed, the server generates a partial signature on this
message. In addition, the server constructs a verification proof
that can be used to confirm that the partial signature was
indeed created using a valid share. Both the partial signature
and the verification proof are sent to all servers within the site.

Upon receiving 2f+1 partial signatures on a message, a
server combines the partial signatures into a threshold signa-
ture on that message. The constructed signature is then verified
using the site’s public key (RSA verification). If the signature
verification fails, then one or more partial signatures used in
the combination were invalid, in which case the verification
proofs provided with the partial signatures are used to identify
incorrect shares; the corresponding servers are classified as
malicious. The invalid shares serve as proof of corruption and

6

int Server id: unique id of this server within the site
int Site id: unique id of the site this server is in
bool I Am Representative: 1 if this server is the representative for this site
bool I Am LeadingSite: 1 if this site is the leading site
int Representative: the id of the representative for this site
int LeadingSite: the id of the leading site
A. Global Protocol Data Structure

int Global seq: next global order sequence number to assign
int Global view: the current global view this server is in, initialized to 0.
bool Installed global view: If it is 0, then Global view is the new view to be installed.
struct globally proposed item {

Proposal struct Proposal //Can be empty
Accept struct List Accept List //Can be empty
Global Ordered Update struct Global Ordered Update //can be empty

}
struct globally proposed item Global History[] // indexed by Global seq
int Global aru: the global sequence number up to which this server has globally ordered all updates.

B. Leader Proposed Intermediate Data Structure

int Local view: local view number this server is in
bool Installed local view: If it is 0, then Global view is the new one to be installed.
struct pending proposal item {

Pre-Prepare struct Pre-Prepare //can be empty
Prepare struct List Prepare List //can be empty
Prepare Cert struct Prepare Certificate //can be empty
Commit struct List Commit List //can be empty
Local Ordered Update struct Local Ordered Update //can be empty

}
struct pending proposal item Pending Proposals[] //indexed by Global seq
int Pending proposal aru: the global sequence number up to which this server has constructed proposals

C. Local Update Data Structure

int Local seq: next site order sequence number to assign
int Local view: local view number this server is in
bool Installed local view: 0 when the view change protocol is invoked; set to 1 when the protocol ends
struct local update item {

Pre-Prepare struct Pre-Prepare //can be empty
Prepare struct List Prepare List //can be empty
Prepare Cert struct Prepare Certificate //can be empty
Commit struct List Commit List //can be empty
Local Ordered Update struct Local Ordered Update //can be empty

}
struct local update item Local History[] // indexed by Local seq
int Local aru: the local sequence number up to which this server has locally ordered all updates.

Context definitions:
Global Context: [A.] (only the Global Protocol Data Structure)
Pending Context: [B.] (only Leader Proposed Intermediate Data Structure)
Local Context: [C.] (only the Local Update Data Structures)
Order Context: [A.] and [B.] combined (the union of the two data structures)

D. Client Related Data Structures

struct client record {
Update struct Update
int view num
int seq
bool is ordered

}
struct client record Client Records[] //indexed by client id

Fig. 4. Data Structures Maintained by Each Server

can be broadcast to all local servers. Further messages from
the corrupted servers are ignored.

Once the representative of the leading site receives an
update from a client (either local or forwarded by the rep-
resentative of a different site), it assigns a sequence number
to this update by creating a proposal message that will then
be sent to all other sites. The sequence number is assigned in
agreement with other correct servers inside the site, masking
the Byzantine behavior of malicious servers. The ASSIGN-

SEQUENCE intra-site protocol is used for this purpose. The
protocol consists of three rounds, the first two of which are
similar to the corresponding rounds of the BFT protocol:
the site representative proposes an assignment by sending
a pre-prepare message to all servers within the site. Any
server receiving the pre-prepare message sends to all servers
a prepare message as acknowledgment that it accepts the
representative’s proposal. At the end of the second round,
any server that has received 2f prepare messages, in addition

7

to the pre-prepare, for the same view and sequence number,
invokes the THRESHOLD-SIGN intra-site protocol to generate
a threshold signature on the representative’s proposal.

Upon completion of the ASSIGN-SEQUENCE protocol, the
representative sends the proposal message for global ordering
on the wide area to the representatives of all other sites.

Each site’s representative receiving the proposal message
forwards it to the other servers inside the site, and invokes the
THRESHOLD-SIGN protocol to generate an acknowledgment
(accept) of the proposal. The representative of the site then
sends back the threshold signed accept message to the repre-
sentatives of all other sites. Each representative will forward
the accept message locally to all servers inside their site. A
server within a site globally orders the update when it receives
accept messages from a majority of sites.

C. View Changes
The above protocol describes the common-case operation of

Steward. However, several types of failure may occur during
system execution, such as the corruption of one or more site
representatives, or the partitioning of the leader site. Such
failures require delicate handling to preserve both safety and
liveness.

If the representative of a site is faulty, the correct members
of the site select a new representative by running a local
view change protocol, after which progress can resume. The
local view change algorithm preserves safety across views,
even if consecutive representatives are malicious. Similarly, the
leading site that coordinates the global ordering between the
wide area sites can be perceived as faulty if no global progress
is made. In this case, a global view change occurs. View
changes are triggered by timeouts, as described in Section V-E

Each server maintains a local view number and a global
view number. The local view number maps to the identifier of
the server’s current site representative, while the global view
number maps to the identifier of the wide area leader site.
The local and global view change protocols update the server’s
corresponding view numbers.

We first introduce the CONSTRUCT-COLLECTIVE-STATE
intra-site protocol, which is used as a building block in both
the local and global view change protocols.

The CONSTRUCT-COLLECTIVE-STATE protocol generates a
message describing the current state of a site, as agreed by
at least f + 1 correct servers within the site. The constructed
message is referred to as a union message. The representative
of a site invokes the protocol by sending a sequence number
to all servers inside the site. Upon receiving the invocation
message, all servers send to the representative a message con-
taining updates they have ordered and/or acknowledged with
a higher sequence number than the representative’s number.
The representative computes a union on the contents of 2f +1
of these messages, eliminating duplicates and using the latest
update for a given sequence number if conflicts exist. The
representative packs the contents of the union into a message
and sends the message to all servers in the site. Upon receiving
such a union message, each server updates its own state with

missing updates as needed, generates a partial signature on the
message, and sends the signed message to all servers within
the site. A server then combines 2f +1 such partial signatures
into a single message that represents the updates that the site
ordered or acknowledged above the original sequence number.

Local view change: The local view change protocol
is similar to the one described in [3]. It elects a new site
representative and guarantees that correct servers cannot be
made to violate previous safety constraints.

The protocol is invoked when a server at some site observes
that global progress has not been made within a timeout
period, and is used at both the leading site and non-leader
sites. A server that suspects the representative is faulty in-
creases its local view number and sends to all local servers
a new representative message, which contains the proposed
view number. Individual servers increase their proposed local
view in a way similar to [3]. Upon receiving a set of 2f + 1
new representative messages proposing the same view number
(and, implicitly, a new representative), the new representative
computes the sequence number of the highest update ordered,
such that all updates with lower sequence numbers were
ordered. We call this sequence number “ARU” (All Received
Up-to). The new representative then invokes the CONSTRUCT-
COLLECTIVE-STATE protocol based on its ARU. Finally, the
new representative invokes the ASSIGN-SEQUENCE protocol
to replay all pending updates that it learned from the signed
union message.

Global view change: In the global view change protocol,
wide area sites exchange messages to elect a new leading site
if the current one is suspected to be faulty (partitioned away
or with fewer than 2f + 1 correct servers). Each site runs
an intra-site protocol, PROPOSE-LEADER-SITE, to generate a
threshold-signed message containing the global view number
that the site has agreed to propose.

The PROPOSE-LEADER-SITE protocol is invoked in a dis-
tributed fashion. Upon suspecting that the leading site is faulty,
a server within a site increases its global view number and
generates a partial signature on a message that proposes the
new view. Upon receiving 2f + 1 partial signatures for the
same global view number, the local representative combines
the shares to construct the site’s proposal. To ensure liveness,
a server already suspects the leading site , and that receives
f+1 partial signatures referring to global view numbers higher
than its own, updates its global view number to the smallest
value of the f + 1 view numbers, and sends a corresponding
partial signature to the other servers in the site.

If enough servers in a site invoke the PROPOSE-LEADER-
SITE protocol, the representative of that site will issue the
resultant threshold-signed new leading site message that con-
tains the identifier of that site and the proposed global view
number. When the representativeof the new leading site re-
ceives a majority of such messages proposing the same global
view, it starts a local reconciliation protocol by invoking the
CONSTRUCT-COLLECTIVE-STATE protocol on its own ARU.
We call the highest sequence of an ordered update in the
resulting union message, below which all lower sequence

8

THRESHOLD SIGN(Data s data, int server id):
A1. Sig Share ← GENERATE SIGNATURE SHARE(data, server id)
A2. SEND to all local servers: Sig Share

B1. Upon receiving a set, Sig Share Set, of 2f+1 Sig Share from distinct servers
B2. signature ← COMBINE(Sig Share Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in Sig Share Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, Sig Share Set)
B9. ADD(S.server id, Corrupted Servers List)
B9. Corrupted Server ← CORRUPTED(S)
B10. SEND to all local servers: Corrupted Server
B11. continue to wait for more Sig Share messages

Fig. 5. THRESHOLD-SIGN Protocol

ASSIGN-SEQUENCE(Message update, Context ctx, int server id):
A1. if Representative
A2. ctx.seq++
A3. SEND to all local servers: Pre-Prepare(update, ctx.seq, ctx.view)

B1. Upon receiving Pre-Prepare(update, seq, view)
B2. if NOT CONFLICT(Pre-Prepare, ctx)
B3. SEND to all local servers: Prepare(update, seq, view)

C9. Upon receiving 2f Prepare for which NOT CONFLICT(Prepare, ctx)
C10. ordered update ← invoke THRESHOLD SIGN(update, server id)

Fig. 6. ASSIGN-SEQUENCE Protocol

ASSIGN-A-GLOBAL-ORDER(Message update):
A1. if LeadingSite and Representative
A2. Proposal ← invoke ASSIGN-SEQUENCE(update, Global History)
A3. SEND to all sites: Proposal

B1. Upon receiving Proposal(site id, seq, global view, local view, update, t sig)
B2. if NOT LeadingSite
B3. if Representative
B4. SEND to all local servers: Proposal
B5. if Proposal.global view ≥ Global view
B6. Global view ← Proposal.global view
B7. Accept ← invoke THRESHOLD SIGN(Proposal, Server id)
B8 SEND to all sites: Accept
B9. if NOT Representative
B10. if Proposal.global view ≥ Global view
B11. Global view ← Proposal.global view
B12. Accept ← invoke THRESHOLD SIGN(Proposal, Server id)

C1. Upon receiving an Accept at any site
C3. SEND to all local servers: Accept

D1. Upon receiving a majority of Accepts at any site
C2. return

Fig. 7. ASSIGN-A-GLOBAL-ORDER Protocol

numbers are ordered, “Site ARU”. The representative of the
new leading site invokes the THRESHOLD-SIGN protocol on
a message containing the Site ARU, and sends the resulting
threshold-signed message to the representatives of all other
sites. Based on the Site ARU received, the representatives
of the non-leader sites invoke the CONSTRUCT-COLLECTIVE-
STATE protocol and send the resultant union message back
to the representative of the new leading site. A set of union
messages from a majority of sites is used by servers in the
leading site to constrain the messages they will generate in
the new view so that safety is preserved.

D. Updating Data Structures
E. Timeouts

Steward relies on timeouts to detect problems with the
representatives in different sites or with the leading site. Our
protocols do not assume synchronized clocks; however, we
do assume that the rate of the clocks at different servers is
reasonably close. We believe that this assumption is valid
considering today’s technology. Below we provide details
about the timeouts in our protocol.

Local representative (T1): This timeout expires at a server of
a non-leading site to replace the representative once no (global)
progress takes place for that period of time. Once the timeout
expires at f + 1 servers, the local view change protocol takes

9

Fig. 8. Steward system having five sites with seven servers in each site. The representatives are colored red. The leader site is colored dark blue.

