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ABSTRACT

Pan, Hsin. Ph.D., Purdue University, August 1993. Software Debugging with Dynamic
Instrumentation and Test—Based Knowledge. Major Professors. Richard A. DeMillo and
Eugene H. Spafford.

Developing effective debugging strategies to guarantee the reliability of software is
important. By analyzing the debugging process used by experienced programmers, we
have found that four distinct tasks are consistently performed: (1) determining statements
involved in program failures, (2) selecting suspicious statements that might contain faults,
(3) making hypotheses about suspicious faults (variables and locations), and (4) restoring
program state to aspecific statement for verification. Thisdissertation focuses onthe second
task, reducing the search domain for faults, referred to as fault localization.

A new approach to enhancing the process of fault localization is explored based on
dynamic program slicing and mutati on—based testing. Inthisnew scenario, aset of heuristics
was developed to enable debuggers to highlight suspicious statements and thus to confine
the search domain to asmall region. A prototype debugging tool, SPYDER, was previously
constructed to support the first task by using dynamic program slicing and the fourth task
by backward execution; some of the heuristics wereintegrated into SPY DER to demonstrate
our approach. An experiment confirms the effectiveness and feasibility of the proposed
heuristics. Furthermore, a decision algorithm was constructed as a map to convey the idea
of applying those heuristics. A new debugging paradigm equipped with our proposed fault
localization strategies is expected to reduce human interaction time significantly and ad in

the debugging of complex software.



1. INTRODUCTION

Theexistence of errorsin software development isinevitabl e because of humaninability
to perform tasks or to communicate perfectly.[Deu79] Schwartz pointed out that in real
world software systems, program errors are a fundamental phenomenon, and a bug—free
program is an abstract theoretical concept.[Sch71] As the size and the complexity of
programs increase, more errors are introduced during software development. Along with
therapid evolution of hardware, software playsanincreasingly significant roleinthesuccess
of many products, systems, and businesses.[Pre87] In the software life cycle, more than
50% of the total cost is expended in the testing and debugging phases.[Boe81, Mye79,
Pre87] Developing effective and efficient testing and debugging strategies to guarantee the
reliability of softwareisthusimportant.

In [ANS83], errors are defined as inappropriate actions committed by a programmer
or designer. Faults or bugs are the manifestations and results of errors during the coding
of aprogram. A program failure occurs when an unexpected result is obtained while the
program is executed on a certain input because of the existence of errors and faults. In
other words, afailureis asymptom of faults.

Testing explores the input space of a program that causes the program to fail, and
debugging tries to locate and fix faults (bugs) after failures are detected during testing or
use. Although testing and debugging are closely related, none of the existing debugging
tools attempt to interface with testing tools. Conventional debugging tools (e.g., ADB and
DBX [Dun86]) are command—driven symbolic debugging tools and tend to be stand-alone.
Many fault localization strategies used in current well-known debugging tools (e.g., setting
break-points and tracing) were developed in the 1960s and have changed little. [AS39]
These debugging tools do not locate faults efficiently. Users haveto discover by themselves

information useful for debugging. Debugging processes are still 1abor—intensive, and these



toolsarethuslittle used.[Joh83] To debug software systematically, it isimportant that atool
use techniques based on the debugging process of experienced programmers, make hidden
information available to users, and be directly accessible from the testing environment.

However, these criteria have not been fully met by existing debugging tools.

1.1 Problemsin Locating Faults

Two major steps involved in the debugging process are locating and then correcting
faults. Myers [Mye79] pointed out that the fault-ocating aspect represents 95% of the
debugging effort. Severa studies[GD74, Gou75, Ves85, Mye79, MM83, ST83], including
behavioral research, suggest that locating faultsis the most difficult and important task in
the debugging process. Different strategies for locating faults would therefore affect the
performance of debugging. [SCML79]

A representative paragraph from Martin [MM83] states:

“Traditionally, programmers have spent too much time looking for errors
in the wrong places. Myers [Mye78] found that programmers focused their
attention on normal processing at the expense of considering special processing
situations and invalid inputs. Weinberg [Wei71] found that programmers have
difficulty finding errors because their conjectures become prematurely fixed,
blinding them to other possibilities.

Knowing what types of errorsare likely to occur and where they are likely
to occur in the program can avoid these problems and greatly simplify the

debugging process.”

All these studies conclude that locating faults is the most human-intensive and expensive

task in the debugging process.

1.2 Scope of This Research

The major goal of this research is to find an efficient way to accomplish the task of

locating faults. By analyzing the debugging process used by experienced programmers, four
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distinct tasks are found to be consistently performed: 1) determining statements involved
in program failures, 2) selecting suspicious statements that might contain faults, 3) making
hypotheses about suspicious faults (variables and locations), and 4) restoring program state
to a specific statement for verification. If all four tasks are performed with direct assistance
from adebugging tool, the debugging effort becomes much easier. Thisdissertation focuses
on the second task, reducing the search domain for faults, referred to as fault localization.

Toassist usersin conducting thefirst and last tasks, two techniques—Dynamic Program
Sicing [ADS91a, AH90] and Execution Backtracking[ADS91b, AS88] — were developed
by Agrawal, DeMillo, and Spafford. A prototype debugging tool, SPYDER [ADS91a,
ADS91b, AS88, Agr91], has been constructed with those techniques. To achieve the first
task, SPYDER helps users automatically find the dynamic slice of a program for any given
variables, locations, and test cases in terms of data and control dependency analysis, where
a dynamic dlice of a program is the set of statements that actually affect the value of a
selected variable at a specific location after the program is executed against a given test
case! For the fourth task, SPYDER provides a facility to restore the program state to a
desired location by backtracking the program execution to that |ocation and avoids the need
to reexecute the program from the beginning.

In this dissertation, a new approach to enhancing the process of fault localization is
explored based on dynamic program slicing and mutation—-based testing.? In the new
scenario, a set of heuristics was devel oped according to different situations and highlights
suspicious statements to confine the search domain to a reduced region. Some of the
heuristics were integrated into SPYDER to demonstrate the feasibility and usefulness of our
approach.

Figure 1.1 depicts steps in the proposed debugging paradigm. A new direction in
developing powerful debugging tools is suggested as aresult of this study.

LAninformal definition of Dynamic Program Slicing is described in Chapter 3.3. See [AH90, ADS91a,
Agr91] for the formal definition.

2Program mutation has been studied for over a decade. It iswell documented in the literature [CDK* 89,
DGK*88, BDLS80, Bud80, DLS78]. and is described in Chapter 5.



1.3 Contributions

The principal contribution of this dissertation is a new debugging paradigm for en-
hancing the process of fault localization by reducing the search domain. Our approach is
based on information obtained from dynamic program slicing and mutation—based testing,
and does not guarantee that faults will always be precisely located in the reduced search
domain. However, the reduced search space containing faults or the information leading to
fault discovery will help usersin debugging.

Thiswork makes contributionsto both testing and debugging. From the debugging point
of view, the proposed approach for fault localization provides a reduced search domain for
faults and improves human interaction in debugging. The debugging field benefitsfromthis
new direction in developing powerful tools. The effectiveness of integrating debugging
and testing tools to enhancing the capability of locating faults has been demonstrated.
From the testing point of view, this new approach can let the context be purposely switched
between debugging and testing. Knowledge obtai ned from testing hasbeen shown beneficial
for debugging. This gives the testing field a new way to think of the usage of testing
methodologies.

The feasibility of using test—based information to benefit debugging is demonstrated in

this dissertation.

1.4 Organization of this Dissertation

Therest of thisdissertationisorganized asfollows. A brief survey of software debugging
techniques is given in the next chapter. Chapter 3 describes the analysis of our new
debugging approach. We al so define Expanded Dynamic Program Slicing, an enhancement
of Dynamic Program Slicing, for debugging purposes. In Chapter 4, we propose a set of
heuristics without the assistance of further testing information. These heuristics are based
on test cases and dynamic program slices. Chapter 5 presents heuristics with the assistance
of mutation—based testing. An effective debugging instrument, Critical Sicing, derived
from the simplest mutant operator — statement deletion — is illustrated. In Chapter 6,



we describe the integration of heuristics into a prototype debugging tool, SPYDER, aong
with results of a preliminary experiment that was conducted to confirm the effectiveness
and feasibility of the proposed heuristics. From the experimental results, algorithms for
applying the proposed approaches are presented in Appendix E. Finally, the conclusion of

this dissertation and future directions of this research are given in Chapter 7.



2. RELATED WORK

We now briefly survey the debugging techniques used in existing software debugging

tools.

2.1 Traditional Techniques

Therearetwo“bruteforce” traditional debuggingtechniquesaccordingtoMyer.[Mye79]
One is analyzing memory dumps that usually display all storage contentsin octal or hex-
adecimal format. The other is scattering print statements around suspicious places in a
faulty program to display the value of variables and the flow of program execution. Users
are expected to understand where the program goes wrong and the abnormal behavior of
the program by using these techniques. However, these techniques are often inefficient
because of a massive amount of data to be analyzed. It is time—consuming to verify the
correctness of a prediction by repeating the process of executing and analyzing. While the
technique of analyzing memory dumps is not often used now, the technique of scattering
print statementsis still employed, especialy when debugging tools are not used.

One debugging technique — setting break-points by users— has been the main facility
of many debugging toolsfor both low-level and high-level languages since the early 1960s
(e.g., DDT [SW65] and FLIT [SD60] for assembly languages, and DBX [Dun86] for C). In
order to avoid dealing with machine codes aswell as scattering print statementsin aprogram,
interactive symbolic debugging tools were developed. These tools provide not only the
basic facility, setting break-points, but also some of the following capabilities: displaying
values of variables, tracing preset trace-points during execution, continuing execution of
the program from a break-point, executing single steps from a break-point, modifying
program states such as value of variables, and reexecuting a program (e.g., [Kat79, MB79,

BeaB3, Dun86]). These utilities can be employed by users to investigate a faulty program



interactively. First, users can set break-points in the program. Then, the execution of the
program will be suspended at these break-points. Users are allowed to examine the current
program state (e.g., value of variables) at a suspended point and decide whether to examine
the next statement, to continue forward execution, or to set new break-points.

These tools only provide utilities to examine a snapshot of program execution. Users
have to conduct their own strategies to debug without producing a massive amount of
information for analysis. These drawbacks increase the difficulty of debugging.

Another debugging technique keeps track of execution history for backtracking. The
concept of execution backtracking has been implemented in database systems (e.g., rollback
recovery for system failure [Ver78, HR83]) and in fault—tolerant software systems (e.g.,
the recovery—block technique [Ran75]). In the above implementations, system states to be
rolled back for later analysis must be set at the beginning. However, from the software
debugging standpoint, execution backtracking should be able to gradually backtrack pro-
gram execution from any break-point under the control of users. EXDAMS [Bal69], for
example, is an interactive debugging tool equipped with this technique.

Themajor problem withimplementing backtracking isthe consumption of large amounts
of space for storing the execution history and program states. Agrawal, DeMillo, and
Spafford [ADS91b] proposed a structured backtracking approach to implement execution
backtracking without storing the whole execution history. Their approach saves the latest
value of variables changed in a statement and only allows backtracking to the program state
prior to a complete statement.

The idea of a user-friendly interface has been built into some debugging tools such as
Dbxtool [AM86]. Windows and a mouse are used to handle the selections in debugging
processes instead of the traditional command-driven approach which accepts typed com-
mands only. Being able to display information (e.g., program execution flow, break-points,
and program states) simultaneously makes the debugging process more convenient and

efficient.