LAN-VIEW-CHANGE:
A1. Stop Timer Local T
A2. Local View++
A3. New Rep ← NEW REPRESENTATIVE(Server id, Local View)
A4. SEND to all local servers: New Rep

B1. Upon receiving a set F of f+1 New Rep with view greater than mine from distinct servers:
B2. Local view ← MIN view(F)
B3. New Rep ← NEW REPRESENTATIVE(Server id, Local view)
B4. SEND to all local servers: New Rep

C1. Upon receiving a set, New Rep Set, of 2f+1 distinct New Rep for same view equal to mine:
C3, if not new representative
C4. Set Timer Local T = L Expiration Time
C5. if new representative
C6. New Rep Collection ← CONSTRUCT BUNDLE(New Rep Set)
C7. SEND to all local servers: New Rep Collection
C8. union ← Invoke CONSTRUCT-COLLECTIVE-STATE(Local aru, Local History)
C9. Invoke ASSIGN-SEQUENCE for each unordered update

D1. Upon timeout expiration:
D2. Local view++
D3. Stop Timer Local T
D4. L Expiration Time *= 2
D5. New Rep ← NEW REPRESENTATIVE(Server id, Local view)
D6. SEND to all local servers: New Rep

Fig. 9. LAN-VIEW-CHANGE Protocol

place. T1 should be higher than 3 times the wide area network
round-trip to allow a potential global view change protocol to
complete without changing the local representative.

Leading site representative (T2): This timeout expires at a
server at the leading site to replace the representative once no
(global) progress takes place for that period of time. T2 should
be large enough to allow the representative to communicate
with a majority of the sites. Specifically, since not all sites
may be lined up with correct representatives at the same
time, T2 should be chosen such that each site can replace

its representatives until a correct one will communicate with
the leading site; the site needs to have a chance to replace
f + 1 representatives within the T2 time period. Thus, we
need that T2 >(f+2)∗maxT1, where maxT1 is an estimate
of the largest T1 at any site. The (f +2) covers the possibility
that when the leader site elects a representative, the T1 timer
is already running at other sites.

Leading site (T3): This timeout expires at a site to replace
the leading site once no (global) progress takes place for
that period of time. Since we choose T2 to ensure a single

10

SITE-ATTEMPT-WAN-VIEW-CHANGE:
A1. L VC Attempt ← GEN VIEW CHANGE ATTEMPT(Global view, Server id)
A2. SEND to all local servers: L VC Attempt

B1. Upon receiving L VC Attempt(v) from server s
B2. if v > Global view + 1
B3. Attempt Proof Request ← GEN ATTEMPT PROOF REQUEST()
B4. SEND to s: Attempt Proof Request

C1. Upon receiving an Attempt Proof Request from server s:
C2. Global Attempt Proof ← GEN GLOBAL ATTEMPT PROOF()
C4. My Global Attempt Proof ← Global Attempt Proof
C3. SEND to server s: Global Attempt Proof

D1. Upon receiving Global Attempt Proof message, p, for global view v:
D2. if Global view < v
D3. My Global Attempt Proof ← p
D4. Global view ← v
D5. L VC Attempt ← GEN VIEW CHANGE ATTEMPT(Server id, Global view)
D6. SEND to all local servers: L VC Attempt

E1. Upon receiving a set of 2f+1 distinct L VC Attempt for view greater than or equal to mine
E2. L VC Share ← GENERATE SIGNATURE SHARE(Global view, Server id)
E3. SEND to all local servers: L VC Share

F1. Upon receiving a set, L VC Share Set, of 2f+1 distinct L VC Shares for Global view
F2. My global attempt proof ← GEN GLOBAL ATTEMPT PROOF(L VC Share Set)
F3. Global VC ← COMBINE(L VC Share Set)
F4. return Global VC

Fig. 10. SITE-ATTEMPT-WAN-VIEW-CHANGE Protocol

WAN-VIEW-CHANGE:
When the new leader site receives a majority of Global VC messages, it constructs the Prepare(aru, view)
message by invoking P4. Non-leader sites respond to this message with Prepare OK.

A1. Upon Suspect leader site trigger:
A2. G Expiration Time ← Default Global Timeout
A3. Global view ← Global view + 1
A4. Global VC ← invoke SITE-ATTEMPT-WAN-VIEW-CHANGE
A5. if Representative
A6. Send to all sites: Global VC

B1. Upon receiving Majority Global VC where Global VC.view num = Global view
B2. if representative of leader site
B3. (ConstraintMessage, AruMessage) ← Invoke CONSTRUCT-COLLECTIVE-STATE(local aru, C)
B4. Send to all sites: AruMessage
B5. else
B6. Set Timeout Global T ← G Expiration Time

C1. Upon receiving Global VC where Global VC.view num > Global view
C2. if already suspecting leader site and Global T not set
C3. Global view ← Global VC.view num
C4. Global VC ← invoke SITE-ATTEMPT-WAN-VIEW-CHANGE
C5. if representative
C6. Send to all sites: Global VC

D1. Upon receiving AruMessage
D2. if AruMessage.view num >= Global view
D3. Global view ← AruMessage.view num
D4. Cancel Timeout Global T if set
D5. (CM Pending,) ← Invoke CONSTRUCT-COLLECTIVE-STATE(AruMessage.aru, Pending Proposals)
D6. (CM Global,) ← Invoke CONSTRUCT-COLLECTIVE-STATE(AruMessage.aru, Global History)
D7. Send to leader site: CM Global

E1. Upon receiving ConstraintMessage
E2. if server in leader site
E3. if representative of leader site
E4. Send to all local servers
E5. if Majority of ConstraintMessage
E6. Apply to data structures

F1. Upon expiration of Timeout Global T:
F2. Suspect leader site F3. T = T*2

Fig. 11. WAN-VIEW-CHANGE Protocol

11

CONSTRUCT-COLLECTIVE-STATE(int seq, Context ctx):
A1. if Representative
A2. Request State ← GEN REQUEST STATE(seq, ctx, ctx.Global view) A3. SEND to all local
servers: Request State(seq, ctx, ctx.Global view)

B1. Upon receiving Request State(s, c, v)
B2. if v == ctx.Global view
B3. compute L ARU = Local ARU in *Context.history
B4. if L ARU < s
B5. Request missing ordered updates from representative
B6. if L ARU geq s
B7. Server State = Construct Server State(*Context, s)
B8. SEND to all local servers: Server State

C1. if representative
C2. Upon receiving a set, Server State Set, of 2f+1 distinct Server State messages that

pass validity test with view numbers == *Context.Global view
C4. Collected Servers State ← Construct Bundle(Server State Set)
C5. SEND to all local servers: Collected Servers State

D1. Upon receiving Collective State with view numbers == *Context.Global view
D2. union ← ConstructUnion(Collected Servers State)
D3. ConstraintMessage ← invoke THRESHOLD SIGN(union)
D4. union aru ← Extract Aru(union)
D5. AruMessage ← invoke THRESHOLD SIGN(union aru)
D6. Apply union to *Context.history
D7. return (ConstraintMessage, AruMessage)

Fig. 12. CONSTRUCT-COLLECTIVE-STATE Protocol

UPDATE-GLOBAL-HISTORY:
case message:

A1. Proposal(id, s, gl v, u):
A2. if Global History[s].Proposal is empty
A3. Global History[s] <- Proposal(id, s, gl v, u)
A4. if Global History[s].Proposal contains Proposal(id’, s, gl v’, u’)
A5. if gl v’ ≥ gl v
A6. ignore Proposal
A7. if gl v’ < gl v
A8. Global History[s] <- Proposal(id, s, gl v, u)

B1. Accept(id, s, gl v, d(u)):
B2. if Global History[s].Proposal is empty
B3. ignore Accept
B4. if Global History[s].Accept List is empty
B5. Global History[s].Accept List <== Accept(site id, s, gl v, d(u))
B6. if Global History[s].Accept List contains any Accept(site id, s, gl v’, d(u’))
B7. if gl v > gl v’
B8. discard all Accepts in Global History[s]
B9. Global History[s] <== Accept(site id, s, gl v, d(u))
B10. if gl v == gl v’ and Global History[s] does not contain Accept(site id, *)
B11. Global History[s] <== Accepts(site id, s, gl v, d(u))
B12. if gl v < gl v’
B13. ignore Accept
B14. if Global Ordered Ready(s)
B15. Construct Global Ordered Update from Proposal and list of Accepts
B16. Global History.Global Ordered Update = Global Ordered Update

C1. Global Order Update(s, gl v, u):
C2. if not Global Ordered(s)
C3. Global History[s].Global Ordered Update <- Global Ordered Update(s,gl v, u)
C4. else
C5. ignore Global Order Update

Fig. 13. Rules of applying a message to Global History assume that there is no conflict, i.e. Conflict(message, Global History) == FALSE

communication round with every site, and since the leading
site needs at least 3 rounds to prove progress, in the worse
case, the leading site must have a chance to elect 3 correct
representatives to show progress, before being replaced. Thus,
we need T3 = (f + 3)T2.

Client timer (T0): This timeout expires at the client, trig-
gering it to inquire the status of its last update by interacting
with various servers at the site. T0 can have an arbitrary value.

Timeouts management: Servers send their timers estimation
(T1, T2) on global view change messages. The site represen-
tative disseminates the f + 1st highest value (the value for
which f higher or equal values exist) to prevent the faulty
servers from injecting wrong estimates. Potentially, timers can
be exchanged as part of local view change messages as well.
The leading site representative chooses the maximum timer
of all sites with which communicates to determine T2 (which
in turn determines T3). Servers estimate the network round-

12

UPDATE-LOCAL-HISTORY:
case message:

A1. Local New View(l view, union, t sig):
A2. if l view 6= Local view
A3. ignore Local New View
A4. if Installed local view == 0
A5. for every s > Local aru
A6. discard Local History[s].Pre-Prepare
A7. discard all Prepare in Local History[s].Prepare List
A8. discard all Commit in Local History[s].Commit List
A9. Apply union to Local History according to the rules below
A10. Installed local view = 1

B1. Pre-Prepare(server id, seq, l view, update):
B2. if Local History[s].Pre-Prepare is empty
B3. Local History[s].Pre-Prepare <- Pre-Prepare(server id, seq, l view, update)
B4. else
B5. ignore Pre-Prepare(server id, seq, l view, update)

C1. Prepare(server id, seq, local view, digest):
C2. if Local History[s].Pre-Prepare is empty
C3. ignore Prepare
C4. if Local History[s].Prepare List contains a Prepare with server id
C5. ignore Prepare
C6. else
C7. Local History[s].Prepare List <== Prepare(server id, seq, local view, digest)
C8. if Prepare Certificate Ready(s)
C9. Construct Prepare Certificate(Local History[s].Pre-Prepare, Local History[s].Prepare List)
C10. Local History[s].Prepare Certificate <- Prepare Certificate

D1. Commit(server id, seq, l view, digest, t share):
D2. if Local History[s].Pre-Prepare is empty
D3. ignore Commit(server id, seq, l view, digest, t share)
D4. if Local History[s].Commit List contains a Commit with server id
D5. ignore Commit(server id, seq, l view, digest, t share)
D6. else
D7. Local History[s].Commit List <== Commit(server id, seq, l view, digest, t share)
D8. if Local Ordered Ready(s)
D9. Construct Local Ordered Update(Local History[s].Pre-Prepare, Local History[s].Commit List)
D10. Local History[s].Local Ordered Update <- Local Ordered Update

E1. Prepare Certificate(s, l v, u):
E2. if Local History[s] contains a Prepare Certificate(s, l v’, u’)
E3. if l v’ < l v
E4. Local History[s] <- Prepare Certificate(s, l v, u)
E5. else
E6. ignore Prepare Certificate(s, l v, u)
E7. else
E8. Local History[s] <- Prepare Certificate(s, l v, u)

F1. Local Ordered Update(s, u):
F2. if Local Ordered(s)
F3. discard Local Ordered Update(s, u)
F4. else
F5. Local History[s].Local Ordered Update ← Local Ordered Update(s, u)

Fig. 14. Rules of applying a message to Local History assume that there is no conflict, i.e. Conflict(message, Local History) == FALSE

trip according to various interactions they have had. They can
reduce the value if communication seems to improve.

VI. PROOF

A. Strategy
In this section we show that Steward provides the properties

specified in SectionIV. We prove individual properties for each
of the building blocks, providing safety and liveness guaran-
tees. The building block algorithms are listed in Section V.

B. Proof of ASSIGN-SEQUENCE Protocol
Claim: If a correct representative invokes P1 on some data

(within a Context), and all correct servers are connected, then
P1 returns the data with a sequence number and a signature
at f+1 correct servers, or else a view change will take place.

Proof: Following Lemma 6.1, Lemma 6.2 and Lemma
6.3, the Claim is proved.