2.2 Algorithmic Approaches

Shapiro [Sha83] proposed an interactive fault diagnosis algorithm, the Divide—-and—
Query algorithm, for debugging. The algorithm will recursively search a computation
tree that represents the target program until bugs are located and fixed. At each node
of the computation tree, a query of node » will divide the tree rooted at node n into
two roughly equal subtrees. If the result of an intermediate procedure call at node n is
correct, the algorithm omits the tree rooted at » and iterates; otherwise the algorithm will
be recursively applied to the two subtrees of node n. Shapiro proved that if a program
is correct, every subprogram of the program is aso correct because the computation tree
of a subprogram is a subset of the computation tree of the whole program. If a program
IS not correct, then there exists at least one erroneous subprogram in it. The correctness
of each intermediate procedure call at the node of a computation tree will be verified by
users. This approach is suitable for debugging programs that can be well—represented as a
computation tree. Logic programs, such as those written in Prolog, are the best candidates.
A few enhanced debugging systems for Prolog programs have been developed based on
this approach.[Per86, Fer87]

Renner tried to apply this approach to locating faults in Pascal programs.[Ren82] In
order to verify the results of intermediate procedure calls mentioned above, an oracle is
implemented to ask users the correctness of the return values of procedures in Pascal.
Afterwards, the debugging system would investigate and execute each procedure in atop—
down direction until a procedure fails or generates incorrect results detected by the oracle.
A procedure containing bugs is thus located and the goal is achieved.

The primary limitation of applying this approach to programs written in structured
languages such as Pascal is that it can only point out the procedure containing bugs. Other
debugging tools are needed to debug the faulty procedure. A similar result can be found
in [FGKS91].
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2.3 Knowledge-Based Approaches

This approach attempts to automate the debugging process by using the techniques
of artificia intelligence and knowledge engineering. Many existing automated prototype
systems for program debugging have been devel oped based on this approach since the early
1980s.[ DES88, Sev87] Knowledge of both the classified faults and the nature of program
behavior is usually required in this approach. However, the knowledge required for real
world programs is too complicated. The prototype systems mentioned in [DES88, Sev87]
can only handle restricted fault classes and very simple programs. A few representative
debugging tools using knowledge—based approaches are reviewed in this section.

PUDSY (Program Understanding and Debugging SY stem) [Luk80] analyzes aprogram
before starting the process of debugging. Inputsto PUDSY areaprogramand aspecification
of the program. A knowledge base is maintained for the first phase — analyzing and
understanding a program. The knowledge base keeps a set of programming schemas,
which describe the simple typical behavior of each statement block (e.g., schema to find
the maximum element in an array, and schema to exchange values of two elements). For
each schema, there exists a set of assertions to formalize the function of that schema.

After thetarget programisautomatically decomposed into chunks by heuristic methods,
PUDSY will search the knowledge base to match programming schemas with those chunks.
If amatched pair isfound, the related assertion of the schemaiis constructed for the matched
chunk of the given program. Then the debugging phase startsby comparing these assertions
with the given specification. If any of these assertions violates the given specification, bugs
arelocated in a corresponding chunk of code. Types of the bugs can be found by comparing
the assertion with the given specification.

Because PUDSY needs the specification of the faulty program, only one subprogram
(e.g., a procedure or a function) can be handled at a time. Otherwise, the corresponding
specification for a complete program is too complicated to be described. The magjor
limitation of this system is the variety of the programming schemas in the knowledge base.

Only afew typical schemas can be representeded well.
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Laura [AL80] uses a straightforward approach to debug students' programs. The
specification of a program given to the system by teachers is the correct program model.
The system compares programs written by students with the correct model. Programs for
comparison are transformed into internal representation forms — flow graphs. Then, the
flow graphsare systematically compared by Laurato automatically locate bugs. Because of
the limitation of flow graphsto representing complicated programs, this systemis designed
for tutorial purposesin classrooms.

PROUST [JS84, JS85] is an “intention—based diagnosis system” to help novice pro-
grammers learn how to write correct programs. It does online analysis and understanding
of Pascal programsin order to identify nonsyntactic bugs. PROUST takes a program and
a description of the program’s intentions as input. The description is not an algorithm;
itisjust alist of goals (intentions). The goals are then “synthesized” and implemented
by “programming plans’ retrieved from a knowledge base. A programming plan contains
statements and subgoals to implement a typical function. Then, the synthesized goals are
compared with the code of the given program. If the matching results are negative, all
parties involved are analyzed. Diagnosis of the problem and suggestions for correcting
the faults are reported to novices. However, if there are no proper programming plans
to synthesize the given goa (intention), bugs are reported even if the code of the given
program is correct. This problem becomes serious with complicated programs.

TALUS [Mur85, Mur86b, Mur86a] employs an approach similar to PROUST’s, but
uses a theorem prover to do the transformation from programming plans to codes. This
method partially solvesthe problem of restricted programming plansin PROUST. However,
TALUS can only handle small LISP programs.

Generally speaking, the above systems, classified as program—analysis techniques
[Sev87], can only handle relatively small programs because they have to fully understand
and statically analyze the programsto be debugged. The necessity of detailed understanding
of programs prevents these techniques from being applied to practical programs.

Instead of statically analyzing the entire program, FALOSY (FAult LOcalization SY's-
tem) [ST83] emphasi zes fault localization by comparing the actual output with the expected
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output. Automatic fault location is performed by analyzing output discrepancies with the
help of prestored fault cause—effect knowledge. Two major resources are maintained in
the knowledge base. One is a set of heuristics describing the mapping between output
discrepancies (fault symptoms) and possible causes. The other is a set of functional pro-
totypes of certain standard program tasks (e.g., sorting). Based on output discrepancies,
FALOSY searches the possible causes of the fault symptoms and compares the “functional
prototypes’ retrieved from its knowledge base with the given program. Then, thefaultsare
reported in termsof the “ prototype schema’ (similar to the programming plansin PROUST)
rather than the buggy code. Unfortunately, only a limited class of programs and faults are
implemented in this system.

Harandi [Har83] presented a heuristic model for knowledge—based program debugging.
The system aims to debug compile-time errors and certain run-time errors. It is assumed
that most of the debugging knowledge of experienced programmers can be encoded as
heuristic rules in the form of “situation—action” pairs. The “situation” part summarizes
the possible symptoms of errors. The “action” part includes possible causes of errors and
suggestions for fixing the errors. The system matches the present error symptoms and the
information, which is provided by users or obtained through analysis of the program, with
the situation part of the rules. Then, the corresponding actions of the rules are invoked.
Because compilation errors can easily befixed by experienced programmersusing the error

messages provided by the compiler, this system is mainly used for tutoring purposes.

2.4 Program Slicing Approach

Program dlicing was proposed by Weiser [Wei82, Wei84] as another approach for
debugging. Weiser’s program dlicing (also called static slicing) decomposes a program
by statically analyzing data—flow and control—flow of the program. A static program slice
for a given variable at a given statement contains all the executable statements that could
influencethevalueof that variableat the given statement. Thedliceisasubset of theoriginal
program. The exact execution path for a given input is a subset of the static program slice

with respect to the output variables at the given checkpoint. If aprogram failson atest case
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and a variable is found incorrect at a statement, we can hypothesize that bugs are highly
likely in the program slice regarding that variable—statement pair because only statements
having influence on that variable-statement pair could cause the incorrect result. Thus, the
search domain for faults is reduced from the entire program to the program slice.

Focus [LW8T7] is an automatic debugging tool based on static program slicing to locate
bugs. It attempts to combine program slices with test cases to find the suspicious region
containing faults, which is assumed to be a subset of aprogram slice. Two groups of slices
are formed based on the program outputs after executing sel ected test cases— referredto as
programdicing by Lyle and Weiser.[Lyl84, WL86] One group contains slices with respect
to erroneous variables. The other group contains slices with respect to variables having
correct values. Focustriesto confinethe suspicious region for faultsby choosing statements
in the former slice group but not in the latter one for a given suspicious variable—statement
pair. However, the slice generated by Focus contains many statements with no influence
on the suspicious variable-statement pair because of the feature of static program slicing.

The static program slicing approach cannot resolve runtime ambiguities, thus highlights
many spurious statements with no influence on the incorrect results. Inthis case, the faulty
statements cannot be effectively identified.

Korel and Laski [KL88a, KL90] extended Weiser’s static program slicing to dynamic
program dlicing (K-L dlicing). K-L dlicing defines an executable subset of an original
program that computes the same function for given variables and inputs. In this case, their
approach does not show the exact influence on a particular value of the given variable,
location, and test case. For example, for a given variable V' at the end of aloop and a
given test data d, statement .S; in the loop affects the value of V' during the first iteration,
and statement .S, in the loop, not S, affects the value of V' during the second iteration.
According to the definition of K-L dlicing, both statements .S; and S, will be included in
the K-L dynamic programslicefor variable V' and test data d in order to form an executable
subprogram. However, if we want to know the exact influence on the particular value of V/
at the end of the second iteration, K—L slicing cannot give the information because of the

existence of 51 in this situation.
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Agrawal and Horgan [AH90] claimed “the usefulness of adynamic slice liesnot [only]
in the fact that one can execute it, but in the fact that it isolates only those statements
that [actually] affected a particular value observed at a particular location.” They use the
program dependency graph and an extended static slicing algorithm to construct dynamic
program slices. Dynamic program slices obtained in this way are similar to those defined
by Korel and Laski. Thereafter, in order to compute accurate dynamic slices such as in
the example mentioned above, a dynamic dependency graph and specialized algorithms are
employed. Accurate dynamic program slicing can isolate statements that actually affect a
particular value of a suspicious variable at a given location for a given input. Thus, in the
above example, the exact influence on the particular value of V' at the end of the second
iteration, which is statement .S, not statement 57, will be shown in the accurate dynamic
program slice.

Dynamic program slicing for pointers based on the same approach has been imple-
mented in the prototype debugging tool SPYDER [ADS91a, ADS91b, Agr9l]. Prior the
work reported here, dynamic program dlicing had not been systematically applied to fault
localization, athough in Agrawal’s dissertation [Agr91] he briefly alluded to the idea of
combining dynamic program slices and data slices for fault localization. Part of our heuris-
tics are based on dynamic dlices that are collected by varying test cases, variables, and

location of variables.

25 Test—Integrated Support

The relationship between testing and debugging has never been clearly defined. Current
testing and debugging tools are independent of each other. Even if they are integrated in
one tool, strengthening the capability of thistool to detect and to locate faults needs to be
serioudly studied. Thissectionwill focuson the possibility of using theinformation derived
from existing testing methodol ogies for debugging purposes.

Osterweil [Ost84] attempted to integrate testing, analysis, and debugging, but gave no
solid conclusion about how to transform information between testing and debugging to

benefit each other. An interesting result is suggested by Osterweil’s research: “debugging
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is probably best supported by amix of static and dynamic capabilities, just asisthe casefor
testing and verification.” This points out a valuable direction for building new debugging
tools.

Clark and Richardson [CR83] were the first to suggest certain testing strategies and
classified failuretypes can be used for debugging purposes. Only one examplewas given to
describe their idea. No further detailed study was conducted. They described how certain
test data sel ection strategiesbased on symbolic evaluation[How77, CHT79, CR81] can help
the debugging process. Typical error types classified by them include: erroneous reference
to an input value; erroneous processing of special input values, erroneous processing of
typical/atypical values; erroneous|oop processing (e.g., never terminated, never executed);
and erroneous production of special/typical/atypical output values. For each error type, test
data are selected according to the result of symbolic evaluation. If an error in a programis
detected after selected test data are applied to the program, we can know the potential type
of the error and then locate the bugs through the attributes of the test data and the erroneous
results.

STAD (System for Testing And Debugging) [KL88b, Las90, Kor86] is the first tool to
integrate debugging with testing. Nevertheless, itstesting and debugging parts do not share
much information together except for implementation purposes (e.g., they share the results
of dataflow analysis). Information obtained from the testing phase for debugging purposes
consists of the execution history of program failures and the test cases causing program
failures. In this situation, the capability of STAD for locating bugs is no better than that
of independent and unintegrated tools. The data flow testing methodology is the testing
technique of STAD. The debugging part will be invoked once a fault is detected during a
testing session.