OBS 1: The correct representative will assign a
sequence number s to the update (data). If a view
change does not take place, a correct representative
will not assign the same sequence number to different
updates (Lines A2-A3) in protocol P1.
OBS 2: Following the rule RL1 and lines B2-B3
in Conflict() function, for any sequence number s,
a correct server will only maintain L-Pre-Prepare
messages sent by the current representative.
OBS 3: Following Obs 1 and Obs 2, an L-Pre-
Prepare message sent by a correct representative will
not conflict with any other Pre-Prepare messages

13

boolean Global Ordered(s):
if Global History[s].Ordered Update is not empty

return TRUE
return FALSE

boolean Global Ordered Ready(s):
if Global History.Proposal[s] contains a Proposal(site id, s, gl v, u)

if Global History[s].Accept List contains (majority-1) of distinct
Accept(site id(i), s, gl v, d(u)) with site id(i) 6= site id
return TRUE

if Global History[s].Accept List contains a majority of distinct
Accept(site id(i), s, gl v’, d(u)) with gl v >= gl v’
return TRUE

return FALSE

boolean Local Ordered(s, *Context):
if Context.Local History[s].Ordered Update is not empty

return TRUE
return FALSE

boolean Local Ordered Ready(s, *Context):
if Context.Local History.Proposal[s] contains a Pre-Prepare(server id, s, loc v, u)

if Context.Local History[s].Commit List contains 2*f+1 of distinct
Commit(server id(i), s, loc v, d(u), t share’) with digest(u) == d(u)
return TRUE

return FALSE

boolean Prepare Certificate Ready(s, *Context):
if Context.Local History.Proposal[s] contains a Pre-Prepare(server id, s, loc v, u)

if Context.Local History[s].Prepare List contains 2*f of distinct
Prepare(server id(i), s, loc v, d(u)) with server id 6= server id(i) and digest(u) == d(u)
return TRUE

return FALSE

boolean Conflict(message, *Context):
case message
Pre-Prepare(server id, seq, local view, Update):

if server id 6= local view mod num servers in site
return TRUE

if local view 6= Context.Local view
return TRUE

if Context.Local History[s].Pre-Prepare(server id, seq, l view, u’) exists and u’ 6= Update
return TRUE

if Context.Local History[s].Prepare Certificate(seq, l view’, u’) exists and u’ 6= Update
return TRUE

if Context.Local History[s].Local Ordered Update(site id, seq, l view’, u’, t sig) exists
if u’ 6= Update or l view’ > local view

return TRUE

Prepare(server id, seq, local view, di):
Commit(server id, seq, local view, D, t share):

if local view 6= Context.Local view
return TRUE

if Context.Local History[s].Pre-Prepare(server id’, seq, local view, u) exists and digest(u) 6= d
return TRUE

if Context.Local History[s].Local Ordered Update(site id, seq, l view’, u, t sig) exists and
if digest(u) 6= d or l view’ > local view

return TRUE

Proposal((site id, seq, global view, local view, Update, t sig):
if global view 6= Context.Global View

return TRUE
if Context.Global History[s].Global Ordered Update(seq, g view’, u’) exists

if u’ 6= Update or g view’ > global view
return TRUE

Accept(site id, seq, global view, local view, d, t sig):
if global view 6= Context.Global View

return TRUE
if Context.Global History[s].Proposal(site id, s, g view, l view, u, t sig) exists and digest(u) 6= d

return TRUE
if Context.Global History[s].Global Ordered Update(seq, g view’, u’) exists

if digest(u’) 6= d or g view’ > global view
return TRUE

return FALSE

Fig. 15. Predicates

14

mantained at any correct servers. As a consequence,
upon receiving a L-Pre-Prepare message from a
correct representative, Conflict() function at a cor-
rect server will only return TRUE if that server
has a conflicting Prepare-Certificate or a conflicting
Local Ordered messsage.
OBS 4: According to Obs3 and Lines B1-B4 in P1,
any correct server, upon receiving a L-Pre-Prepare
message from a correct representative, will send a L-
Prepare message unless it has a conflicting Prepare-
Certificate or a conflicting Local Ordered message.

Lemma 6.1: If a correct representative sends a L-Pre-
Prepare(d, s, v) and no view change takes place, then at least
f+1 correct servers will receive its message and at least 2*f
distinct and matching L Prepare(d, s, v) messages from servers
other than the representative.

Proof: Since the correct servers are connected, all the
correct servers will receive the L-Pre-Prepare message sent by
the correct representative.

If no correct server has a conflicting Prepare-Certificate or a
conflicting Local Ordered update to the L-Pre-Prepare(d, s, v)
message, then all correct servers other than the representative
will send a Prepare(d, s, v) message (Obs 4). This implies
that all correct servers will receive at least 2*f Prepare(d, s,
v) messages in addition to the L-Pre-Prepare message.

Some correct servers may have conflicting Prepare-
Certificates or Local ordered Updates. These servers will not
send a Prepare message. If fewer than f+1 correct servers
receive 2*f Prepare messages then less than 2*f+1 total servers
will invoke P2. (Line C1-C2 in protocol P1) Following
Property 2 of P2, P1 will not be able to complete, so no
progress will be made, and this results in a view change.

Lemma 6.2: If at least f+1 correct servers receive a L-
Pre-Prepare(d, s, v) and at least 2*f distinct and matching
L Prepare(d, s, v) messages from servers other than the
representative then, if P1 returns at any correct server and
no view change takes place, the data and sequence number
returned at that server will be the data d and sequence number
s in the L-Pre-Prepare message.

Proof: If at least f+1 correct serves receives a L-
Pre-Prepare(d, s, v) and at least 2*f distinct and matching
L Prepare(d, s, v) messages from servers other than the
representative, then at least f+1 correct servers will invoke
P2 with (d, s, v) in the current view. Therefore, there cannot
be a set of 2*f+1 servers invoking P2 on any (d’, s) in the
current view.

Consequently, if P2 (and implicitly P1) completes at any
correct server, it will only complete on (d, s).

Lemma 6.3: If a correct representative invokes P1, then
either P1 completes at least f+1 correct servers or a view
change takes place.

Proof: According to Obs 1 a correct representative will
not assign two different updates to the same sequence number.
If P1 is invoked on some update by a correct representative,
then the representative assigns some sequence number for that
update. If P1 does not terminate at at least f+1 correct servers,

then these servers will see no progess being made for that
sequence number and they will invke a view change. Since
f+1 servers are enough to create a view change, then a view
change will take place.

Claim: If P1 returns (d, s) at any correct server, then P1
will never return (even in a different view) at any correct server
(d’, s) with d’ 6= d.

Proof: Following Lema 6.4 and Lema 6.7, the Claim is
proved.

Lemma 6.4: If P1 returns (d, s) in some view v at any cor-
rect server, then f+1 correct servers have a Prepare-Certificate
for (d, s) in the view P1 returned.

Proof: According to the rules RL3 and RL5, a correct
server adopts a Prepare Certificate for a sequence (d, s) either
when it does not have one already, or when it has one from an
older view. In any case, the old certificae (if any) is replaced
with the new one. Therefore, a correct server cannot have two
Prepare-Certificates for the same sequence number.

If P1 returns, then P2 (as part of P1) was invoked at 2*f+1
servers. Out of these, at least f+1 are correct. This implies
that at least f+1 correct servers should have constructed a
Prepare-Certificate out of the L-Pre-Prepare and the set of 2*f
L-Prepare messages that served as a pre-condition to invoking
P2.

Lemma 6.5: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, and a view change takes
place, then any correct representative of the next view installed
after v will not issue an L-Pre-Prepare message contianing a
different data d’ and s.

Proof: Any set of 2*f+1 PrepareOK messages in P4 in
the same view will contain at least one server of the set of f+1
having the Prepare-Certificate for (d, s). Therefore, any correct
representative elected will apply to its Context.Local History
a Prepare-Certificate for (d, s) in the new view v’ ≥ v,
and consequently will not send an L-Pre-Prepare message
containing d’ and s, with d’ 6= d.

Lemma 6.6: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, they will all have a
Prepare-Certificate for (d, s) in any view higher than v.

Proof: According to rule RL5 a Prepare-Certificate(d, s,
v) can only be replaced by another Prepare-Certificate(d’, s,
v’) constructed in a higher view v’ > v. In order for such a new
certificate to be constructed, at least 2*f servers, in addition to
the representative, should send a L-Prepare(d’, s, v’) message.
However, since f+1 correct servers already have a Prepare-
Certificate for (d, s), they will not send an L-Prepare message
as their Conflict() function will return TRUE (Lines B8-B9 in
Conflict()). Therefore, there cannot be a set of 2*f servers, in
addition to the representative, sending a L-Prepare(d’, s, v’),

Lemma 6.7: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, then P1 cannot return
(d’, s), with d’ 6= d on any view v’ ≥ v

Proof: According to Lema 2 and Lemma 3, only a
corrupt representative could send a L-Pre-Prepare message
contianing d’ and s with d’ 6= d. Then, there will be f+1 correct

15

servers, none of them being the representative, that will have
a Prepare-Certificate for (d, s). Following Obs 3, these servers
will not send a L-Prepare message for (d’, s), and therefore
no other server will receive 2*f L-Prepare message for (d’, s).
As a consequence, there will not be enough servers invoking
P2 to complete with result (d’, s)

Claim: If a correct representative invokes P1 with some
data d and a sequence number s, in a view v, and the
preconditions 1-3 are valid, then P1 returns the data d with
the sequence number s and a valid threshold signature at 2f+1
correct servers.

Precondition 1: There are 2f+1 correct connected
servers that have preinstalled the same view v and
that do not suspect the representative.
Precondition 2: There is enough time for the nec-
essary communication consisting in three network
crossings in protocol P1 to complete before a correct
server suspects the representative.
Precondition 3: The data structures in the correct
servers have been synchronized so that there are no
conflicts. No correct server has a Prepare-certificate,
for sequence number s, that the representative does
not have, or that was constructed in a more recent
view than the one the representative has.

Proof: All correct connected servers will receive Pre-
Prepare(d,s,v) from the representative. Following from lines
B2-B3 of ASSIGN-SEQUENCE, all correct connected servers
will send a matching Prepare(d,s,v) because no conflict occurs.
Therefore, all correct servers will receive 2f Prepare(d,s,v)
messages and 1 Pre-Prepare(d,s,v) message which forms a
Prepare Certificate(d,s,v). At this point, all correct servers
will invoke P2. According to Property 1 of P2, the protocol
eventualy returns to every correct nodes with the combined
signature of the data.

C. Proof of SITE-ATTEMPT-WAN-VIEW-CHANGE
We say that a server globally attempts a global view v when

the server sets its My global view variable to v. Protocol is
presented in Figure 10

Claim: If 2f+1 correct servers invoke P3, and all correct
servers are connected, then P3 eventually returns to every
correct server a single view number and a combined signature
of that view number.

Claim: P3 will not return to any server a correct combined
signature unless at least f+1 correct servers that invoked P3
returned the same view number.

PROPERTY 6.1: If 2f+1 correct servers within a site are
connected, they will either all make progress, or they will
eventually all Globally attempt the same global view v, and
they will all generate a Global VC message for v.

PROPERTY 6.2: If 2f+1 correct servers within a site are
connected, and these servers have all globally attempted the
same view, v, then if global progress is not made, these correct,
connected servers will all globally attempt view v+1, and will
generate a Global VC message for view v+1.

PROPERTY 6.3: If 2f+1 correct, connected servers within
a site invoke P3 in the same globally attempted view v, then
all correct servers will generate a threshold-signed Global VC
message for view v.

Proof: All correct servers send L VC Attempt messages
for view v. Since all correct servers are connected, they all
receive at least 2f+1 L VC Attempt messages for view v.
Then, in lines E2 and E3, they all generate threshold signature
shares for view v, and send these shares to all local servers.
All local servers receive the shares, combine them, and return
the same Global VC message at line F4.

Since at least 2f+1 correct servers invoked P3 from global
view v, no other server can have global attempt proof for a
view higher than v. Thus, no correct server will move beyond
v in this invocation.

PROPERTY 6.4: Property 2: If 2f+1 correct, connected
servers within a site, having the same value for Global view,
invoke P3, then the site will eventually generate a Global VC
message.

Proof: Since 2f+1 correct servers invoke P3 from the
same global view, each such correct server will receive 2f+1
distinct, L VC Attempt signature shares for its own view. The
servers then combine in line D3, and return the Global VC
message.

D. Proof of CONSTRUCT-COLLECTIVE-STATE
Claim: If a correct representative invokes P4 with some

sequence number and all correct servers are connected, then
P4 will return a set of data updates, each with a corresponding
sequence number higher than the one invoked, and a proof of
the set, or a view change takes place.

Lemma 6.8: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then the representative will receive at least 2f+1 Server Set
messages from the same view in response to its initial message,
or a view change takes place.

Proof: By assumption, there are at least 2f+1 connected,
correct servers when P4 is invoked. These servers will all
receive the representative’s initial invocation message at line
B1.