STAD usesthe structure of the program and the “ execution trgjectory” of afailureasits
knowledge. Theknowledgeisreflected by aprogram dependence network, whichisderived
from dependency analysis (data flow and control flow dependency). A set of hypotheses

indicating potential locations of faults is generated by using the program dependence
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network. Then, al hypotheses in the set are verified by users at preset break-points while
reexecuting the program.

The main goal of fault localization in the debugging session of STAD isto help users
focus on the possible erroneous region, rather than precisely locating faults. PELAS
(Program Error-L ocating Assistant System) [Kor88] is an implementation of the debugging
part of STAD. Korel and Laski proposed an algorithm based on the hypothesis—and-test
cycle and the above knowledge to localize faults interactively.[KL91] Only a subset of
Pascal is supported, and limited program errors are considered in STAD and PELAS.

Collofelloand Cousins[CC87] proposed aset of heuristicsto |locate suspicious statement
blocks after athorough test. A program isfirst partitioned into many decision-to—decision
paths (DD—paths), which are composite statements existing between predicates. After
testing, two test data sets are obtained: one detects the existence of faults and the other does
not. Then, heuristics are employed to predict possible DD—paths containing bugs based on
the number of timesthat DD-pathsareinvolved in those two test data sets. Theidea of these
heuristics helped us devel op our proposed fault localization strategies. The main restriction
of their heuristics is that only execution paths that are a special case of dynamic program
dlicing [AH90] are examined. After the search domain isreduced to afew statement blocks

(DD-paths), no further suggestion is provided for locating bugs.

2.6 Summary

Araki, Furukawaand Cheng summarized the debugging steps conducted by experienced
programmers and proposed a debugging process model as a general framework. [AFC91]
They also pointed out that “debugging tools must support each stage in the debugging
process. hypothesis verification, hypothesis—set modification, and hypothesis selection.”
However, they did not describe what kinds of facilitiesand functionswill be used to support
each stage.

Unlike the approaches proposed by Lyle-Weiser and Collofello-Cousins, which are
only based on suspicious variables and test cases, respectively, our heuristics are devel oped

by considering test cases, variables, and location of variables together.
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The evolution of software debugging has not made much progress during the last three
decades. The most popular debugging techniques employed by commonly used debugging
tools (e.g., DBX), setting break-points by users and tracing, were introduced around the
early 1960s. [Sto67] From the history of the development of fault localization, we find that
techniques in some prototype systems work only for programs with restricted structure and
solve only limited problems. An efficient debugging paradigm that deals with a broader
scope of faultsis needed.



18

3. ANALYSISOF A NEW DEBUGGING APPROACH

Most studies of fault analysis [Knu89, BP84, OW84, Bow80, Lip79, AC73, JSCD83,
SPL*85] classify faults collected from long—term projects. However, no further studies
have been conducted based on the categorized information. We believe that there is value
to debugging research in such analysis.

In order to observe and analyze program failures, dynamic instrumentation capable of
doing (dynamic) program dependency analysis is chosen as a basic facility of the new
debugging approach. [Pan91] Dynamic Program Slicing can determine statements actually
affecting program failures so that the search domain for faults will be reduced. Although
it is not guaranteed that dynamic slices always contain the faults (e.g., missing statement
or specification faults), to investigate statements actually affecting program failures is a
reasonabl e strategy in debugging. By analyzing semantics and values of variablesin suspi-
cious statements of dynamic slices, we might discover valuable information for debugging.
Therefore, we choose dynamic slices as the search domain to locate faults. At the same
time, the knowledge derived from the testing phase (e.g., test cases and fault analysis from
fault—based testing methodol ogy) would be helpful to the debugging process.

In this chapter, the general background of our analysis is first described. Then, we
enhance the existing dynamic program slicing technique by devel oping Expanded Dynamic
Program Slicing (EDPS) that has better ability to include faulty statements for debugging.
In addition, we conduct a generic analysis for test—based knowledge to help us construct
debugging strategies based on available information from the testing phase.

3.1 Background

In the testing phase, multiple test cases executed against P present different kinds of

information. Our goal is to extract as much of that information as possible for debugging.
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The more test cases we get, the better results we can have by investigating the information
obtained from testing. Therefore, we prefer athorough test — finishing the testing process
to satisfy as many criteria of a selected testing method as possible. After athorough test,
if the existence of faults in program P is detected, then at least one test case will cause
P tofail. Such atest case is called an error—revealing test case and 7 is the set of all
such test cases. Likewise, the test cases on which P generates correct results are called
non—error—revealing test cases and 7 is the set of them.

A set of error—revealing test cases is an indispensable resource for debugging. On the
other hand, not every non—error—revealing test caseis useful. Partition analysis on theinput
domain helps us identify the subdomains associated with program failures. [WO80, RC85,
HT90, WJ91] After athorough test, users can partition the input domain of P based on
the specification of P and the results from testing. If an input subdomain of specification
contains both error—revealing and non—revealing test cases after testing, then those non—
revealing test cases are considered for debugging. Test cases in the input subdomain
indicate the divergence between the expected and abnormal behavior of P after being
executed against . The divergence of program behavior with respect to the test cases
provide valuable clues for fault localization.

If al test cases, which are constructed for the thorough test, in an input subdomain
of specification are non—error—revealing ones, they are merely evidence to support the
correctnessof P for thecertain input domain. Itislikely that they do not providedirect help
for locating faults. We thus ignore those non—error—revealing test cases at the beginning of
debugging processto save effort. Inorder to reduce the size of suspiciousinput subdomains
to a minimum, we prefer a well-defined input domain and specification of a given faulty
program.

Analyzing the results of program failures will help identify suspicious variables (e.g.,
output variables) that contain unexpected values. Dynamic slices with respect to these
suspi ciousvariablesand corresponding test cases arethen constructed for the new debugging

approach. Based on the selected test cases obtained from the partition analysis as mentioned
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above, we analyze the divergence among dynamic slices to understand program failures.
This analysis helps us construct heuristics in the next chapter.

In brief, the general analysis can be summarized as follows.

e Employ a thorough test to collect as many relevant test cases as possible for an

effective debugging process.

e Construct a well-defined input domain and specification of a given faulty program
to reduce the suspicious input domain to a minimum. We can then deal with
minimum dynamic program slices with respect to related test cases, and the task of

fault localization will be more efficient.

e Focus on the smallest set of related test cases one at a time, especialy for the non—

error—revealing test cases.

e Conduct logical operations, such as intersection, union, and difference, on dynamic
program slices with respect to selected test cases to study similarities or differences

among these dynamic dlices.

3.2 Heuristicsvs. Deterministic Steps

Unliketesting, debuggingisanunstructured, spontaneous, and“mystical” process.[ Tra79,
Lau79] The tasks performed in the process of debugging are to collect valuable informa-
tion for locating faults. The information may come from program specification, program
behavior during execution, results of program execution, available test cases, etc. Deter-
ministic decisions (the approach that systematically analyzes complicated information to
benefit software debugging) may not be possible for the general case, and those for specific
applications do not yet exist. We thus adopt a heuristic approach as a feasible solution to
enhance the debugging process. We believe that heuristics, which gather useful information
from different cases, can cover varied situations and help us localize faults.

The heuristic approach is like a forward reasoning technique to locate faults based on

existing information. On the other hand, to construct deterministic steps, we need first
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examine all actual behavior and understand information flow made by faults, then induce
systematical solutions for locating faults. This approach is like a backward reasoning
technique. However, understanding all actua behavior and information flow made by
faults is a difficult task. The exact mapping between results and causes for localizing
faults is another obstacle to overcome. Thus the heuristic approach is a feasible way for
debugging at the current stage.

Although each heuristic does not provideageneral solution andisonly suitablefor some
specific situations, the overall debugging power from uniting these heuristics is expected

to surpass that of currently used debugging tools.

3.3 Expanded Dynamic Program Slicing

In this section, we enhance Dynamic Program Slicing [AH90, ADS91a, Agr91], which
was chosen as our basic instrument, to handle certain types of faulty statements. An
informal definition of Dynamic Program Slicing mentioned in [ADS93] is quoted and

summarized as follows.

There are two major componentsto constructing adynamic program slice: the
dynamic data slice and the dynamic control slice. A dynamic data slice with
respect to agiven expression, location, and test caseis a set of all assignments
whose computations have propagated into the current value of the given ex-
pression at the given location. Thisis done by taking the transitive closure of
the dynamic reaching definitions of the variables used in the expression at the
given location. The set of all assignments that belong to this closure forms the
dynamic data slice. On the other hand, a dynamic control slice with respect
to agiven location and test case is a set of all predicates that enclose the given
location after executing the test case. This is done by taking the transitive
closure of the enclosing predicates starting with the given location. The set of

all predicates that belong to this closure formsthe dynamic control slice. Thus

'Readers are referred to [AH90, ADS91a, Agr91] for the formal definition.
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adynamic program slice with respect to agiven variable, location, and test case
is the closure of all the data and control slices with regard to all expressions

and locationsin its constituent dynamic data and control slices.

In summary, a dynamic program slice, DPS(P, v,[,t), consists of all statements in the
given program P that actually affect the current value of avariable v at location / when P
isexecuted against agiven test caset. From now on, we use DPSto represent the approach
of Dynamic Program Slicing and refer to it as exact dynamic program dlicing. Also, the
static program slice proposed by Weiser [Wei82, Wei84] is represented as SPS, which is
associated with a variable-ocation pair (v, [).

During the process of debugging, all statements making contribution to the erroneous
variables that contain unexpected values are candidates for investigation. For the given
P, v, 1, t, weareinterested not only in statements actually affecting/modifying the current
value of v (i.e., statementsin DPS(P, v, [, t)), but also statements contributing to keeping
the defined variables in the dynamic slice with respect to v at [ intact. That property is
described in Definitions 3.1 and 3.2. Statements in the latter case may not be covered by
DPS.

Definition 3.1  For the given program P, variable v, location /, and test caset, if a block
of statements enclosed by an executed predicate statement contains assignment statements
in the corresponding static slice (with respect to v and /) but not in the corresponding exact
dynamic dlice (i.e.,, DPS(P, v, [, 1)), then the predicate statement potentially affects v at [
for ¢ and has potential effect type 1 (PE1).2 O

In other words, the predicate statement with type PEL in the above definition keeps the
value of v at [ for ¢ “intact”.

The example in Figure 3.1 indicates that the if—statement at Statement 5 potentially
affects the output variable x of Statement 9 as defined in Definition 3.1. We say the
if—statement at Statement 5 has type PEL1. Statement 6 is in the scope of the predicate

2This definition is different from the potential influence defined by Korel [Kor88]. Statements covered
by their definition include statements with type PE1 (potential effect) as well as in the exact dynamic slices
(actual effect).



23

1. * 1 input a /[* input for ais 7 */
2. *# x =0
3: *#l | = 5;
4: * ! a=a- 10; [/* correct version a = a + 10; */
5 * 1 if (a>j) {
6: X =X + 1;
}
el se {
7. 0% z =0
}
8 *# X =X +j;
9: *# print x; /* x is 5, but should be 6 */

Figure 3.1 An example for the type of potentia effect (PE). Statement labels with a star
mark (*) are executed; those with ahash mark (#) arein the exact dynamic slice with respect
to the output variable x at Statement 9; and those with an exclamation point (!) arein the
potential effect slice with respect to the output variable x at Statement 9.

statement at Statement 5 (i.e., control dependent on the if—statement) and would affect the
output variable x at Statement 9 if executed. Consequently, the unexecuted Statement 6
does not actually affect the output, and Statement 5 is thus not included in the exact
dynamic slice (DPS(P, x, 9, t)) as marked by hash signs (#). However, Statement 5 still has
a contribution to the output that involves keeping the value of the output variable intact. If
we ignore this kind of contribution, then the faulty statement (Statement 4) which has the
reaching definition on variable x at Statement 5 cannot be directly highlighted as a result.

Therefore, the following definitions are warranted.

Definition 3.2 A potential effect lice (PES) with respect to thegiven program P, variable
v, location [, and test case ¢ contains all predicate statements with potential effect type 1
(PEL) as defined in Definition 3.1 aswell as statements actually or potentially affecting the
predicate statements. O
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Definition 3.3 In a potential effect dice, statements other than the predicate statements
with PE1 type are called potential effect type2 (PE2). All statementsin a potential effect
dicearecaled potential effect type (PE). O

In the example of Figure 3.1, the corresponding potential effect dlice contains Statements5,
4, 3, and 1. Statements 1, 3, and 4 have type PE2. This example shows that a faulty
statement with PE type may not be covered by an exact dynamic dlice (e.g., Statements 1,
4 and 5).

By using dynamic dlices for debugging, we are concerned that faulty statements are
either highlighted by a dynamic slice with respect to an output variable having an incorrect
result for a given error—revealing test case or indirectly located by analyzing the dynamic
dice. Unfortunately, it is not guaranteed that the associated exact dynamic slice aways
containsthefaulty statements. Wethus characterizethe fault types that cannot be covered in
an exact dynamic dlice by analyzing program dependency and effect propagation between
statements, and intend to devel op an alternative approach to enhance the ability of including
faulty statements.

The common feature of these fault typesisthat the effect of afaulty statement does not
propagate to the point of failure occurrence or does not actually affect the incorrect result.
In consequence, the faulty statement is not included in the corresponding exact dynamic
dice. We aready know statements with type PEL in Definition 3.1 having this feature.
Other types with this feature are defined as follows.

Definition 3.4 Thetypefor statements of the missing statement fault typeis called omitted
execution type 1 (OEL). O

Because the missing statements do not exist in the program, none of the program slicing

techniques can directly highlight “faulty statements’ with OEL1 type.

Definition 3.5 A statement has omitted execution type 2 (OE2) if and only if 1) the
statement has an incorrect assignment variable (e.g., wrong left hand side variable — [-

expression); 2) the missing definition of the correct assignment variable is the reason P
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failed on a given error—evealing test case; and 3) the extra definition of the incorrect

assignment variable does not actually affect the incorrect results. 0

For instance, in a faulty statement with a wrong left hand side variable “y = f(...);"
whose correct version should be “z = f(...);”, themissing definition of the variable =
causes P to fail on a given error—revealing test case. If the extra definition of the wrong
variable y in the faulty program does not actually affect the incorrect result, then the faulty

statement “y = f(...);” will not be in the corresponding exact dynamic slice.

From the above examination of OE1, OE2, and PE types, the foll owing theorems depict
the ability of DPS to contain faulty statements.

Theorem 3.1 If a statement has type PEL1 (i.e., predicate statement) with respect to the
value of agiven variable, location, and test case, then the statement is not contained by the

exact dynamic program slice with respect to the variable, location, and test case.

Proof: According to Definition 3.1 for potential effect type 1 (PE1), executed statements
in the scope of the predicate statement do not actually affect the current value of the given
variable, location, and test case. Therefore, the predicate statement does not appear in the

corresponding exact dynamic program slice (DPS). 0

However, statements with type PE2 could be included in the corresponding exact dynamic
program slice, e.g., Statement 3 in Figure 3.1 is in both the exact dynamic slice and the

potential effect dlice.

Theorem 3.2 If agiven program has only one faulty statement that is not with type OE1,
OE2, or PE, then the statement is contained by at least one exact dynamic program slice
with respect to a selected erroneous variable at the location where the fault is manifested

after executing an error—revealing test case.

Proof: Assume the faulty statement, which is the only fault in the given program and not

with type OE1, OEZ2, or PE, isnot contained by any exact dynamic program slices with
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respect to a selected erroneous variable at the location where the fault is manifested after
executing an error—revealing test case.

According to the definition of DPS, statements in the corresponding exact dynamic
dlice actually affect the value of the selected erroneous variable. The reasons the faulty
statement are not included by any corresponding exact dynamic dlices are thus classified
into two cases: 1) the faulty statement does not have any effect on the program failure;
and 2) the faulty statement causes the program failure but does not appearsin DPS.

The first case contradicts the single fault assumption which implies that the fault must
have effect on the program failure. For the second case, the faulty statement either has the
missing statement fault type or does not actually affect the program failure. The former
one is type OEL that contradicts the assumption in this proof which indicates the faulty
statement not of type OEL. For the latter one, if the faulty statement potentially affects
the program failure, then the fault statement has type PE that contradicts the assumption of
this proof. Otherwise, the appearance of the faulty statement does not affect the program
failure, but the missing definition of the defined (left hand side) variable which is replaced
by the faulty statement causes the program failure. Thisis exactly the type OE2 that also

contradicts the assumption of this proof. Thus, this theorem is proved. O

If the program is terminated with an incorrect output value, then the exact dynamic dlicein
the above theorem is associated with the erroneous output variables at the end of program
execution. For the case of multiple faulty statements without OE1, OE2, or PE type, we
dlightly modify the above theorem as “the faulty statements are guaranteed to be in the
union of exact dynamic program slices with respect to al erroneous output variables at the
location where failures occurred.”

In order to enhance the ability of DPS to contain faulty statements, we examine a new
dynamic dlicing technigue to cover the three types — PE1, OE1, and OE2. Unfortunately,
faulty statements with OE1 type cannot be directly highlighted by any program dlicing
techniques. If the wrong left hand side variable of faulty statements with type OE2 has
static dependency with output variables, then the faulty statements can be highlighted by
Static Program Slicing (SPS), whichisinefficient for debugging purposes. Otherwise, even
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EDPS = DPS U PES

Figure 3.2 Relationships between DPS, EDPS, and SPS. Statements with special typesare
in grey area.

SPS cannot highlight the faulty statements with OE2 type. For statements with type PE,
we develop Expanded Dynamic Program Slicing to include those statements that arein a

potential effect dlice but not in the corresponding exact dynamic program slice.

Definition 3.6 An expanded dynamic program slice (EDPS) is the union of an exact
dynamic program dlice (DPS) and the corresponding potential effect slice. O

A faulty statement with PE type and not in an exact dynamic slice will be included in a
corresponding expanded dynamic slice. In Figure 3.1, the expanded dynamic slice contains

Statements 1, 2, 3, 4, 5, 8, and 9 in which Statement 5 is the faulty one.

To use the EDPS approach effectively, we must know the relationships and features of
DPS, EDPS, and SPS. Figure 3.2 presents the relationships,
DPS C EDPS C SPS C PR,

as well as those three types that cannot be highlighted by DPS. It is obvious that any

program dlice is a subset of the original program P, and any dynamic slice is a subset

of the corresponding static slice. From the definition of EDPS (Definition 3.6), an exact
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dynamic dlice is aways a subset of the corresponding expanded dynamic slice. The above
relationships are thus obtained.

Faulty statements with OE1 type do not exist in the given faulty program P at al. Also,
it is not guaranteed that SPS can always contain faulty statements with OE2 type. If the
wrong left hand side variable of faulty statements with OE2 type potentially affects output
variables (i.e., with PE2 type), then the faulty statements can be included in acorresponding
potential effect dlice that is a subset of a corresponding expanded dynamic program dlice.
Otherwise, the faulty statements cannot be highlighted by the expanded dynamic program
dice (EDPS). Thus, faulty statements with OE2 type may be highlighted by SPS or EDPS
without guarantee as indicated in Figure 3.2.

Moreover, we claim that statements in an exact dynamic program slice (DPS) will not
have the types of OE1, OE2, and PEL regarding the same parameters of the exact dynamic
program slice. Statements with PE type, which could not always be covered by DPS, can
be included by EDPS.

3.4 Generic Analysis of Testing—Based Information

During the testing phase, software testers create test cases to satisfy criteria of selected
testing methodologies (e.g., statement coverage). These test cases are then executed against
agiven program. If aprogram failureoccurs, thetest case (referredto asthe error—revealing
test case) manifests the existence of faults and will be used for debugging later. However,
we are interested not only in relevant error—revealing and non—error—revealing test cases,
but also the testing criteriasatisfied by the test cases (especially error—revealing test cases).
The way to satisfy the criteria and features of the criteria being created could help us
understand the behavior of program failure. We thus define the following features of testing

criteriafrom the standpoint of debugging.

Definition 3.7  If the execution of every test case that satisfies a selected testing criterion
aways causes program failure, then the testing criterion is called an error—revealing
criterion. [WOB80] O
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In other words, it is guaranteed that any test case satisfying an error—revealing testing
criterion causes program failure. Only error—revealing test cases can satisfy this criterion.
Thisisthe strongest condition for finding criteriarevealing faults. Unless we already know
the faults, an error—revealing criterion cannot be identified. Therefore, it is not feasible to

use this criterion for debugging. A weaker and more feasible condition is evolved.

Definition 3.8 If the execution of atest case that is designed to satisfy a selected testing
criterion causes program failure, thenthe criterioniscaled an error—indicating criterion.

a

There is no guarantee that a test case satisfying an error—indicating testing criterion will
definitely cause program failure. If we assume the failed program has only one faulty
statement (i.e., single fault assumption), then the error—indicating criteriaare the necessary
conditions to reveal the fault after the criteria are satisfied. And yet, the error—revealing
criteriaare the if and only if condition to reveal the fault. Therefore, the error—indicating—
criteria can be identified during the testing phase and used as indicators for debugging.
Three white box testing methodol ogies were examined in our study. They are structural
coverage, data flow testing [PC90, HL91, CPRZ89, Nta88, FW88, RW85, LK83], and
fault—based testing [DLS78, Bud80, BDL S80, How82, Mor90]. For the last two methods,
we choose c-use and p-use criteria in data flow testing as well as program mutation® in
fault—based testing. These two methods are superior to thefirst one asindicated in [HL91].
To examine the way error—indicating criteria are satisfied and the corresponding error—
revealing test cases cause program failure, we employ three characteristics addressed in
Constraint Based Testing [DO91, Off88], interpreted as follows for our analysis:

Reachability: The code specified by the criteriamust beincluded in the program execution
flow after applying agiven error—revealing test case.

For data flow testing, this condition only ensures that the define part of a selected

def—use pair criteriais reached.

3Program mutation has been studied for over a decade and iswell documented in the literature [CDK* 89,
DGK*88, BDLS80, Bud80, DLS78]. It will not be discussed in detail here. A brief introduction will be
addressed in Chapter 5.
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Necessity: For afaulty statement, thelocal program state that is described by the value of
variables becomes erroneous after the execution flow passes through the statement.
However, the above claim about changing to erroneous local state after a criteria
being satisfied is not always true for error—revealing and error—indicating criteria.

This condition is modified for each testing method.

For statement coverage, this condition does not provide further requirement to be
matched. Wethusclaim that thisconditionisautomatically satisfied whenreachability

is achieved.

For data flow testing, the necessity condition indicates that the execution flow must

pass through the corresponding use part after a selected define part is executed.

For mutation—based testing, local program states between a mutant and the original
program right after the mutation statement is executed should be different in order to

kill the mutant.

Sufficiency: Thelocal effect generated by satisfying the above two conditions of selected

criteria propagates to the end.

If the necessity condition isimplied by the reachability condition (e.g., for coverage),
then the sufficiency condition cannot be evaluated because of the unchanged local
effect.