If a correct server is in a different view than the represen-
tative, it will not respond to the invocation message. If there
exists at least one such server, then since all faulty servers
may refuse to respond, either the representative receives 2f+1
Server Set responses from some combination of correct and
faulty servers, or a view change occurs because no progress
is made.

Assume, then, that all correct servers are in the same view
as the representative. Then upon receiving the representative’s
invocation message, a correct server will either enter case (1)
or case (2), at lines B4 and B7, respectively.

If a server enters case (2), it sends a Server History message
to the representative immediately.

If the server enters case (1), then the server has a local aru,
l aru, lower than seq, and requests those updates between l aru
and seq (line B5). Since there are no communication failures,

16

the server is able to eventually recover these updates from the
representative. When this recovery completes, the server enters
case (2), constructs a Server Set message, and sends it to the
representative.

Since we assume in this case that there are at least 2f+1
correct servers in the same view as the representative, either at
least 2f+1 Server History messages arrive at the representative,
or a view change occurs.

A server constructs a Server Set message by calling Con-
struct ServerSet(seq). The Server Set message contains a (pos-
sibly empty) set of items. Any item that does appear is of one
of the following two types:

1) Proposal
2) (Proposal, Accept List)
We say that an item of type (1) is valid if:
• The Proposal carries a valid threshold-signature from

site id.
• prop global seq > seq
We say that an item of type (2) is valid if:
• The Proposal carries a valid threshold-signature from

site id.
• prop global seq > seq
• For each Accept A in Accept List:

1) A carries a valid threshold-signature from site
A.site id

2) A.accept global seq == prop global seq
3) A.digest = digest(Proposal.Update)
4) |Accept List| == (Majority - 1)
5) Proposal.site id != A.site id for any A in Ac-

cept List
6) A1.site id != A2.site id for any A1, A2 in Ac-

cept List
7) A1.view num == A2.view num for any A1, A2, in

Accept List
8) Proposal.view num == A.view num for any A in list

We say that a Server Set message is valid if any item that
appears is valid. Lemma 6.9 states that any Server Set message
constructed by a correct server is valid.

Lemma 6.9: Let M be the Server Set message constructed
by correct server s in response to a correct representative’s
invocation message with sequence number seq. Then M is a
valid Server Set message.

Proof: A correct server constructs a Server Set message
by calling Construct ServerSet(seq). For any sequence number
s > seq, if Global History[s] is empty, then the server will
not add any item to the Server Set message for this sequence
number, which trivially meets the validity properties defined
above.

For any sequence number s > seq where Global History[s]
is not empty, if the server has globally ordered s, i.e. if
Global Ordered Ready(s) == true, then it includes the Pro-
posal and its corresponding Accept List. This results in an
item of type (2). By the rules for global ordering, this item is
valid.

If the server has not globally ordered s, then
Global History[s] may consist of (a) Only a Proposal
or (b) A Proposal and 1 ≤ j < (Majority-1) Accepts. The
server adds the Proposal to the Server Set message in both
cases as an item of type (1). By the rules for maintaining the
Global History, such an item is valid.

Since these are the only two type of items that may appear
in the Server Set message, then the Server Set message M of
server s is valid.

Lemma 6.10: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then the representative will receive at least 2f+1 valid
Server Set messages from its own view in response to its initial
message, or a view change occurs.

Proof: From Lemma 6.8, the representative receives
at least 2f+1 Server Set messages in response to its initial
invocation message, or a view change occurs. From Lemma
6.9, any Server Set message sent by a correct server is valid.

If any correct server does not respond to the representative’s
initial invocation message (because it is in a different view),
then either the representative receives 2f+1 valid Server Set
messages (from some combination of correct and faulty
servers) or a view change occurs.

If all correct servers send Server Set messages, then either
the representative receives a set of 2f+1 valid Server Set
messages (either from all correct servers or some combination
of correct and faulty servers who send valid messages), or a
view change occurs before these messages arrive.

Lemma 6.11: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then at least f+1 correct servers will receive and process a
CollectedServerHistorySet message from the representative’s
view, or a view change occurs.

Proof: By Lemma 6.10, the representative receives at
least 2f+1 valid Server Set messages from its own view, or a
view change occurs. Since there are at most f faulty server, at
least f+1 of these valid messages are from correct servers in
the same view as the representative.

The representative sends a CollectedServerHistorySet mes-
sage to all local servers. Since all correct servers are con-
nected, the representative’s message will arrive at all correct
servers, including the f+1 whose Server Set messages the
representative received.

Lemma 6.12: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then at least f+1 correct servers return identical (Con-
straintMessage, AruMessage) pairs as the result of P4, or a
view change occurs.

Proof: By Lemma 6.11 , at least f+1 correct servers
receive (and process) a CollectedServerHistorySet from the
representative, or a view change occurs. Since the represen-
tative is correct, all correct servers receive identical Col-
lectedServerHistorySet messages. Since the representative’s
signature cannot be forged, a correct server will only process
CollectedServerHistorySet message from the representative.

17

Each of these f+1 correct servers produces the union in
a deterministic way, based solely on the contents of the
CollectedServerHistorySet message. Thus, each produces the
same union. At this point, at least f+1 correct servers construct
the ConstraintMessage by invoking Threshold Signature on
the identical union.

If even one correct server is not in the same view as the
representative, then either Threshold Signature terminates with
some combination of at least f+1 correct servers and some
faulty servers (in which case the f+1 correct servers return
identical ConstraintMessages), or it fails to terminate, and a
view change occurs.

If all correct servers are in the same view as the represen-
tative, then they all invoke Threshold Signature on the same
union, and produce identical ConstraintMessages, or a view
change occurs.

Similarly, each of these servers produces union aru in a
deterministic fashion, and invokes Threshold Signature on
this result. By the same property, each such AruMessage is
identical.

In either case, at least f+1 correct servers return identical
(ConstraintMessage, AruMessage) pairs, or a view change
occurs. The threshold signature attached to each message
serves as proof that the site assented to the message.

Lemma 6.13: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then any item contained in the ConstraintMessage returned
by at least f+1 correct servers will be for a sequence number
greater than seq, or a view change occurs.

Proof: By Lemma 6.12 , at least f+1 correct servers
return the same ConstraintMessage, or a view change occurs.
The ConstraintMessage is the result of invoking Thresh-
old Signature on the computed Union.

The Union function operates on the ServerHistorySet mes-
sages contained in the CollectedServerHistorySet message. By
the way in which the representative constructs the Collected-
ServerHistorySet message, each such ServerHistorySet mes-
sage is valid. By the properties of validity, any item contained
in a valid ServerHistorySet message is for a sequence number
greater than seq. Since the result of the Union function is
a subset of those items appearing in the ServerHistorySet
messages, any item remaining must be for a sequence number
greater than seq.

Claim: Claim 2: Any (d, s) in the ConstraintMessage
returned by P4 passes context verification:

1) For the Global History, (d, s) was Proposed by some
leader site.

2) For Pending proposals, (d, s) has a Prepare Certificate
Proof: If a correct server returns from P4, then it

successfully completes the Union() function. This means that
each of the 2f+1 ServerHistorySet messages contained in the
CollectedServerHistorySet message is authenticated.

A ServerHistorySet message will only be authenticated if:
(1) The message carries a valid signature from a server or (2)
Each item (if any) contained in the message carries a valid

threshold signature, and is for a sequence number greater than
seq.

An item of type (1) is a Proposal, and since it was
authenticated, must have been proposed by some leader site,
since it carries a valid threshold signature. Such a message was
accepted by some server in the site, since the server stored it
in its history.

An item of type (2) consists of a Proposal and (Majority-1)
corresponding Accepts. Since the ServerHistorySet message is
valid, the item passes the validity tests defined above. Then the
authentication confirms that the Proposal and its Accepts are
valid. If the authentication succeeds, then this item constitutes
proof that the message was globally ordered by the server who
included it in its ServerHistorySet message.

The Union() returns a subset of the items contained in these
valid, authenticated ServerHistorySet messages, and thus the
ConstraintMessage produced as the result of P4 will consist
only of items that were either globally ordered or accepted by
some server in the site.

Claim: Claim 3: Let s be the sequence number with which
P4 was invoked. Then for any (d, s’), where s’ > s,

1) If (d, s) was globally ordered by at least f+1 correct
servers in the site, then it will appear in the Con-
straintMessage as globally ordered.

2) If (d, s) was in Global History[s] as a Proposal at at
least f+1 correct servers, then it will appear in the
ConstraintMessage as a Proposal, unless it could not
have been globally ordered.

Lemma 6.14: Let s be the sequence number with which
P4 was invoked. Then any correct server that responds to the
initial invocation message and that has either globally ordered
(d, s’) with s’ > s, or accepted (d, s’) with s’ > s, will include
(d, s’) in its ServerHistorySet message.

Proof: If a correct server has accepted (d, s’) with s’ > s
but has not globally ordered it, then by the protocol, the server
includes a type (1) item for (d, s’) in its ServerHistorySet
message. If the server has globally ordered (d, s’) with s’ >

s, then by the protocol, the server includes a type (2) item
in its ServerHistorySet message corresponding to (d, s’). In
both cases, the item appears in the ServerHistorySet message,
completing the proof.

Lemma 6.15: Let s be the sequence number with which P4
was invoked. Then any (d, s’), where s’ > s, that was either
globally ordered by at least f+1 correct servers in the site, or
accepted by at least f+1 correct servers in the site, will appear
in at least one of the ServerHistorySet messages contained in
authenticated, valid CollectedServerHistory message.

Proof: The CollectedServerHistorySet message consists
of 2f+1 ServerHistorySet messages from distinct servers. Since
there are at most f faulty servers within the site, at least f+1
of these messages are from correct servers.

By assumption, (d, s’) was either globally ordered by at
least f+1 correct servers, or accepted by at least f+1 correct
servers. Then in any set of 2f+1 ServerHistorySet messages,
at least one ServerHistorySet message is from one of these

18

f+1 correct servers. By Lemma 1, such a ServerHistorySet
message includes (d, s’).

Lemma 6.16: Let (d, s, v) be an item that appears in one
of the 2f+1 valid ServerHistorySet messages used in Union().
Then (d, s, v) either appears in the set returned by Union, or
the set returned by Union contains (d’, s, v’) such that v’ >

v.
Proof: (d, s, v) appears as a type (2) item in one of

the ServerHistorySet messages if it was globally ordered by
that server. By the Union function, type (2) items are only
removed from the resulting union if an item corresponding to
this globally ordered update already exists in the Union. Thus,
such an item will appear in the o union set.

(d, s, v) appears as a type (1) item in one of the ServerHis-
torySet messages if it was accepted by that server. The a union
set is constructed by combining all accepted items from the
2f+1 messages, and removing identical items. If there exists a
(d’, s, v’) such that v’ > v, then (d, s, v) is replaced by (d’,
s, v’). If d’ == d, then (d’, s, v) represents the same Proposal
from a later view. If d’ 6= d, then (d’, s, v) represents a different
Proposal from a later view, which can only occur if the (d, s,
v) was not globally ordered.

E. Proof of the LAN-VIEW-CHANGE Protocol
In this section we prove the algorithm responsible of chang-

ing the view within a site and electing a new representative.
We have specified two functionally equivalent algorithms. The
first protocol was specified in Figure 9. In this section, we
prove properties of the second protocol which is specified in
Figure 16.

We use the following definitions:
DEFINITION 6.1: Preinstall; We say that a server preinstalls

view v if it collects 2f+1 New Rep messages for a view equal
to or greater than v. It can collect these messages via two
different mechanisms: 1. It can receive the messages directly
from the servers that generated them. 2. It can receive a
Preinstall proof message that contains a set of 2f+1 New Rep
messages where the minimum New Rep message is for view
v.

DEFINITION 6.2: Progress; From an individual server’s
view, progress means that any update which a server has sent
to the representative for ordering has been globally ordered
within some expected amount of time. If the update is not
eventually globally ordered, all correct connected servers will
suspect the representative.

Each server maintains four variables related to the LAN-
VIEW-CHANGE protocol. They are:

• I Am Representative: 1 if this server is the representative
for this site

• Representative: the id of the representative for this site

• Local view: the local view number of this server

• Installed local view: 0 when the view change protocol is
invoked; set to 1 when the protocol ends

When a correct server receives an update, it puts this update
in its queue. It removes updates from the queue when they
have been ordered. The protocol is triggered by the following
events:

• Any new update is not globally ordered within a timeout
period, Delta. This update may or may not be an update
that is in the servers Update Queue.

• The oldest (first) update in the servers Update Queue is
not ordered within a timeout period greater than Delta.

We assume that the following precondition is true:
PRECONDITION 6.1: The initial Local view, in which all

correct servers start, is preinstalled, a priori. Therefore all
servers have an a priori preinstall proof for this view.

We can now prove the following lemma.
Lemma 6.17: Any correct server with its Local view equal

to v, has either preinstalled view v or preinstalled view v-1.
Proof:

A correct server can increase its view only in the following
cases:

• The server responds to a trigger event (this includes
timeouts) and increments its Local view by one.

• the server receives a proof that a view preinstalled (the
proof consists of a set of 2f+1 L New Rep messages). If
it receives this proof, it preinstalls view V where V is the
lowest L New Rep.

Following from Precondition 6.1, servers that have not yet
incremented their view have preinstalled the initial view (and
have a preinstall proof), a priori. From the algorithm, a correct
server cannot respond to a trigger event and increment its view
unless it has preinstalled the view from which it is moving.
Therefore, when a server increases its Local view, it must
either be responding to a preinstall proof, in which case it
preinstalls the view to which it is moving, v, or it must be
responding to a trigger event, in which case, if it moves to
view v, it has preinstalled view v-1.

We can now prove the properties of the LAN-VIEW-
CHANGE protocol.

PROPERTY 6.5: If 2f+1 correct servers are connected, they
will either make progress or they will eventually all preinstall
the same view.

Proof: By Lemma 6.17, if a correct server responds to
a trigger event and increments its Local view to v, it must
have a preinstall proof for view V-1. If progress is not made,
there will be trigger events at all correct servers. Suppose the
maximum preinstalled view is M. Let Max Server denote a
server with Local view == M. When a trigger event occurs at
Max Server, it will send a New Rep message for view M+1
to all correct servers. Consider any correct server, S. If the
maximum view that S has preinstalled is less than M, then
S will request a preinstall proof from Max Server. When S
receives the preinstall proof for M, S preinstalls view M and
sets its Local view to M. At this point, if progress is not made,
there will be a trigger even at S and S will increment its view
to M+1. Therefore, if progress is not made, all correct servers
will increment their view to M+1. At this point, there are at

19

least 2f+1 servers that will send a New Rep message for view
M+1 and view M+1 will be preinstalled.

PROPERTY 6.6: If 2f+1 correct servers are connected and
these servers have all preinstalled the same view, v, then if
progress is not made, these correct connected servers will all
preinstall view v+1.

Proof: If at least 2f+1 correct connected servers have
preinstalled view v, then if progress is not made, all correct
connected servers will either undergo a trigger event or prein-
stall v+1 because they receive a preinstall proof. When a server
responds to a trigger event it will increase its view by 1 to
view v+1. As soon as the first server preinstalls view v+1, it
can prove to the other correct connected servers that view v+1
was preinstalled, and they will all preinstall v+1. If all correct
servers have the same Local View, V, the f faulty servers
cannot prove that any view greater than v has preinstalled.
Therefore, a correct server that times out must preinstall view
v+1 before preinstalling a higher view.

PROPERTY 6.7: If 2f+1 correct servers are connected, then
if f+1 correct servers learn about an update and do not receive
proof that the site initiated that update after some amount of
time, there will be a view change.

Proof: When a correct server receives an update, it sends
the update to all local servers and each of these servers sends it
to the representative. Therefore, when any correct server learns
of an update, all correct connected servers will learn of this
update. When a server learns of an update, it sets a timeout. If
this timeout expires before the server receives proof that the
site initiated the update, it suspects the representative.

If f+1 servers suspect the representative, then they will all
timeout and increment their Local View. These servers will
not participate in ASSIGN-SEQUENCE protocol until they
preinstall a higher view. Since 2f+1 servers must participate
in ASSIGN-SEQUENCE to make progress, the remaining f
correct servers will also timeout and attempt to preinstall
another view.

F. Local L1 (Local Progress)
If there exists a set, within a site, consisting of at least 2f+1

correct servers, and a time after which the correct members
of this set are connected, then if a server in the set initiates
an update, the site will eventually initiate the update.

PRECONDITION 6.2: In the case where Local L1 refers to
the pending context (which runs only on the leader site and
produces Paxos Proposals), the global constraint messages re-
quired for ASSIGN-SEQUENCE to make progress generating
global Proposals have already been received.

Definitions:
DEFINITION 6.3: site update progress; We define

site update progress to mean that when a correct server
initiates an update, the site will initiate this update.

DEFINITION 6.4: site update progress proof;
• If all connected servers have proof that

site update progress is made site update progress proof
is True

• If no connected servers have proof that
site update progress is made site update progress proof
is False

• Otherwise site update progress is undefined.
DEFINITION 6.5: initiate;
• We say a server initiates an update when the server

receives an update that should be locally ordered and
attempts to push the update into the system.

• We say a site initiates an update when the update is sent
out of the site to the representative of the leader site.

DEFINITION 6.6: blocking conflict; A blocking conflict is
a situation where a conflict occurs that cannot necessarily
be resolved without a view change. Thus, a blocking conflict
can potentially require a view change. We say that a conflict
occurs when the conflict function is called on a Pre-Prepare
and returns true.

Proof of Local L1:
Lemma 6.18: If 2f+1 correct servers are connected and

site update progress proof is False, 2f+1 correct servers will
eventually all preinstall the same view.

Proof: From Definition 6.3 , no correct server receives
proof the that site update progress occurred. Lemma 6.18
follows from Proof of Local Representative Election Protocol
Property 1 and Property 3.

Lemma 6.19: If site update progress proof is True, then
Local L1 is true.

Proof: Site update progress proof can be True only if
site update progress is made. If there exists proof that site
update progress was made, then the site must eventually
initiate an update if a correct server initiated this update.
Site update progress implies Local L1, by Definition 6.4.

Lemma 6.20: If there are 2f+1 correct connected servers
and site update progress proof is False, every correct server
will eventually often become the representative. Each correct
server will become representative once every N view changes
where N is the number of servers in the site.

Proof: Following from Lemma 6.19, if
site update progress proof is False, all correct servers will
preinstall the same view. By Local Leader Election Property
2 and Property 3, if at least 2f+1 correct connected servers
preinstall the same view, V, and site update progress proof is
False, then these servers will all preinstall view V+1. When
all servers preinstall V+1, then if site update progress is not
made, this process repeats and they will all preinstall V+2.
Therefore, views are preinstalled consecutively. Because we
use V representative every N view changes where there are
N local servers. Thus, all correct servers will become the
representative for some amount of time, Delta, every N view
changes.

Lemma 6.21: If there are 2f+1 correct connected servers,
P4 will eventually complete.

Proof: By New Property of P4 (see below), P4 will
return if a correct representative invokes P4 and the precondi-
tions for this property are met. Precondition 1 is met because
we have 2f+1 correct connected servers and Lemma 3 says that

20

Initial State:
Local view = 0
my preinstall proof = a priori proof that view 0 was preinstalled
Set Timer Local T = L Expiration Time

LAN-VIEW-CHANGE()
A1. if (my preinstall proof.preinstalled view 6= Local view)
A2. return
A3. Local view++
A4. Stop Timer Local T
A5. L Expiration Time *= 2
A6. l new rep <- Construct New Rep(My server id, Local view)
A7. Send to all local servers: L New Rep

B1. Upon Local T expiration:
B2. LAN-VIEW-CHANGE()

C1. Upon a trigger which causes me to suspect my representative:
C2. LAN-VIEW-CHANGE()

D1. Upon receiving an L New Rep message from server S:
D2. if L New Rep.view > Local view + 1,
D3. request <- Construct Preinstall Proof Request Message()
D4. Send to server S: request

E1. Upon receiving a request for a preinstall proof from server S:
E2. Send my preinstall proof to S

F1. Upon receiving a preinstall proof my message, p, for view V:
F2. if Local view < my preinstall proof.preinstalled view
F3. my preinstall proof <- p
F4. Local view <- p.preinstalled view
F5. Set Time Local T = L Expiration Time

G1. Upon receiving a set, L New Rep Messages, of 2f+1 distinct L New Rep
G2. for a view greater than or equal to mine:
G3. my preinstall proof <- Construct Preinstall Proof(L New Rep Messages)
G4. if not new representative
G5. Set Timer Local T = L Expiration Time
G6. if new representative
G7. Send to all local servers: my preinstall proof
G8. union <- Invoke CONSTRUCT-COLLECTIVE-STATE(L Aru, Local Update History)
G9. //Process union, decide what to replay
G10. Invoke ASSIGN-SEQUENCE for each unordered update

Fig. 16. Version 2 of LAN-VIEW-CHANGE Protocol.

if site update progress proof is False, the 2f+1 correct con-
nected servers will preinstall the same view. If view changes
occur during P4, by Lemma 4, eventually often a correct server
will invoke P4 again. If site update progress proof is False,
then the timeout expiration increases so that eventually it will
become large enough to meet Precondition 2.

Lemma 6.22: When a correct server invokes ASSIGN-
SEQUENCE on sequence number s and a blocking conflict
occurs, there is at least one correct server that can invoke
ASSIGN-SEQUENCE with sequence number s such that
another blocking conflict cannot occur unless there exists a
distinct Prepare Certificate for sequence number s that has not
previously caused a blocking conflict.

Proof: Let S1 and S2 denote two correct servers which
have preinstalled the same view, have completed P4, and
do not suspect their representative. Suppose that S1 is the
representative. S1 sends Pre-Prepare(d,s,v) and S2 receives this
Pre-Prepare. Following from lines B1 to B12 of the conflict
function, when S2 calls the conflict(Pre-Prepare(d,s,v)) it can
return True in two cases:

• Conflict-1: S2 has Prepare Certificate(d’,s,v’) where d 6=

d’
• Conflict-2: S2 has Local Ordered Update(d’,s,v’) where

d’ 6= d OR v’ > v
If S2 calls the conflict function and it returns True, S2

will not send a Prepare message immediately. Instead, S2
will table the Pre-Prepare message and request from S1 the
data upon which the Pre-Prepare message was based. This
request message includes the source of the conflict which is
either a Prepare Certificate or a Local Ordered Update. A Pre-
Prepare(d,s,v) is based on either no prepare certificate or on a
Prepare Certificate(d,s,v’).

In case Conflict-1 the following six scenarios exist. The
scenarios that can result in a view change (block) are marked
with BLOCKING. As stated above, S1 sent Pre-Prepare(d,s,v)
and S2 had a Prepare-Certificate(d’,s,v’).

1) If S1 has a Prepare Certificate(d,s,v”) and v’ < v”,
then S2 (through gossip) will will apply this Pre-
pare Certificate to its data structures because it has a
higher view than the Prepare Certificate that S2 already
had. Then S2 can send Prepare(d,s,v). In this scenario,
a conflict resolution takes place.

21

2) BLOCKING If S1 has a Prepare Certificate(d,s,v”) and
v’ > v”, then S1 will adopt the Prepare Certificate from
S2. In this case, there is a possibility of a block because
S2 will not send Prepare(d,s,v).

3) BLOCKING If S1 has no Prepare Certificate for
sequence number s, then S1 will adopt the Pre-
pare Certificate from S2. In this case, there is a possibil-
ity of a block because S2 will not send Prepare(d,s,v).
Note that during the replay phase of a view change the
data in this scenario is often a NOP.

4) If S1 has a Local Ordered Update(d”,s,v”), then S1
will send this to all local servers. Note that in this
case, sequence number s has already been bound to
some update. Therefore, ASSIGN-SEQUENCE already
completed.

5) BLOCKING If S1 has a Prepare Certificate(d”,s,v”)
where d 6= d” and v’ > v”, then S1 will will adopt
the Prepare Certificate sent by S2. There can be a block
in this case because S2 will not send Prepare(d,s,v).

6) BLOCKING If S1 has a Prepare Certificate(d”,s,v”)
where d ne d” and v’ < v”, then S2 will adopt this
Prepare Certificate. There can be a block in this case
because S2 will not send Prepare(d,s,v).

Note that the scenarios 4, 5, and 6 can occur only when
S1 applies a change to its data structure after it sent Pre-
Prepare(d,s,v).

In case Conflict-2 the following scenario exists: S2 will
send the Ordered Update to S1. If S1 has not already received
an Ordered Update with a greater view, it will apply the Or-
dered Update that S2 sent. At this point, since sequence num-
ber s has already been bound to data, we consider ASSIGN-
SEQUENCE to have completed for sequence number s.

If there is a blocking conflict ASSIGN-SEQUENCE may
not complete and then there will be a view change. The
only conflicts that may cause a block are scenarios 2,3,5,and
6. All other scenarios have conflicts which can be resolved
without a view change by updating the servers with conflicts.
Following from Lemma 6.20, if a block does occur and
site update progress is not made, eventually the server that
has the conflicting data, S2, will become the representative.