Analysis of reachability lets us focus on the program behavior while trying to reach
the error—indicating criteria (i.e., checkpoints). Analysis of necessity helps us examine the
cause of local effects. Then the sufficiency feature demonstrates how the local effect affects
the program results. Information flow transfer among statements as mentioned in [TRC93]
provides a similar approach to analyze the propagation of local effects. At each step, we
explore the reasons causing program failures and try to discover relationships between
the three characteristics and possible faults. As mentioned in Chapter 3.2, the debugging
process tries to collect valuable information for locating faults. We are interested in those

testing methods able to provideinformation of all three characteristics.
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To satisfy acriterion in data flow testing, the execution of a selected test case must first
reach the define part of the criterion, thenfollow the path to reach the use part. Accordingto
our interpretation of the necessity condition for dataflow testing, both reachability (reaching
the define part) and necessity (executing the use part) are required to claim that a criterion
of dataflow testing issatisfied. All three features— reachability, necessity, and sufficiency
— must be matched to satisfy a criterion in mutation—based testing (i.e., killing mutants).

Information provided by reachability and necessity in dataflow testing isalso supported
by the dynamic program slicing approach. The error—indicating criteria of data flow test-
ing merely provide check-points in dynamic program slices for further examination. The
error—indicating criteria of mutation—based testing introduce a mutant program that could
be beyond the scope of the original program in terms of program dependency anaysis. A
combination of the threefeatures plusthe error—indicating criteria(mutants) suppliesaval u-
able resource for further dynamic analysis. Therefore, we decided to explore information

of mutation—based testing for debugging purposes and address the details in Chapter 5.

3.5 Summary

Analysis of the behavior of program failures and the type of faults provides valuable
information for constructing effective heuristics for fault localization, especially when the
deterministic steps mentioned in Section 3.2 do not exist. Static sices (SPS) contain
statements that may have nothing to do with the wrong results. Dynamic slices generated
from the DPS approach consist of statements actually affecting (modifying) the value of a
variable occurrence for agiven input. For statements potentially affecting the wrong result
during execution, they are not always covered by DPS. The expanded dynamic program
slicing technique (EDPS) includes such statements. By using dynamic instrumentation to
observe program execution, DPS provides the smallest set of statements actually affecting
the value of results, and EDPS provides a set of al statements having a contribution to
the value of results. We thus prefer dynamic slices of EDPS as the basis instrumentation
for debugging. The limitation of EDPS is that it is unable to include faulty statements
with OE1 or OE2 type. The OEL type (missing statements) cannot always be directly
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pointed out by any debugging approach. Yet, analyzing statements suggested by other
heuristics, especially those statements in the statement block that has missing statement
fault, could lead to identifying the nature of the missing statement. To handlethe OE2 type,
the error—indicating criteria of the test—based information could be a valuable resource to
investigate.

For clarity and simplicity, we make the single fault assumption while developing the
heuristics. This assumption helps us simplify the situation for thorough examination.

However, al heuristics are still suitable for the case of multiple faults.
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4. HEURISTICS WITHOUT THE ASSISTANCE OF FURTHER TESTING
INFORMATION

Dynamic Program Slicing (DPS) determines the smallest set of statements actually
affecting the value of results, and Expanded Dynamic Program Slicing (EDPS) determines
statements actually contributing to the value of results. As mentioned in Chapter 3, we
choose dynamic slices as the search domain to locate faults. The set of statements provided
by EDPSwill be used as a basis for the search domain.

We develop a family of heuristics to reduce the search domain according to dynamic
dlices (both DPS and EDPS) with respect to relevant test cases obtained from testing. Each
heuristic will suggest a set of suspicious statements whose size is usualy smaller than
the size of the dynamic dlices. Although none of our proposed heuristics is a general
solution and each of them might be effective for certain specific situations only, the overall
debugging power from uniting these heuristicsis expected to surpass that of currently used
debugging tools.

A dynamic slice Dyn(P,v,l,t) that is either an exact dynamic program slice (DPS) or
an expanded dynamic program slice (EDPS) contains four parameters. the target program
P, agivenvariablev, thelocation of v (), and agiven test caset. By varying either or both
of the test case (¢) and the variable (v) parameters, we can get different kinds of dynamic
dlices that are used to determine corresponding metrics. Then, heuristics are applied based
on the available dynamic slices and metrics. The issue of varying the program parameter
(P) in Dyn(P,v,l,t) isinterpreted as getting dynamic slices from mutant programs, and
will not be addressed here but in Chapter 5.

Wedefinetwo metrics, inclusion frequency (F.) and influencefrequency (¥;). Inclusion
frequency of a statement is the number of distinct dynamic slices containing the statement;

and influence frequency of a statement in a Dyn(P,v,![,t) is the number of times the
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statement was referred to in terms of data and control dependency in Dyn(P,v,l,t). If
a statement is executed many times (e.g., in a loop), then it is likely that the influence
frequency of the statement in adynamic sliceis high.

Notation and terminology used in our heuristics are listed in Appendix A. In the next
section, we examine the proposed heuristics. These are presented in Figure 4.1 as afamily
tree. Relationships among the heuristics in the family tree and the potential order of using
them are explored in Section 4.2. A table of these heuristics can be found in Appendix B

for reference purpose.

4.1 Heuristics based on Relevant Test Cases

Several heuristics for fault localization based on dynamic dlices are proposed here.
Heuristics constructed using different test case parameters are similar to those constructed
using different variable parameters. However, to vary the variable parameter we must be

able to verify the value of a given variable with regard to the given location and test case.
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Because the error—revealing and non—error—revealing test case sets are obtained directly
from athorough test, it is preferred to first employ heuristics based on different test case
parameters.

In order to explain the heuristics easily, we first illustrate heuristics using the notations
of different test case parameters (Heuristics 1 to 16). Within these heuristics, the set of
dynamic slices with respect to error—evealing test cases (1) is called the failure set (i.e.,
Ugfll Dyn(P,v,1,Ty,)) and the one with respect to non—error—revealing test cases (7%) is
called the success set (i.e., U™ Dyn(P, v, 1, T5.)).

These heuristics can be applied to cases of different variable parameters, and another
sixteen similar heuristicswill be obtained (Heuristics 17 to 32). Then, three more heuristics
(Heuristics 33 to 35) are proposed based on varying both test case and variable parameters
together.

For clarity and simplicity, the proposed heuristics are primarily devel oped by assuming
only one fault in afailed program. However, many heuristics are still suitable for the case
of multiple faults.

Because many heuristics are constructed based on the two metrics (inclusion and influ-
ence frequency), athreshold to evaluate statements with low or high inclusion frequency
in the heuristics is needed. For example, the threshold for statements with high inclusion
frequency inthefailure set (Ugfl| Dyn(P,v,1,TYy,)) could be suggested asthe highest twenty
percent of statements in the union sorted by inclusion frequency. Users are allowed to set
their own threshold for different purposes. The determination of thresholds for heuristics
with this requirement (e.g., H3, H4, H7, and H13) will affect the effectiveness and size of
suggested domains. An efficient threshold, which makes the suggested domain reasonably
small and consistently contain faults, is highly desirable for the first guess.

Statementsinvolvedin aheuristic with threshold requirementsarefirst ranked according
to the metric used by the heuristic (e.g., inclusion or influence frequency) and are then
grouped based on the ranks (i.e., statements with the same rank are in one group/level).
Among different groups (levels), the rank associated with a group (level) that contains the

faultisreferredto asthecritical level. Anexampleto describeranks, groups, and the critical
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level isgivenin Chapter 6.2.3.2. For thefirst guess, thethreshold of aheuristicisideally set
at the critical level to assure the suggested domain contains faults and is reasonably small.

This minimal threshold is referred to as the critical point or critical threshold.
Heuristic1 H1(t) = { U™ Dyn(P,v.1,T,) Y U {UZ Dyn(P, v, 1,T;) } 0

H1 indicates statements present in al available dynamic dlices (with respect to all
available non—error—revealing and error—revealing test cases) and is the basis of search

domain for other heuristics.
Heuristic2 H2(t) = { U™ Dyn(P,v,1,T,,) } O

H2 indicates statements present in all dynamic slices of the success set and makes users
focus on statements in dynamic slices with respect to the non—error—revealing test cases
(7,). Faulty statements might be in these statements, if the fault is not triggered or not
propagated to the result. Statements highlighted by this heuristics will be used by other

heuristics.

Heuristic 3 H3(t, F.) = { statementsin U™ Dyn(P, v, 1, T,.) withinclusion frequency
< F.}, whereF. isaninclusion frequency number decided by the threshold given by

users to select low inclusion frequency. O

H3indicates statementswith low inclusion frequency inal dynamic slices of the success
set. The hypothesis for this heuristic is that a statement frequently involved with correct
results may have less chance to be faulty. When there exist many non—error—evealing test
cases (1) and very few error—evealing test cases (1), this heuristic can be employed to
find faulty statements in the success set. The faulty statements, if any exist, would not lead

P towrong results when executing test casesin 7.
Heuristic4 H4(t, F.) = { H3(¢, F.) U HO(®) } O

H4 indicates statements in the failure set but not in the success set, plus statements

with low inclusion frequency in dynamic slices of the success set. Thisis a modification
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of Heuristic 3. The inclusion frequency, based on the non—error—revealing test cases (7),
for statements in the failure set but not in the success set is ssimply zero. The idea behind
this heuristic isthat faulty statements might never be executed when P is executed against
non—error—revealing test cases (7). Thus, thisapproachis moreflexiblethan H3 and would
highlight more suspicious statements than H3 does. However, if all statementsin thefailure

set are aso in the success set, this heuristic is the same as H3.
Heuristic5 H5(1) = { NZ Dyn(P,v,1,T,,) } 0

H5 indicates statements appearing in every success dlice, i.e., statements with the
highest inclusion frequency in the success set of H2, if the intersection is not an empty set.
Examining the necessity of the statements that are inevitablein getting correct results might
help us understand the nature of faults. This heuristic highlights exactly these statements.
On the other hand, we could ignore these statements because they always lead to correct

results, and focus on other statements also suggested by Heuristic 1 (i.e.,H5(t) = { H1(?)
— H5(t) } ).

Heuristic6 H6(t) = { U™ Dyn(P,v,1,T;) } 0

H6 indicates all statementsin dynamic slices of the failure set and makes usersfocus on
statements in dynamic slices with respect to the error—evealing test cases (1) — failure

dlices.

Heuristic7 H7(t, F.) = { statementsin Ugfl' Dyn(P,v,1,Ty,) withinclusion frequency
> F.}, whereF. isaninclusion frequency number decided by the threshold given by

users to select high inclusion frequency. O

H7 indicates statements with high inclusion frequency in dynamic slices of the failure
set. The hypothesisfor thisheuristic isthat a statement often leading to incorrect results has
more chance to be faulty, and errors are confined to the statements executed. When there
exist many error—revealing test cases (failure slices) and very few non—error—revealing test
cases (success dlices), this heuristic can be employed to find the faulty statements in the
failure set.
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Heuristic8 H8(t) = { N Dyn(P,v,1,T;) } 0

H8 indicates statements appearing in every dynamic dlice of the failure set, i.e., state-
ments with the highest inclusion frequency in the failure set of H7, if the intersection is
not an empty set. If P has afew faults that commonly cause program failures, then this
heuristic could locate the faulty statements quickly, especially when P has only one faulty
statement (single fault).

[T

Heuristic9 HO(t) = { U Dyn(P,v,1,T;)} — {UL Dyn(P,v,1,T,,)} (e, {H6
—H2}) O

H9 indicates statements in the difference set of the failure set and the success set. The
hypothesisfor this heuristicis that statementsinvolved in the execution of programfailures
but never tested by casesin 7} (i.e., statements only appearing in failure slices) are highly

likely to contain faults. If there are many test cases in both 7'; and 7', this method isworth

trying.

Heuristic10 H10(t) = { N Dyn(P,v,1,T:) Y — {UZ] Dyn(P,v,1,T,) } (e,
{H8—-H2}) O

H10 indicates statements appearing in every failure slice but not in any success dlice.
This heuristic is similar to, but more rigorous than, H9 because only statements executed

by all test casesin 7'y are considered. Nevertheless, this difference set might be empty.