Now consider what happens when S2 becomes the rep-
resentative during each of the possible blocking scenarios.
It is possible that S2 has received and applied a new Pre-
pare Certificate or Local Ordered Update to its datastructures
since the conflict occurred. If S2 has a Local Ordered Update
for sequence number s, then ASSIGN-SEQUENCE has com-
pleted. If S2 has a new Prepare Certificate, then this Pre-
pare Certificate must have a higher view than the Pre-
pare Certificate that caused the blocking scenario or it would
not be applied to the data structures (follows from Rule RL5).

In each of the four scenarios that cause blocks and therefore
view changes, S2 will eventually become the representative if
site update progress is not made. The following describe what
happens when S2 is the representative:

1) Scenario 2: For sequence number s, S2 either has
a Prepare Certificate with view v’ or higher or Lo-

cal Ordered Update. Note that v’ was greater than v.
If S2 has a Prepare Certificate, the view number of
this Prepare Certificate must be greater than the view
number of the Prepare Certificate that resulted in the
blocking condition when S1 sent Pre-Prepare(d,s,v).

2) Scenario 3: S2 is the representative. S2 has a Pre-
pare Certificate or an Ordered Update for sequence
number s. Originally, S1 had no Prepare Certificate for
sequence number s.

3) Scenario 5: This is the same as for scenario 1.2.
4) Scenario 6: For sequence number s, S2 either has a

Prepare Certificate with a view higher than v’ or Lo-
cal Ordered Update. Note that v’ was greater that v.
If S2 has a Prepare Certificate, the view number of
this Prepare Certificate must be greater than the view
number of the Prepare Certificate that resulted in the
blocking condition when S1 sent Pre-Prepare(d,s,v).

In case 1,3,and 4 above, the sequence number of S2’s
Prepare Certificate is greater than the sequence number of
the Prepare Certificate that S1 had when S1 originally sent
Pre-Prepare(d,s,v). In case 2, S1 had no Prepare Certificate
and S2 had a Prepare Certificate. During subsequent blocking
conditions, all scenarios above can happen again except for
scenario 1.3. In each of the three remaining blocking scenarios,
a server that has a conflict must have a Prepare Certificate
with a view greater than the Prepare Certificate that the
representative has. Therefore, each time a block occurs there is
at least one correct representative which will invoke ASSIGN-
SEQUENCE on sequence number s with data such that there
cannot be another blocking scenario unless there is a distinct
Prepare Certificate that has never caused a blocking scenario.

Lemma 6.23: If a correct server invokes ASSIGN-
SEQUENCE on sequence number s, then ASSIGN-
SEQUENCE will eventually return.

Proof: There are a finite number of Prepare Certificates
for the same sequence number and different views in the
system (this includes those Prepare Certificates known only
to faulty servers). Following from 6.22, eventually a correct
server will be representative and will base its invocation of
ASSIGN-SEQUENCE on the Prepare Certificate for sequence
number s with the highest view. Through the described gossip-
ing mechanism, any conflicts can be resolved if the representa-
tive sends its Prepare Certificate to all servers. Following from
P1 Property 3, this invocation will complete because there will
eventually be no conflicts.

A finite number of Prepare Certificates for the same se-
quence number, different data, and different views can exist: A
bad representative cannot generate a prepare certificate without
the cooperation of at least f+1 good servers. Suppose in view
1 PC(1, d1) is generated. In each subsequent view where
there is a bad representive, another PC can be generated with
the same sequence number and different data. This can occur f
times before there will be a good server. When there is a good
server, the bad servers can give one of the correct no-reps a
PC. This can cause a block. However, one correct server now

22

has a PC. It will give this PC to all servers when it becomes
the representative. A server will not contribute a Prepare for
another PC with different data unless it receives a PC having
a higher view than the view that it has.

Lemma 6.24: If there are 2f+1 correct connected servers,
eventually a representative will complete the replay phase of
the local view change algorithm.

Proof: By Lemma 6.21, P4 will eventually complete. By
ASSIGN-SEQUENCE Property 3, for any sequence number
that needs to be replayed, a correct representative will even-
tually complete ASSIGN-SEQUENCE. There is a finite range
of sequence numbers that must be replayed. Therefore, the
replay phase will complete.

The following uses a window to argue that there is a bound
on the number of sequence numbers that need to be replayed.

If a correct server sends a Pre-Prepare in response to a
Prepare for sequence number s, it must have proof that all
sequence numbers up to s-W have been locally ordered. 2f+1
servers must send Prepare or Pre-Prepare messages to create
a Prepare Certificate or a Local Ordered Update. Therefore,
if there exists a Prepare Certificate or Local Ordered Update
for sequence number s, f+1 correct servers must have proof
that all updates up to s-W were locally ordered. In this case,
the replay window will begin no earlier than s-W and can end
no later than s. Therefore, the number of sequence numbers
that must be replayed is less than W. Because there are a
finite number of sequence numbers that need to be replayed,
eventually the replay phase will finish.

The window mechanism used in the above proof prevents
malicious servers from collecting some large number of Pre-
pare Certificates which good servers know nothing about (As
described below).

We can now prove Local L1.
Proof: By Lemma 6.19, Local L1 holds if

site update progress proof is True. If site update progress is
not made, by Lemma 6.24, a correct representative will finish
the replay process. When the replay process is finished, a
correct representative can order new updates. By Lemma
6.20, if site update progress proof is false, eventually often
there will be a correct representative. If there is a correct
representative that orders an update, this representative can
send ordered updates out of the site. Therefore, when a
correct server initiates an update, the site will eventually
initiate the update.

G. Global L1 (Global Progress) Proof
If there exists a set consisting of a majority of sites, each

meeting Local L1, and a time after which all sites in the set
are connected, then if a site in the set initiates an update, some
site in the set eventually executes the update.

Proof of Global L1: By Claim G.1, either global progress
is made or all correct servers in all sites in the majority set
eventually reconcile their Global Histories to a common prefix.
If no global progress is made by the time this reconciliation
completes, then by Claim G.2, all sites in the majority set

eventually preinstall the same global view. By Claim G.3, if
all correct servers in all sites in the majority set are reconciled
and have preinstalled the same global view, then either global
progress is made, or all correct servers in the leader site will
be properly constrained by completing the global view change
protocol. By Claim G.4, the preconditions for completing
Assign-A-Sequence will eventually be met at the leader site
such that a valid Proposal can be generated. By Claim G.5,
such a Proposal will be able to elicit enough Accept messages
for the update to be globally ordered. Definition G.1: The Site-
Max-ARU of a site S is the sequence number below which all
updates have been globally ordered by one or more correct
servers in S.

Claim G.1: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then either global progress is made,
or eventually all correct servers in all sites in the set reconcile
their Global Histories up to highest Site-Max-ARU of any site
in the set.

Lemma G.1.1: Let S be a site meeting Local L1. If no new
Proposals are received by any server in S, then all correct
servers in S eventually reconcile their Global History to the
Site-Max-ARU.

Proof: By Local L1, there exists a set of 2f+1 correct,
connected servers in S. Since no new Proposals are received
in S, the Site-Max-ARU remains fixed. The correct servers
continuously run the local reconciliation protocol to exchange
globally ordered updates. Since all correct servers are con-
nected, they eventually all reconcile their Global History to
the Site-Max-ARU.

Lemma G.1.2: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then if no new Proposals are received
by any server in any site in the set, all correct servers in all
sites in the set eventually reconcile their Global Histories to
the highest Site-Max-ARU of any site in the set.

Proof: By Lemma G.1.1, the correct servers in each site in
the majority eventually reconcile their Global Histories to their
respective Site-Max-ARU values. Each site participates in the
global reconciliation protocol to exchange globally ordered
updates. Since all sites in the set are connected, the correct
servers in each site eventually reconcile their Global Histories
to the highest Site-Max-ARU.

Lemma G.1.3: If there exists a set consisting of a majority
of sites, each meeting Local L1, and a time after which all
sites in the set are connected, then either global progress is
made, or eventually no new Proposals are introduced.

Proof: If no global progress is made by the leader site, there
are two cases to consider. In the first case, no global progress is
made by any site (i.e. no new updates are globally ordered). In
this case, either updates continue to be locally ordered by the
leader site until the global window fills up, or no new updates
are introduced. In either case, eventually no new Proposals are
introduced.

If global progress is made by one or more non-leader sites
but not by the leader site, then either the leader site’s global

23

window will fill up, or no new updates are introduced. In both
cases, eventually no new Proposals are introduced.

Proof of Claim 1: Immediate from Lemmas G.1.1, G.1.2,
and G.1.3.

Claim G.2: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then either global progress is made,
or all sites eventually preinstall the same global view.

Definition G.2: A site invokes the Site-Attempt-WAN-View-
Change protocol when at least 2f+1 correct servers have
invoked the protocol.

Lemma G.2.1: If there exists a set of at least 2f+1 correct,
connected servers within a site meeting Local L1, then either
global progress is made, or the site will eventually invoke
Site-Attempt-WAN-View-Change.

Proof: A correct server that has globally attempted view v

invokes Site-Attempt-WAN-View-Change when its Leading-
Site Timer (T3) expires. When this occurs, the server globally
attempts view v + 1 and will not actively contribute to gen-
erating site messages in view v. Either the remaining servers
see global progress, or they, too, will timeout and invoke Site-
Attempt-WAN-View-Change, in which case the site is said to
have invoked the protocol.

Lemma G.2.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, and a time after which all
sites in the set are connected, then either global progress is
made, or a majority of sites eventually invoke Site-Attempt-
WAN-View-Change.

Proof: By Lemma G.2.1, either global progress is made, or
a site meeting Local L1 will eventually invoke Site-Attempt-
WAN-View-Change. Once one site in the set invokes the
protocol, either global progress is made without this site, or
all sites in the set eventually invoke the protocol. Since the set
contains a majority of sites, the lemma holds.

Proof of Claim G.2: By Lemma G.2.2, either global progress
is made, or a majority of sites eventually invoke Site-Attempt-
WAN-View-Change. By Property 6.1 of the Site-Attempt-
WAN-View-Change protocol, if no global progress is made,
the correct servers in a site will eventually all globally attempt
the same view v and will generate a Global VC message for
view v. By the property of the WAN-View-Change protocol,
either progress is made, or a majority of sites eventually
preinstall the same global view, completing the proof.

Claim G.3: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then if a correct representative of the leader
site sends a Union (Prepare) message in this global view, it
will collect a majority of Union (Prepare OK) responses in this
global view, none of which causes a conflict for any correct
server in the leader site.

Lemma G.3.1: If there exist at least 2f+1 correct, connected
servers within a site that have preinstalled the same global
view v, all of which have reconciled their Global Histories
to the Site-Max-ARU, then if Construct-Collective-State is
invoked by a correct representative in global view v, all correct

servers in global view v generate the same threshold-signed
Union message for global view v.

Proof: By the property of Construct-Collective-State, if the
protocol is invoked by a correct representative in a site meeting
Local L1, and all correct servers have reconciled their Global
Histories, then the correct servers within a site will complete
the Construct-Collective-State protocol in global view v. By
the property of Construct-Collective-State, any two correct
servers that complete the protocol generate the same threshold-
signed Union message for the same view.

Lemma G.3.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view, and all correct servers
in all sites in the set have reconciled their Global Histories
to the highest Site-Max-ARU of any site in the set, then if a
correct representative of the leader site sends a Union (Prepare)
message in this global view, it will collect a majority of Union
(Prepare OK) responses in this global view.

Proof: By assumption, there exists a set consisting of a
majority of sites that have all preinstalled the same global view
and in which global reconciliation has occurred. Since all sites
in the set are connected, any non-leader site that has a correct
representative will receive the Prepare message from the leader
site. The Leading Site timeout (T3) is set such that at least
one correct representative will receive the Prepare message in
each site in the set. Upon receiving the Prepare message from
the currently preinstalled global view, a correct representative
of a non-leader site invokes the Construct-Collective-State
protocol.

By the property of Construct-Collective-State, at least 2f+1
correct servers complete the protocol in the preinstalled global
view. By the property of Construct-Collective-State, they all
generate identical Prepare OK responses in this global view.
The correct representative then sends the Prepare OK to the
representative of the leader site, which, by the relationship
between timeouts T1 and T2, is still the same correct server.

Lemma G.3.3: Any item appearing in a Prepare OK mes-
sage will not cause any ”real” conflict with a correct server at
the leader site.

Proof: By Property of Construct-Collective-State with re-
spect to the Global History data structure.

Proof of Claim G.3: Immediate from Lemmas G.3.1, G.3.2,
and G.3.3

Claim G.4: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, then the preconditions for completing
Assign-A-Sequence will eventually be met at the leader site.

Lemma G.4.1: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or a correct representative will eventually
not be suspected by any correct server.