Heuristic 11 H11(t) = { U™ Dyn(P,v. 1, T,) } — {UZ Dyn(Pv,1,T:) ) (e,
{H2—-H6}) 0

H11 indicates statements in the success set but not in the failure set. When P is
executed against the non—error—revealing test cases (7), some statements might always
be included to get correct results. Moreover, these statements never lead to the incorrect
result. Further dependency analysis of these statements to understand how they contribute
to correct results may provide useful information for locating faults. However, we could
ignore these statements because they often contribute to correct results, and focus on other
statements also suggested by Heuristic 1 (i.e., H11(t) = { H1(z) — H11(¢) } ).
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Hewristic12 H12(¢t) = { N Dyn(P, v 1, T,) Y — {UZ Dyn(Pv,1,T:) ) (e,
{H5—H61}). 0

H12 indicates statements appearing in every success slice but not in any failure slice.
This heuristicis similar to, but morerigorousthan, H11 because only statements executed
by all test cases in T, are considered. Examining the necessity of these statements for
correct results might help us understand the nature of faults. Similar to H11, we can focus
on other statements highlighted by H12 = { H1(¥) — H12(¢) }.

Heuristic 13 Indicate statements in all dynamic slices with high inclusion frequency in

the failure set and low inclusion frequency in the success set. O

Thisheuristicisacombination of Heuristics3and 7. Itissuitablewhen many statements
are involved in both failure (U™ Dyn(P,v,1,T})) and success (UZ] Dyn(P,v,1,T.,))
sets, and many elementsare in error—evealing (1) and non—error—revealing (77) test sets
after athoroughtest. The hypothesisfor thisheuristic isthat statements leading to incorrect
results and lessinvolved in the correct program execution are highly likely to contain bugs.
For such statements, the ratio of the corresponding inclusion frequency in the failure set to
the corresponding inclusion frequency in the success set is a useful indicator. The higher

ratio a statement has, the higher chance the statement contains faults.

Heuristic 14 If a set of statements B; located by the above heuristics, especialy by
those indicating statements with low inclusion frequency in U' 1 Dyn(P,v,[,T;,) (eg.,
Heuristics 3, 4, and 13), does not contain faults and belongsto a branch of a decision block
suchas if (exp) then{...B;...} else B, or while (exp) {...B1...}, then

the logical expression exp should be examined. O

Because the logical expression exp is aways executed to decide whether B, should
be executed, the inclusion frequency of the predicate statement (i f —statement or whi | e—
statement) is always equal to or greater than that of B1. The indication of the predicate
statement based on inclusion frequency is thus not as effective as B;. This supplemental

heuristic reminds users to examine the logical expression exp in the predicate statement.
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Heuristic 15 H15(T},, ;) = { statementsina Dyn(P, v, [, T},) withinfluencefrequency
> F; }, where F; isan influence frequency number decided by the threshold given by

users to select high influence frequency. O

H15 indicates statements with high influence frequency in a selected failure dlice,
Dyn(P,v,1,Ty,). Theinfluence frequency measures the effect of statements being referred
to morethan once (e.g., inaloop) but not counted in theinclusionfrequency. Thehypothesis
for this heuristic is the same as that for H7 — statements often contributing to incorrect

results are more likely to be faulty.

Heuristic 16 H16(7%,, F;) = { statementsina Dyn(P, v, [, T,) withinfluence frequency
< F;}, whereF; isan influence frequency number decided by the threshold given by

users to select low influence frequency. O

H16 indicates statements with low influence frequency in a selected success dlice,
Dyn(P,v,1,Ts,). This heuristic, in other words, excludes statements with high influence
frequency in the Dyn(P,v,l,Ts,) because of the hypothesisthat statements often leading

to correct results are less likely to be faulty.

Heuristic 17 Based on the above heuristics, another sixteen similar heuristics (Heuris-
tics 17 to 32) can be obtained by varying only the variable parameter v (instead of different
test case parameters) with respect to thegiven P, [, and ¢, e.g., H#(v). 0

In these cases, we must be ableto verify the value of suspicious variableswith respect to
the given location (/) and test case (¢) in order to construct V; (having incorrect value) and
V; (having correct value). These sixteen new heuristicsindicate potential faulty statements

based on another feature of dynamic slices (the variable parameter).

[Vyl

Heuristic 33 H33(t, V) = { N;Jy Stmt(P,Vy,,1,t) }, wheret represents a selected
test case in Ty or Ty, Stmt(P,v,[,t) is the set of statements suggested by one of the

Heuristics 1to 16, and V; ismentioned in Heuristic 17. 0
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The hypothesis for this heuristic is similar to that for H8. If wrong variable values are

caused by the same fault, statements indicated by this heuristic are suspicious.

[Vyl

Heuristic 34  H34(v,1) = { U Stmt(P,Vy,,1,1) }y — { UYL Stmi(P, V4, 0,1) b,

where v isoneof V;, or V.. 0

Thisheuristic isderived from HO with information obtained from varying both variable

and test case parameters.

Heuristic 35 H35(v, ) = { N\ Stmt(P,Vy,, 1, Tx) } — { UV Stmi(P,V,,,1,Tx) },

J= J=

where v isoneof V;, or V.. 0

This heuristic isderived from Heuristics 10 and 34.

From the above discussion, we notice that appropriate thresholds for some heuristics
cannot be decided without observing real examples. In our experiment presented in Chap-
ter 6.2, wetry to find the average critical point that will be recommended for the first guess.
Two kind of thresholdsaremeasured: rank threshold — ratio of therank of thecritical level
to the number of ranked levels, and general threshold — ratio of suspicious statements
within and below the critical level to statementsinvolved in the selected heuristic. Fromthe
results of our experiment, we discover that the rank threshold (based on ranked levels) is
more reasonable than the general threshold (based on number of statements) and is easy to
use (e.g., from thefirst to the last ranked level, gradually). Therefore, we suggest using the
rank threshold with the first 75% (or 50%) of ranked levels as a standard threshold for the
first—time criterion when employing the heuristics with inclusion frequency requirements.
Detailed results of our experiment are presented in Chapter 6.2.3.

Heuristics and experiments according to relational (decision—to—decision) path analysis
on execution paths were studied by Collofello and Cousins [CC87]. A few of their ap-
proaches are similar to ours, such as the concept behind Heuristic 13, the most useful one
among theirs. As our approach, at this moment, allows users to vary two out of four pa-

rameters (variable and test case) of dynamic dlices, possible faulty statements suggested by
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our heuristics should be more precise than those suggested by theirs and other approaches.
Also, moreinformationis provided by our heuristics.

With the aid of our heuristics, a reduced search domain for faults (e.g., a smaller set
of suspicious statements) is anticipated. Other functions of dynamic instrumentation will
then help us manage further examination. For instance, the reaching definition, which
shows the latest definition of a variable and is a subset of the def—use chain in program
dependency analysis, enables us to trace back to find the place where a suspicious variable
went wrong. Then, the backtrack function effectively “executes’ aprograminreverse until
a preset breakpoint is reached, just like forward program execution being suspended at
breakpoints. In short, an efficient debugging session is conducted by locating faults from
a reduced domain via our heuristics as well as by using effective functions of dynamic

instrumentation.

4.2 Further Analysis

In this section, an overall analysis to study effective methods for applying heuristics in
Figure 4.1 is examined. We first examined heuristics with different test case parameters
t (Heuristics 1 to 16). The same argument based on Figure 4.1 can then be applied to
heuristics with different variable parameters (indicated in Heuristic 17). InFigure4.1, each
node represents one heuristic. A solid line connects an upper (parent) and a lower (child)
nodes with a superset—subset relationship that statements indicated by the parent (upper)
node contain those of the child (lower) node. A dotted line links an upper node and a
lower node that is derived from the upper node but without a superset—subset relationship.
Bold nodes are heuristics that require thresholds, and dot (intermediate) nodes are heuristics
derived from othersto construct acompletefamily tree. Statementshighlighted by heuristics
within the intermediate nodes only give us basic information for debugging. By contrast,
their descendant heuristicswill provide more helpful information. Among theintermediate
nodes, H1 is the root of the family tree, H2 is the root of a subtree with respect to non—

error—evealing test cases, and H6 is the root of a subtree with respect to error—revealing
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test cases. H14 can be applied after traversing other heuristics in the tree as a supplement
except H15 and H16.

Heuristics of the subtree rooted by H2 are based on dynamic slices with respect to non—
error—revealing test cases. These heuristics, especially H5, H12, and H11, are different
from others because they highlight statements that often lead to correct results and suggest
studying the necessity of the statements for correct results. However, we can ignore
these statements and focus on other statements involved in the family tree (i.e., statements
suggested by H1). Inthiscase, H5, H12, and H11 represent the corresponding complement
heuristics.

As heuristicsH1 to H14 are based on all dynamic slices with respect to error—revealing
and/or non—error—evealingtest cases, their functionsareinterpreted asglobal analysis. On
the other hand, H15 and H16 conduct local analysis because they are based on one dynamic
dice at atime. We prefer to perform global analysisfirst. Local analysisis then conducted
to reduce the search domain further to locate faulty statements.

According to the family tree in Figure 4.1, heuristics without threshold requirements
(especialy for the nonintermediate nodes) are preferred before those with threshold re-
guirements. This is because the former suggest a precise set of statements and the latter
indicate a different set of statements for different thresholds. For a pair of nodes with a
superset—subset relationship, the parent heuristic can be evaluated first because the child
heuristic conducts analysis based on the result of the parent heuristic analysis (e.g., H5/H12
and H8/H10).

From the above discussion, global analysis can be summarized as:

Group 1: applying heuristics in nonintermediate nodes — H8/H10, H9, H5/H12, H11,
H5/H12, and H11.

Group 2: applying heuristics with threshold requirements — H4, H3, H7, and H13.
Search domains provided by heuristics in this group contain fewer statements than
those provided by heuristics in Group 1. The top—down order of employing these

heuristicsis preferred because the results of upper nodeswill be used by lower nodes.



For each heuristic, we should try the strictest threshold first. If faulty statements are
not in the suggested region, the threshold will be increased gradually and the search

domain will be expanded accordingly.

Group 3: applying H14 to recheck some suspicious statements that are ignored by the

above heuristics.

While traversing the family tree, we interpret the top—down steps as refining suspicious
statements and the bottom—up steps as extending the search domain. Users can make a
guess first to get a set of suspicious statements for examination. Then, our tool will help
them refine or extend the search domain by traversing the family tree of heuristics.

Theresult of global analysisisa set of suspicious statements (areduced search domain)
based on dynamic slices. To further verify faulty statements, heuristics performing local
anaysis(e.g., H15 and H16) are employed based on onedynamic slice at atime. Statements
indicated by both global and local analyses are first examined, then the other highlighted
statements.

There is another way to apply the heuristics before starting analysis. We can first
examine the intersection of statements suggested by Heuristics 1 to 13, except H5, H12,
and H11. The intersection is a minimum region indicated by the heuristics, if it is not
empty. If the faulty statements are not in the region, then we start the global analysis. This
method is interpreted as a meta—heuristic of the heuristic family tree.

Techniques and steps discussed above can be applied to heuristicswith different variable
parameters (indicated in Heuristic 17) as well as to heuristics with different test case and
variable parameters (Heuristics 33 to 35).

After areduced search domain for faultsis presented by our proposed heuristics, further
anaysis is needed to identify whether faulty statements are in the highlighted suspicious

region. Ongoing research will provide automated decision support to do verification. [Vir9]]
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4.3 Summary

We have presented a set of heuristics based on dynamic slices with respect to relevant
test cases that are obtained from a thorough test. Analysis of relationships between the
proposed heuristics was also examined, and a family tree was obtained as a result. The
possible methods of applying the heuristics by traversing the family tree as well as grouping
features of the heuristics were suggested. An experiment is described in Chapter 6.2 to

show the effectiveness of the heuristics.
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5. HEURISTICSWITH THE ASSISTANCE OF MUTATION-BASED TESTING

As discussed in Chapter 3, we chose program mutation as a testing methodology for
debugging purposes and dynamic program slicing as our instrument for detailed analysis.
A brief description of mutation—based testing is introduced here.

The principal goal of program mutation® isto help users construct a mutation adequate
test set that will differentiate a tested program P from incorrect programs. The adequacy
of atest set is measured by executing that test set against a collection of ssmple mutant
programs. A mutant program is made by introducing one simple change to program P.
These simple changes are considered as simple fault—inducing transformationson P. They
are derived empirically from both studying common faults made by programmers and
abstracting the syntactic structure of faults. A set of mutant operatorsis formed based on
those changes.

A simplemutant programof P, M, isgenerated by mutating a statement of P according
to one mutant operator. The only difference between P and M isthe original statement at
line S of P (i.e., statement Sp) and the mutated statement on S’ (referred to as a mutation,
Swy) in M. Test data are generated and executed against both P and A . If the results (e.g.,
behavior or output) of P and M are different, mutant M iskilled. The greater the number
of mutants killed by a test set, the better the adequacy is implied for that test set. Users
would try to kill al simple mutants by finding different test data. An adequate test set is
thus constructed. If P iscorrect, the test set is evidence to assure the correctness of P. On
the other hand, if P is not correct, the faults will be manifested by test data generated for
killing some simple mutants.

In Table 5.1, mutant operators of the MOTHRA [CDK*89, KO91] testing tool for FOR-
TRAN 77 are listed. Mutant operators for C have been reported in [ADH*89], and are a

!Readers are referred to [CDK 89, DGK* 88, BDL S80, Bud80, DL S78] for details of program mutation.
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Table 5.1 Mutant operators used by MOTHRA for FORTRAN 77.

‘ Op.i Description ‘ Exampl el
aar | array reference for array reference replacement | A(1)=B(J) — A(1)=A(l)
abs | absolute value insertion (special value X=Y+Z — X=abs(Y)+Z
coverage) X=Y+Z — X=negabs(Y)+Z

X=Y+Z — X=zpush(Y)+Z

acr | array reference for constant replacement X=1— X=A(l)

aor | arithmetic operator replacement X=Y+Z - X=Y-Z
X=Y+Z — X=Y
X=Y+Z — X=Z

asr | array reference for scalar variable replacement | X=Y+Z — X=A(1)+Z

car | constant for array reference replacement A(H=BW) — A()=0

cnr | comparable array name replacement A(N=BW) — A=A

crp | constant replacement (twiddle) X=3 = X=2
X=3.0 - X=3.3

csr | constant for scalar replacement A(N=B@) — A(3)=B(J)

der | DO statement end replacement do101=1,N—onetrip10I1=1,N

dsa | datastatement alterations data X/1/ — data X/2/

glr | goto label replacement goto 10 — goto 20

lcr | logical connector replacement X.and.Y — X.or.Y

ror | relational operator replacement X.eq.Y — X.gt.Y

rsr | return statement replacement X=Y4+Z — return

san | statement analysis (replacement by t r ap) X=Y+Z —trap

sar | scalar variablefor array reference replacement | A(I)=B(J) — A(I)=X

scr | scalar for constant replacement X=1— X=Y

sdl | statement deletion X=Y+Z — continue

src | source constant replacement X=1— X=3

svr | scalar variable replacement X=Y+Z = X=X+Z

uoi | unary operator insertion X=Y+Z — X=++(X+2)

T 51 — S2 means 5> is the mutation statement of the original statement .5 in a given program
after the corresponding mutant operator in the first column is applied. Abs(Y) and negabs(Y)
return the absolute value of Y and the negative of the absolute value of Y, respectively. Zpush(Y)
returns Y if Y #0, otherwise the mutantiskilled. Onet ri p isidentical to a DO statement except
whose body isalways executed at least once. Tr ap causesthe mutant to bekilled oncethet r apis
executed. Twiddle operators (crp) will increment/decrement the integer constant by 1 and the real
constant by 10% of itsvalue, and will replace the zero by 0.01 and —0.01. Theuoi operator, ++exp
(——eap), increments (decrements) exp by 1 if exp isan arithmetic expression, and complements
exp if exp isalogical expression.
I Mutant operators. Any variable (scalar or array) or constant replacement is done by using other
variable names or constants occurring in the given program.
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superset of the mutant operatorsfor FORTRAN 77 except for the DATA statement alteration
(dsa) that is not supported in C. Because acompl ete mutati on—based testing tool for C does
not exist, wefirst study the 22 mutant operators of MOTHRA in Table5.1. The sameanalysis
can be applied to mutant operatorsfor C.

Because killing mutants is the criterion to be satisfied in mutation—based testing, we
focus on the features of different mutant types and the different behavior between mutants
and the original program. To analyze information from mutation—based testing by using the
dynamic program slicing technique, we classify the mutantsby regrouping mutant operators

from the standpoint of program dependency (data and control flow) analysis.

1. Satement analysis: san and sdl. Mutants with san type force testers to create test
cases for executing all statements/blocks for statement coverage, and sdl mutants
help testers decide whether the selected statements actually make a difference in the
program results. A class mutant operator stm — statement mutants — comprises

these two mutant operators.

2. Domain perturbation: aor, src, abs, crp, dsa, anduoi. Mutantsinthiscategory will
change the constant or operator inthe r—expression (e.g., right hand side) of aselected
original statement or in thelogical expression of aselected original statement without
introducing new variables. Perturbing the index of array referenceis not considered
asintroducing new variablesbecausetheindex isevaluated at runtime. Therefore, the
static data and control dependency of mutants are the same as the original program.
The last four operators belong to a class mutant operator dmn — domain perturbation
— that twiddles the value of the right hand side expression (r—expression) without

changing program dependency.

3. Operand (variable or constant) replacement on the use—part (right hand side) of a
selected original statement: aar, acr, asr, car, cnr, crp, Csr, sar, scr, src, and svr
where crp and src are included in this category only when the twiddled constant is

in an array reference. The program dependency graph above the mutation (5) is
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different from the one of the original statement (Sp) because of the replacement of

the use—part.

4. Operand (variable) replacement on the define—part (left hand side) of a selected
original statement: aar, acr, asr, car, cnr, crp, csr, sar, scr, src, and svr where
acr, car, crp, csr, scr, and src are included in this category only when the replaced
operandisinan array reference. The program dependency graph above the mutation
(Shr) isstill the same asthe one of the original statement (Sp), but statements beyond
and dependent on S, are different from those of Sp because of the replacement of

the define—part.

5. Control dependency variation: glr, Icr, ror, rsr, and the mutant operators that replace
an operand of a predicate statement. The evauation of the mutation predicate
statement and the original predicate statement might cause different control flow
between the corresponding mutants and the original program. Icr and ror belong to
a class mutant operator prd — predicate mutants — that replace logical connectors

and operators.

By examining the above mutants with the three characteristics mentioned in Chapter 3
— reachability, necessity, and sufficiency — as well as dynamic program slices with
respect to corresponding test cases, we develop a set of heuristics (hints) for debugging.
The three characteristics for killing mutants have been studied in the constraint—based
testing [Off88, DO91] and are summarized here.

e Reachability: The mutated statement on line S in the mutant program A, Sy, IS

executed by a given test case.

e Necessity: The program state of M immediately following the execution of Sy, is

different from the program state of P at the same point Sp.

e Sufficiency: Thefinal result of A isdifferent from P.

Constrai nt—based testing will automatically generate test cases by satisfying the reachability

and necessity conditions.
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A simple and effective approach derived from studying mutants in the first group
(statement analysis), referred to as Critical Sicing, is addressed in the next section. Other
approaches will be presented later in this chapter.

5.1 Critica Slicing

While exploring san and sdl mutants, we are interested in the actual effect made by
each statement, especially when programsare executed by error—revealingtest cases. Faulty
statements are likely in those statements that directly contribute to program failures. The
dead sdl mutantsidentify aset of statements actually making adifferencein programresults
and being critical to the program failures when the sdl mutants are killed by error—revealing

test cases. The set of statements helps us develop Critical Slicing.

5.1.1 Definitions

Assume a set of statements S = {51, 5%,...,5,...,5¢} iSan execution path when
a faulty program P is executed against a given error—revealing test case ¢ with a failure
type F;, where S; represents one statement. F is the set of different types of failures,
and Sr is the statement where the failure F; occurs. For example, S could be the last
statement being executed, and the output variables are wrong; or Sy isthe statement where
an exception failure (e.g., dividing by zero) occurs. For the failuretypes with wrong output
variables, the incorrect values of the erroneous output variables are considered as features
of the related failure type.

Definition 5.1 A statement S; in S of P iscritical to a selected variable v in the failure
JF; at location S for test case¢ if and only if the execution of P without 5; (i.e., an sdl
mutant A of P by deleting .S; from P) against the test case ¢ reaches Sy with a different

vaue of v fromtheonein F;. O

This means that not only is M killed because the execution against ¢ has a different result
from the original one in F;, but also the execution reaches the same failure point 5. For

the failure types with wrong output variables, the incorrect values of the erroneous output
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variables are used to decide whether M has the same result (values) as the original one of
the faillure type. The requirement of reaching S guarantees that the effect of executing
S; propagates to the same failure point. Meanwhile, killing A indicates that the effect of
executing S; actually makes a difference in theresult. S; istherefore critical to the failure.
A set of statements with the same feature of \S; forms a critical slice with the following

formal definition.

Definition5.2 A Critical Sice is based on a 4-tuples (F;,v, Sy, t) with definition
CS(Fi,v, Sp,t) = {S; | S; iscritical to the variable v in the failure F; at location Sy for
test caset}. O

5.1.2 Propertiesof Critical Slicing

Critical Slicing (CS) provides another view for examining statements directly related
to program failures. That is different from the program dependency analysis of dynamic
dlicing. Important properties of CS such as relationships between critical slices and other
dynamic dlices (e.g., exact dynamic slices and expanded dynamic slices), cost to obtainit,
and its effectiveness, will be examined in this section.

To compare Critical Slicing with other dynamic dlicing techniques (Exact Dynamic
Program Slicing, DPS, and Expanded Dynamic Program Slicing, EDPS), we have to
ensure parameters involved in both approaches are in the same domain. A dynamic slice,
Dyn(P,v,l,t), has four parameters — program P, variable v, location /, and test case
t, where P will not be varied. Meanwhile, a critical slice, CSF;, v, Sg, t), aso has four
parameters— failuretype F;, variablev, location S, and test case?, wherethefailuretype
may have more than one variable involved to decide whether the execution has the same
result as the original one in F;. However, if there are multiple variables (e.g., in aset V)
involved in F;, then we consider the union of slices with respect to all involved variables
at location S for test case?, i.e., U,ev, Dyn(P,v,Sp,t) Vs. Uvev, CS(F;, v, Sk, t).
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1. * | i nput a; /* input for ais 7 */
2: *# X = 0;
3: *#1$ | = 5;
4: * 1$ a=a- 10; /* correct version a = a + 10; */
5 * 18 if (a>]) {
6: X = Xx + 1;
}
el se {
7. 0% z =0
}
8: *#$ x =x +j;
9: *# $ print x; /* x is 5, but should be 6 */

Figure 5.1 An example derived from Figure 3.4 with indication (dollar sign $) of acritical
dice. Statement labelswith astar mark (*) are executed; those with a hash mark (#) arein
the exact dynamic slice with respect to the output variablex at Statement 9; and those with
an exclamation point (!) arein the potentia effect slice with respect to the output variable
X at Statement 9. Statements with a hash mark (#) or exclamation point (!) are in the
expanded dynamicslice. Statement labelswith adollar sign ($) areinthecritical slicewith
respect to the failure with wrong output value 5 for input data 7 at location Statement 9.