Proof: By Claim G.2, all correct servers in all sites in the

24

majority set preinstall the same global view. By the Leader Site
timeout (T3), if no global progress is made, then a correct
server will eventually be elected at the leader site before a
global view change occurs. At this point, at least 2f+1 correct
connected servers do not suspect the representative.

Lemma G.4.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or a correct representative will eventually
not be suspected by any correct server, and will not be
suspected by a correct server before at least three local network
crossings.

Proof: Follows immediately from Lemma G.4.1 and the
relationship between timeouts.

Lemma G.4.3: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or the data structures of the correct servers
in the leader site will eventually be synchronized such that
there are no conflicts.

Proof: By Claim G.3, none of the Prepare OK messages
received by the correct servers in the leader site cause any
conflicts. By the relationship between timeouts, the leader site
will eventually elect a correct representative that has the most
up-to-date Prepare certificates, if any exist.

Proof of Claim G.4: Follows immediately from Lemmas
G.4.1, G.4.2, and G.4.3.

Claim G.5: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view, it
will globally order the associated update.

Lemma G.5.1: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view,
the Proposal will not cause any real conflicts at any correct
server in a non-leader site in the majority.

Proof: Immediate from the invariants of the Global History.
Lemma G.5.2: If there exists a set consisting of a majority of

sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view, it
will be received by a correct representative at all non-leader
sites in the majority.

Proof: Immediate from the stability properties of the net-
work and from relationship between T1, T2, and the Leading
Site Timeout.

Lemma G.5.3: If there exists a set consisting of a majority of

sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view,
the representative will receive Accept messages from at least
majority-1 sites.

Proof: By Lemma G.5.1 and G.5.2, the Proposal message
will not cause any real conflicts at the correct servers in the
non-leader sites, and will be received by all non-leader sites
in the stable majority. By the preconditions for successful
completion of Threshold-Sign, and the relationship between
T1, T2, and the Leading Site timeout, each non-leader site in
the majority will generate an Accept message corresponding to
the Proposal, which will be sent out by a correct representative
before the Leading Site timeout expires. Since the sites are
connected, and the leader site still has a correct representative
(by T3), the representative will receive all of the Accept
messages.

Proof of Claim G.5: Immediate from Lemmas G.5.1, G.5.2,
and G.5.3.

VII. PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical Byzantine
replication architecture, we implemented a complete prototype
of our protocol including all the necessary communication and
cryptographic functionality. In this paper we focus only on the
networking and cryptographic aspects of our protocols, and do
not consider disk writes.

A. Implementation
The OpenTC library is an implementation of RSA threshold

signatures based on the ideas proposed by Shoup. There is
often the need to guarantee the authenticity of messages sent
by a group of individuals to another group. To protect against
a representative of a site sending bogus messages, other sites
must be able to verify the message authenticity. To facilitate
the verification, messages originated from a site are jointly
signed by a significant threshold of nodes in the site. A (n, k)
threshold signature scheme can be used for the purpose and it
offers several advantages. First, only a public key is needed for
each site and a single verification for each message is needed
for a recipient. These properties greatly reduce the overheads
on key distribution and signature verification. Second, the
threshold k can be set accordingly with respect to the number
of malicious nodes to be tolerated. Also, the threshold k and
the secret shares can be proactively changed while keeping the
same public key.

Testbed and Network Setup:
We selected a network topology consisting of 5 wide area

sites, assuming that there can be at most 5 Byzantine faults in
each site, in order to quantify the performance of our system
in a realistic scenario. This requires 16 replicated servers in
each site.

Our architecture uses RSA threshold signatures [6] to rep-
resent an entire site within a single trusted message sent on
the wide area network, thus trading computational power for

25

wide area bandwidth and latency, in the number of wide area
crossings. We believe this tradeoff is realistic considering the
current technology trend: end-to-end wide area bandwidth is
slow to improve, while latency reduction of wide area links is
limited by the speed of light.

Our experimental testbed consists of a cluster with twenty
3.2GHz Intel Xeon computers, all of them having a 64-bit
architecture. On these computers, a 1024 bit RSA signature
can be computed in 1.3 msec and can be verified in 0.07
msec. The leader site was deployed on 16 of the machines,
and the other 4 sites were emulated by one computer each1.
The emulating computers were seen from the other sites as
if they were the representatives of complete 16 server sites,
for a system consisting of a total of 80 nodes spread over
5 sites. Upon receiving a packet at a non-leader site, the
emulating computers were busy-waiting for the amount of
time it took a 16 server site to handle that packet and reply
to it, including both in-site communication and the necessary
computation. The busy-waiting times for each type of packet
were determined in advance by benchmarking individual pro-
tocols on a fully deployed, 16 server site. We used the Spines
[12] messaging system to emulate latency and throughput
constraints on the wide area links.

We compared the performance results of the above system
with those obtained by BFT [3] on the same network setup
with five sites, run on the same cluster, only that instead of
using 16 servers in each site, for BFT we used a total of
16 servers across the entire network. This allows for up to 5
Byzantine failures in the entire network for BFT, instead of up
to 5 Byzantine failures in each site for Steward; however, since
BFT is a flat solution where there is no correlation between
faults and the sites where they can occur, we believe this
comparison is fair and conservative. We distributed the BFT
servers such that four sites contain 3 servers each, and one
site contains 4 servers.

All the write updates and read-only queries in our experi-
ments carried a payload of 200 bytes, representing a common
SQL statement.

Bandwidth Limitation:
We first investigate the benefits of the hierarchical archi-

tecture in a symmetric configuration with 5 sites, where all
sites are connected to each other with 50 milliseconds latency
links. A 50 millisecond delay emulates the wide area crossing
of the continental US.

In the first experiment, clients inject write updates. Fig-
ure 17 shows the update throughput when increasing the
number of clients, limiting the capacity of wide area links
between the sites to 10, 5 and 2.5Mbps, both for Steward and
BFT. The graph shows that up to 2.5Mbps, Steward is not
limited by bandwidth. The system is able to process a total

1Our implementation was tested on a complete deployment where each site
is composed on multiple computers using the complete set of protocols and is
currently undergoing a 5-sites DARPA red-team exercise. In order to evaluate
Steward’s scalability on large networks supporting many faults at each site,
we used emulating computers for non-leader sites to limit the deployment to
our cluster of 20 machines.

of about 84 updates/sec, being limited only by CPU, used for
computing threshold signatures at the sites.

As we increase the number of clients, the BFT throughput
increases at a lower slope than Steward, mainly due to the
one additional wide area crossing for each update. At 10
Mbps, BFT achieves about 58 updates/sec, being limited by
the available bandwidth. Similarly, at 5 Mbps it can sustain a
maximum of 26 updates/sec, and at 2.5 Mbps a maximum
of about 6 updates/sec. We also notice a reduction in the
throughput of BFT as the number of clients increases. We
believe this is due to a cascading increase of message loss,
generated by the lack of a wide area flow control in the original
implementation of BFT. Such a flow control was not needed
as BFT was designed to work in LANs. For the same reason,
we were not able to run BFT with more than 24 clients at 5
Mbps, and 15 clients at 2.5Mbps. We believe that adding a
client queuing mechanism would stabilize the performance of
BFT to its maximum achieved throughput, regardless of the
number of clients.

The average update latency, as depicted in Figure 18,
shows Steward achieving almost constant latency. The latency
slightly increases with the addition of clients, reaching 190 ms
when 15 clients send updates into the system. At this point,
as client updates start to be queued, their latency increases
linearly with the number of clients in the system. BFT exhibits
a similar behavior at 10 Mbps, only that its update latency
is affected by the additional number of messages sent and
the additional wide area crossing, such that for 15 clients the
average update latency is 336 ms. As the bandwidth decreases,
the update latency increases heavily, reaching up to 600 ms at
5 Mbps and 5 seconds at 2.5 Mbps, for 15 clients.

Adding Read-only Queries: One of the benefits of
our hierarchical architecture is that read-only queries can be
answered locally, at each site. To demonstrate these benefits we
conducted an experiment where 10 clients send mixes of read-
only queries and write updates, chosen randomly at each client,
with different ratios. We compared the performance of Steward
and BFT when both systems are not limited by bandwidth con-
straints. We used links of 50 ms, 10 Mbps between the sites.
Figures 19 and 20 show the average throughput and latency,
respectively, of different mixes of queries and updates sent
using Steward and BFT. When clients send only read queries,
Steward achieves about 2.9 ms per query, with a throughput of
over 3,400 queries per second. This is because all the queries
are answered locally, their latency being dominated by two
RSA signature operations: one at the originating client, and
one at the servers answering the query.

For BFT, the latency of read-only queries is about 105 ms,
and the total throughput achieved is 95 queries per second.
This is expected, as read-only queries in BFT need to be
answered by at least f + 1 servers, some of which being
located across wide area links. BFT could have achieved
queries locally in a site if we deployed it such that there are
at least 2f + 1 servers in each site (in order to guarantee
liveness it needs f + 1 correct servers to answer queries in
each site). Such a deployment, for f = 5 faults and 5 sites,

26

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps

BFT 2.5 Mbps

Fig. 17. Write Update Throughput

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps
BFT 2.5 Mbps

Fig. 18. Write Update Latency

 0

 100

 200

 300

 400

 500

 100 90 80 70 60 50 40 30 20 10 0

Th
ro

ug
hp

ut
 (a

ct
io

ns
/se

c)

Write Updates (%)

Steward
BFT

Fig. 19. Update Mix Throughput - 10 Clients

 0

 50

 100

 150

 200

 250

 300

 350

 100 90 80 70 60 50 40 30 20 10 0
La

te
nc

y
(m

s)

Write Updates (%)

Steward
BFT

Fig. 20. Update Mix Latency - 10 Clients

would need at least 55 servers total, which will dramatically
increase communication for updates, and further reduce BFT’s
performance.

As the percentage of write updates in the query mix
increases, the average latency for both Steward and BFT
increases linearly, with Steward latency being about 100 ms
lower than BFT at all times. This is a substantial improvement
considering the absolute value of the update latency, the ratio
between the latency achieved by the two systems ranging from
a factor of two, when only write updates are served, to a factor
of 30, when only read queries are served. The throughput
drops with the increase of update latency, such that at 100%
write updates there is only about a factor of two between the
throughput achieved by Steward and BFT.

Wide Area Scalability: To demonstrate the scalability of
the hierarchical architecture we conducted an experiment that
emulated a wide area network that covers several continents.
We selected five sites on the Planetlab network [13], measured
the latency and available bandwidth characteristics between
every pair of sites, and emulated the network topology on our
cluster in order to run Steward and BFT. We ran the experiment
on our cluster, and not directly on Planetlab because Planetlab
machines are not of 64-bit architecture. Moreover, Planetlab
computers provide a shared environment where multiple re-
searchers run experiments at the same time, bringing the load
on almost all the machines to more than 100% at all times.

Such an environment lacks the computational power required
for the two systems tested, and would artificially influence our
experimental results.

The five sites we emulated in our tests are located in
the US (University of Washington), Brazil (Rio Grande do
Sul), Sweden (Swedish Institute of Computer Science), Korea
(KAIST) and Australia (Monash University). The network
latency varied between 59 ms (US - Korea) and 289 ms (Brazil
- Korea). Available bandwidth varied between 405 Kbps(Brazil
- Korea) and 1.3Mbps (US - Australia).

Figure 21 shows the average write update throughput as we
increased the number of clients in the system, while Figure 22
shows the average update latency. As seen in Figures 21
and 22, Steward is able to achieve its maximum limit of
about 84 updates/second when 27 clients inject updates into
the system. The latency increases from about 200 ms for 1
client, to about 360 ms for 30 clients.

BFT is limited by the available bandwidth to a maximum of
about 9 updates/sec, while the update latency starts at 631 ms
for one client, and jumps to the order of seconds when more
than 6 clients are introduced.

Comparison with Non-Byzantine Protocols:
Since Steward deploys a lightweight fault-tolerant protocol

between the wide area sites, we expect it to achieve per-
formance comparable to existing non-Byzantine fault-tolerant
protocols commonly used in database replication systems, but
with Byzantine guarantees (while paying more hardware).

27

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
BFT

Fig. 21. Wide Area Network Emulation - Write Update Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
BFT

Fig. 22. Wide Area Network Emulation - Write Update Latency

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
BFT

Fig. 23. CAIRN Network Emulation - Write Update Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30
U

pd
at

e
La

te
nc

y
(m

s)

Clients

Steward
BFT

Fig. 24. CAIRN Network Emulation - Write Update Latency

In the following experiment we compare the performance of
our hierarchical Byzantine architecture with that of two-phase
commit protocols. In [14] we evaluated the performance of
two-phase commit protocols [15] using a wide area network
setup across the US, called CAIRN [16]. We emulated the
topology of the CAIRN network using the Spines messaging
system, and ran Steward and BFT on top of it. The main
characteristic of the CAIRN topology is that East and West
Coast sites were connected through a single link of 38ms and
1.86Mbps.

Figures 23 and 24 show the average throughput and latency
of write updates, respectively, of Steward and BFT on the
CAIRN network topology. Steward was able to achieve about
51 updates/sec in our tests, being limited mainly by the
bandwidth of the link between the East and West Coasts
in CAIRN. In comparison, an upper bound of two-phase
commit protocols presented in [14] was able to achieve 76
updates/sec. As our architecture uses a non-Byzantine fault-
tolerant protocol between the sites, it was expected to achieve
comparable results with two phase commit protocols. We
believe that the difference in performance is caused by the
presence of additional digital signatures in the message head-
ers of Steward, adding 128 bytes to the 200 byte payload of
each update.

The high bandwidth requirement of BFT causes it to achieve
a very low throughput and high latency on the CAIRN

network. The maximum throughput achieved by BFT was 2.7
updates/sec and the update latency was over a second, except
when a single client injected updates in the entire system.

Summary:
The performance results we presented show that our hi-

erarchical Byzantine architecture achieves performance com-
parable (though somewhat lower) to non-Byzantine protocols
when run on wide area networks with multiple sites, and is
able to scale to networks that span across several continents.
In addition, our experiments show that the ability of our
architecture to answer queries locally inside a site gives
substantial performance improvements beyond the qualitative
benefit of allowing read-only queries in the presence of parti-
tions. In contrast, flat Byzantine protocols, while performing
very well on local area networks, do not scale well to multiple
sites across a wide area network. They have high bandwidth
requirements, and use additional rounds of communication
that increase individual update latency and reduce their total
achievable throughput.

VIII. RELATED WORK

Agreement and Consensus:
At the core of many replication protocols is a more general

problem, known as the agreement or consensus problem.
There are several models that researchers considered when
solving consensus, the strongest one being the Byzantine
model in which a participant can behave in an arbitrary

28

manner. Other than the behavior of a participant (malicious or
not), other relevant considerations are whether communication
is asynchronous or synchronous, whether authentication is
available or not, and whether the participants communicate
over a flat network or not. A good overview of significant
results is presented in [17]. Optimal results state that under
the assumption that communication is not authenticated and
nodes are directly connected, in order to tolerate f Byzantine
failures, 3f + 1 participants and f + 1 communication rounds
are required. If authentication is available, then f + 1 rounds
are still required, but the number of participants just has to
be greater than f + 1 [18]. An important factor that must be
taken into consideration is whether participants are directly
connected or not. In [19], Dolev shows that in an arbitrary
connected network, if f Byzantine faults must be tolerated and
the network is f +1 (2f +1 if no signature exists) connected,
then agreement can be achieved in 2f + 1 rounds.

Byzantine Group Communication:
Related with our work are group communication systems

resilient to Byzantine failures. The most well-known such
systems are Rampart [20] and SecureRing [21]. Although these
systems are extremely robust, they have a severe performance
cost and require a large number of un-attacked nodes to main-
tain their guarantees. Both systems rely on failure detectors to
determine which replicas are faulty. An attacker can exploit
this to slow correct replicas or the communication between
them until enough are excluded from the group.

Another intrusion-tolerant group communication system is
ITUA [22], [23], [24], [25]. The ITUA system, developed by
BBN and UIUC, focuses on providing intrusion tolerant group
services. The approach taken considers all participants as equal
and is able to tolerate up to less than a third of malicious
participants.

Replication with Benign Faults: The two-phase commit
(2PC) protocol [15] provides serializability in a distributed
database system when transactions may span several sites. It
is commonly used to synchronize transactions in a replicated
database. Three-phase commit [Ske82] overcomes some of
the availability problems of 2PC, paying the price of an
additional communication round, and therefore, additional
latency. Paxos [1] is a very robust algorithm for benign fault-
tolerant replication. Paxos uses two rounds of messages in the
common case to assign a total order to updates and requires
2f + 1 replicas in order to tolerate f faults.

Quorum Systems with Byzantine Fault-Tolerance: Quorum
systems obtain Byzantine fault-tolerance by applying quo-
rum replication methods. Examples of such systems include
Phalanx [26], [27] and its successor Fleet [28], [29]. Fleet
provides a distributed repository for Java objects. It relies
on an object replication mechanism that tolerates Byzantine
failures of servers, while supporting benign clients. Although
the approach is relatively scalable with the number of replica
servers, it suffers from the drawbacks of flat non-hierarchical
Byzantine replication solutions.

Replication with Byzantine Fault-Tolerance:
The first practical work to solve replication while with-

standing Byzantine failures is the work of Castro and Liskov
[3]. Their algorithm requires 3f + 1 replicas in order to
tolerate f faults. In addition, the client has to wait for f + 1
identical answers (which, for liveness guarantees may require
waiting for up to 2f + 1 answers) in order to make sure
that a correct answer is received. The algorithm obtains very
good performance on local area networks. Yin et al. [30]
propose an improvement for the Castro and Liskov approach
by separating the agreement component that orders requests
from the execution component that processes requests. The
separation allows utilization of the same agreement component
for many different replication tasks. It also reduce the number
of processing storage replicas to 2f + 1. Martin and Alvisi
[31] recently introduced an algorithm that is able to achieve
Byzantine consensus in only two rounds, while using 5f + 1
servers in order to overcome f faults. This approach trades
lower availability (4f + 1 out of 5f + 1 connected replicas
are required, instead of 2f + 1 out of 3f + 1 in BFT), for
increased performance. The solution seems very appealing for
local area networks that provide high connectivity between
the replicas. We considered using it within the sites in our
architecture to reduce the number of intra-site communication
rounds. However, as we make use of threshold signatures
inside a site, the overhead of combining larger signatures of
4f + 1 shares would greatly overcome the benefits of using
one less communication round within the site.

Alternate architectures:

An alternate hierarchical approach to scale Byzantine repli-
cation to wide area networks can be based on having a
few trusted nodes that are assumed to be working under a
weaker adversary model. For example, these trusted nodes
may exhibit crashes and recoveries but not penetrations. A
Byzantine replication algorithm in such an environment can
use this knowledge in order to optimize the performance and
bring it closer to the performance of a fault-tolerant, non-
Byzantine solution.

Such a hybrid approach was proposed in [32], [33] by Veris-
simo et al, where trusted nodes were also assumed to perform
synchronously, providing strong global timing guarantees. The
hybrid failure model of [32] inspired the Survivable Spread
[34] work, where a few trusted nodes (at least one per site) are
assumed impenetrable, but are not synchronous, may crash and
recover, and may experience network partitions and merges.
These trusted nodes were implemented by Boeing Secure
Network Server (SNS) boxes, which are limited computers
designed specifically not to be penetrable.

In our opinion, both the hybrid approach proposed in [33],
and the approach proposed in this paper seem viable to
practically scale Byzantine replication to wide area networks.
The hybrid approach makes stronger assumptions while our
approach pays more hardware and computational costs. Fur-
ther developing both approaches and contrasting them can be
a fertile ground for future research.

29

IX. CONCLUSIONS AND FUTURE WORK

This paper presented a hierarchical architecture that enables
efficient scaling of Byzantine replication to systems that span
multiple wide area sites, each consisting of several poten-
tially malicious replicas. The architecture reduces the message
complexity on wide area updates, increasing the system’s
ability to scale. By confining the effect of any malicious
replica to its local site, the architecture enables the use of
a benign fault-tolerant algorithm over the wide area network,
increasing system availability. Further increase in availability
and performance is achieved by the ability to process read-
only queries within a site.

We implemented Steward, a fully functional prototype that
realizes our architecture, and evaluated its performance over
several network topologies. The experimental results show
considerable improvement over flat Byzantine replication al-
gorithms, bringing the performance of Byzantine replication
closer to existing benign fault-tolerant replication techniques
over wide area networks.

X. ACKNOWLEDGMENT

This work was supported in part by grant G438-E46-2140
from The Defense Advanced Research Projects Agency.

REFERENCES

[1] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133–169, May 1998.

[2] Lamport, “Paxos made simple,” SIGACTN: SIGACT News (ACM Special
Interest Group on Automata and Computability Theory), vol. 32, 2001.

[3] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[4] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO
’89: Proceedings on Advances in cryptology, (New York, NY, USA),
pp. 307–315, Springer-Verlag New York, Inc., 1989.

[5] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[6] V. Shoup, “Practical threshold signatures,” Lecture Notes in Computer
Science, vol. 1807, pp. 207–223, 2000.

[7] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in CRYPTO ’95:
Proceedings of the 15th Annual International Cryptology Conference on
Advances in Cryptology, (London, UK), pp. 339–352, Springer-Verlag,
1995.

[8] L. Zhou, F. Schneider, and R. van Renesse, “APSS: Proactive Secret
Sharing in Asynchronous Systems.”

[9] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable Secret
Sharing,” in Proceedings of the 28th Annual Symposium on Foundations
of Computer Science, (Los Angeles, CA, USA), pp. 427–437, IEEE
Computer Society, IEEE, October 1987.

[10] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
dss signatures,” Inf. Comput., vol. 164, no. 1, pp. 54–84, 2001.

[11] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, pp. 120–126, Feb. 1978.

[12] “The spines project, http://www.spines.org/.”
[13] “Planetlab.” http://www.planet-lab.org/.
[14] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On the

performance of consistent wide-area database replication,” Tech. Rep.
CNDS-2003-3, December 2003.

[15] K. Eswaran, J. Gray, R. Lorie, and I. Taiger, “The notions of consistency
and predicate locks in a database system,” Communication of the ACM,
vol. 19, no. 11, pp. 624–633, 1976.

[16] “The CAIRN Network.” http://www.isi.edu/div7/CAIRN/.

[17] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” in Fundamentals of Computation Theory, pp. 127–140,
1983.

[18] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM Journal of Computing, vol. 12, no. 4, pp. 656–666,
1983.

[19] D. Dolev, “The byzantine generals strike again,” Journal of Algorithms,
vol. 3, no. 1, pp. 14–30, 1982.

[20] M. K. Reiter, “The Rampart Toolkit for building high-integrity services,”
in Selected Papers from the International Workshop on Theory and
Practice in Distributed Systems, (London, UK), pp. 99–110, Springer-
Verlag, 1995.

[21] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing
protocols for securing group communication,” in Proceedings of the
IEEE 31st Hawaii International Conference on System Sciences, vol. 3,
(Kona, Hawaii), pp. 317–326, January 1998.

[22] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders,
M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal, R. Watro,
and J. Gossett, “Providing intrusion tolerance with itua,” in Supplement
of the 2002 International Conference on Dependable Systems and
Networks, June 2002.

[23] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders,
“Quantifying the cost of providing intrusion tolerance in group commu-
nication systems,” in The 2002 International Conference on Dependable
Systems and Networks (DSN-2002), June 2002.

[24] P. Pandey, “Reliable delivery and ordering mechanisms for an intrusion-
tolerant group communication system.” Masters Thesis, University of
Illinois at Urbana-Champaign, 2001.

[25] H. V. Ramasamy, “A group membership protocol for an intrusion-
tolerant group communication system.” Masters Thesis, University of
Illinois at Urbana-Champaign. 2002.

[26] D. Malkhi and M. K. Reiter, “Secure and scalable replication in
phalanx,” in SRDS ’98: Proceedings of the The 17th IEEE Symposium
on Reliable Distributed Systems, (Washington, DC, USA), p. 51, IEEE
Computer Society, 1998.

[27] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Journal of
Distributed Computing, vol. 11, no. 4, pp. 203–213, 1998.

[28] D. Malkhi and M. Reiter, “An architecture for survivable coordination in
large distributed systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 12, no. 2, pp. 187–202, 2000.

[29] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, “Persistent objects
in the fleet system,” in The 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II). (2001), June 2001.

[30] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault-tolerant services,”
in SOSP, 2003.

[31] J.-P. Martin and L. Alvisi, “Fast byzantine consensus.,” in DSN, pp. 402–
411, 2005.

[32] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo, “Efficient
byzantine-resilient reliable multicast on a hybrid failure model,” in Proc.
of the 21st Symposium on Reliable Distributed Systems, (Suita, Japan),
Oct. 2002.

[33] P. Verissimo, “Uncertainty and predictability: Can they be reconciled,”
in Future Directions in Distributed Computing, no. 2584 in LNCS,
Springer-Verlag, 2003.

[34] “Survivable spread: Algorithms and assurance argument,” Tech. Rep.
Technical Information Report Number D950-10757-1, The Boeing Com-
pany, July 2003.

30