5.1.2.1 Relationships among CS, DPS, and EDPS

As the following two examples demonstrate, Critical Slicing (CS) and Exact Dynamic

Program Slicing (DPS) are incomparable.

Example 5.1 If an assignment statement has no effect on the defined variable (i.e., value
of the defined variable on the left hand side of the statement is the same before and after
the statement is executed), then the value of the defined variable will be propagated and
have the same effect to the result no matter whether the statement is executed or not. The
result is thus unchanged if the statement is removed. Therefore, the statement is not in
a corresponding critical slice. At the same time, it is possible that the defined variable
actualy affects the result and is thusin a corresponding exact dynamic slice. In this case,

the statement is not in the critical slice, but in the corresponding exact dynamic program
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dice.

For instance, the defined variable x (on left hand side) of Statement 2 in Figure 5.1 is
assigned zero, which is the same as the value of x before Statement 2 is executed, if the
memory initialization is zero for all variables. However, Statement 2 has data dependency
on Statement 8 that assigns the output variable x at Statement 9. Thus, Statement 2 is
not in the critical slice (indicated by $ signs) but in the corresponding exact dynamic slice
(indicated by # signs). O

Example 5.2 If a predicate statement is PE1 type, then the statement will not be in the
corresponding exact dynamic program slice as mentioned in Definition 3.1 (definition of
the potential effect type ). However, the predicate statement still contributes to the result
by keeping the value of the corresponding variable intact within its scope. Therefore,
the predicate statement is critical to the result if it is not executed, and is thus in the
corresponding critical slice. In this case, the statement isin the critical slice, but not in the
corresponding exact dynamic programslice.  For instance, Statement 5 in Figure 5.1 has

PE1 type, and isin the critical slice but not in the exact dynamic dlice. O

Therelationship between Critical Slicing (CS) and Expanded Dynamic Program Slicing
(EDPS) is described in the following theorem.

Theorem 5.1 [If agiven program does not have pointer or array variables (i.e., only scalar
variables involved), then statements in a critical slice are a subset of statements in the

corresponding expanded dynamic programdlice, i.e., CSC EDPS.

Proof: By definition, all statements in a critical slice make a difference in the results at
the selected point. These statements in the critical slice either actually or potentially affect
the results. Without pointer or array references, the reaching definition between scalar
variablesis straightforward.

For the first case — actualy affecting the results — statements are included in the
corresponding exact dynamic slice and expanded dynamic slice according to the definition

of DPS and EDPS, respectively. For the second case — potentially affecting the results
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— statements are included in the corresponding expanded dynamic slice according to the
definition of EDPS. Therefore, CSis a subset of EDPS for a pointer (array) free program.

a

However, itisnot guaranteed that the same property istruefor aprogram with unconstrained

pointers (arrays). An example (statements with array reference) is given for illustration.

Example 5.3 In the following simple program, array variable a( k) at Statement S, is
actualy a( 3) during execution. The output of this program is expected to be 21, but is
actually 20 because of the faulty statement Ss. The expanded dynamic program slice with
respect to erroneous output variable x at Statement S for test case ¢ includes Statements
Sy and Ss. This indicates that Statements S,, S3, and 5, neither actually nor potentially
affect the incorrect value of x (20) at Statement Se.

S1: read a(l), a(2), a(3); [/*testcaset: 10, 20,30*/
So: k= 2;

Sy k =k + 1;

Sq: a(k) = a(k) + 5;

Ss: X = a(2); < thecorrectversionis x = a(2) + 1;

Se. print Xx;

Meanwhile, acritical slice with respect to the failure (incorrect value of output variable
x = 20) at Statement 5S¢ for test case ¢ includes Statements 51, 53, and Ss. When we verify
whether Statement S3 isin the critical slice by not executing the statement, the value of k
at Statement S, is 2. Thus, a( k) at 5, is actualy referring to a( 2) , and the output of
the program (value of x) becomes 25. This indicates that Statement S5 is critical to the
program failure and is thusin the critical slice. Asaresult, Statement Sz isin the critical

slice but not in the corresponding expanded dynamic slice. 0

On the whole, relationships between Critical Slicing (CS), Exact Dynamic Program
Slicing (DPS), and Expanded Dynamic Program Slicing (EDPS) are demonstrated in Fig-
ure 5.2 which integrates CS into Figure 3.2. For the case of statements in CS but not in
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EDPS = DPS UPES

Figure 5.2 Relationships between CS, DPS, EDPS, and SPS for programs without array
and pointer variables. Statements with special types are in grey area. This figureis an
expansion of Figure 3.5.

EDPS (e.g., Statement S3 in Example 5.3), thisis caused by side—effects of array (pointer)
references — a( k) at Statement S;. Faulty statements not in EDPS have either OE1 or
OE2 type, and statements with these two types are rarely highlighted by slicing techniques.
In Chapter 3, we have chosen dynamic slices of EDPS as the bottom line dynamic instru-
mentation for debugging. We thus treat statements in CS but not in EDPS as noise for
debugging purposes and ignore them. The relationships in Figure 5.2 can be generalized
for programs with unconstrained pointers as a concept. Consequently, we suggest starting
from statements in a selected expanded dynamic dice rather than the whole program as

candidates for constructing a corresponding critical slice.

51.2.2 Cost

To construct a critical dlice, if we verify each statement by executing a new program
in the same way as the original one, except for removing the selected statement, then the
total number of executions will be the number of all executable statements in the original
program for each given test case. The cost is obviously high. As suggested above, we can

construct a critical slice by selecting statements in the corresponding expanded dynamic
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program slices instead of all executable statements. Thisis one step for reducing the cost.
Furthermore, if the debugging process is integrated with a mutation—based testing tool, we
can get critical dlices at no additional cost because the concept of building critical dlices
is derived from killing sdl mutants that is usually one of the criteria first being satisfied
(san and sdl). Thus, we can obtain critical slices automatically whilekillingsdl mutantsin
the testing phase with minor instrumentation. In this case, the cost of constructing critical
dicesisnot aconcern at all.

Moreover, the research to perform program mutation in an efficient manner has been
conducted. [Cho90, Kra91] With that support, the critical slices can be efficiently con-
structed during mutation—based testing.

5.1.2.3 Effectiveness

To study the effectiveness of Critical Slicing (CS), we are interested in the reduction
rate among the size of critical dlices, corresponding expanded dynamic program slices, and
the original program. Also, features of the statements not in the selected critical slices (i.e.,
not critical to the results of the selected critical slices) but in the corresponding expanded
dynamic program dlices (i.e., actually or potentially affecting the results) are examined for
studying the limitation of CS.

From the relationships among CS, DPS, and EDPS presented in Section 5.1.2.1, two
categories are classified for the statements not in a critical slice but in the corresponding
expanded dynamic program slice. The first one is the assignment statement having no
effect on the defined variable but actually or potentially affecting the results. Example 5.1
illustrates this case (i.e., Statement 2 in Figure 5.1). The other category is that the
propagation of the effect of an executed statement (including path selections and reach
definitions — data and control flows) is the same as the propagation without executing the
statement. In this case the statement will not be in the corresponding critical slice because
of the same result.

For instance, Statement 4 in Figure 5.1 will not beinthecritical dliceif theinputfora is
1. The effect of Statement 4 decides the path selection at Statement 5. For input data 1, the
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value of a becomes —9 after Statement 4 is executed, and is still 1 at line 5 if Statement 4
is not executed. No matter if Statement 4 is executed or not, the evaluation of Statement 5
is aways fal se which makes the propagation with or without the effect of Statement 4 to be
the same. Thus Statement 4 is not critical to the result of incorrect output value 5.

If faulty statements belong to the above two categories, they will not be indicated by
the corresponding critical slices. Then, EDPS is needed for fault localization.

We conducted an experiment to evauate the frequency of faulty statements being
covered by critical dicing as well as the reduction rate between the size of critical slices
and corresponding expanded dynamic program slices. Results of effectiveness are reported
in Chapter 6.2.4.

5.2 Debugging with Other Mutation—Based Testing Information

In this section, we explore information obtained from mutation—based testing along
with dynamic instrumentation for debugging purposes. Methods for detailed analysis are
first described in the next subsection. Then possible hints deduced from the analysis are
illustrated. For clarity and simplicity, we assume there is only one faulty statement (5)
in agiven faulty program (i.e., single fault assumption). However, these hints can still be
applied to the case of multiple faults.

We did not conduct experimentsfor heuristicsand hints presented in this section because
of the limitation of existing prototype tools. The current mutation-based testing tool
MOTHRA is for programs in FORTRAN 77 by the interpretation approach, but SPYDER
is for ANSI C based on GNU GCC and GDB. We consider the heuristics and hints in
this section as a guide to provide primitive suggestions and directions for further fault

localization.

5.2.1 Methods for Analyzing the Information

As mentioned at the beginning of this chapter, we have classified mutant types into

five groups from the program dependency (control and data flow) analysis standpoint. We
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propose a method to thoroughly examineinformation obtai ned from mutati on—based testing
according to the regrouped mutant types, the behavior of amutant and the original program,

and dynamic program slices between a mutant and the original program.

The method is presented as a 5-tuple (M7 ,C, P, M,0). MT represents the five

classified mutant groups.
MT1: statement analysis.
MT 2. domain perturbation.

MT 3. operand (variable or constant) replacement on the use—part (right hand side) of
a selected original statement.

MT4: operand (variable) replacement on the define—part (left hand side) of a selected

original statement.
MT5: control dependency variation.

C represents five possible situations by comparing results of a selected variable in the

origina program P and amutant M for agiven test case and checkpoint.
Case A: both P and M have the same correct result. M isstill alive.
CaseB: P hasacorrect result but M has an incorrect one. M iskilled.
Case C: both P and M have incorrect results but different. A7 iskilled.
Case D: both P and M have the same incorrect result. M istill alive.
CaseE: P hasanincorrect result but A has acorrect one. M iskilled.

The given test case is constructed to kill A, i.e., the reachability and necessity conditions
with regard to the mutated statement on line S of M (Sys) and the original statement on
line S of P (Sp) aresatisfied. Then, theinformation propagated from .S, to the checkpoint
makes the above five different situations. A will always be killed in Cases B, C, and E
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which implies the sufficiency conditionis also satisfied. Test cases with resultsin Cases A
and B are non—error—revealingtest cases, and thosein Cases C, D, and E areerror—revealing
test cases. After constructing a test caset to kill A, we verify one output variable v at a
time by classifying v into one of the above five cases based on itsvaluein P and M.

For CaseE, wealwaysfirst comparetheoriginal statement Sp» with the mutated statement
Sy toverify whether Sy, isthe correct version of the faulty statement Sp. If the verification
is true, we have located the faulty statement Sp and we fix it with the correct version Sy, .

Otherwise, the other cases are considered.

P and M represent the scope of selected dynamic dlices of program £ and mutant M,
respectively. Inorder to do program dependency analysis and to cover the maximum scope
of suspicious statements, dynamic slices of EDPS that are chosen as the basis of dynamic
instrumentation for debugging are employed for the analysisin thischapter. Dyn(P,v,1,1)
thus represents an expanded dynamic program slice. For killing a mutant, the output results
of the original program and a mutant are compared. The location parameter of suspicious
dynamic slicesis often set to the end of program execution, and Dyn( P, v, [, 1) is presented
as Dyn(P,v,$,t).

Furthermore, we employ the forward dynamic slice[HRB90] to observethe propagation
of thelocal effect after the execution of the original statement and the mutated statement on
line S (Sp and Sys). Inother words, the concept of forward dynamic dlicing is to indicate
the propagation of program state changes from the place of necessity condition to the
checkpoint (usually the end of program execution), i.e., the information flow regarding the
sufficiency condition. A forward dynamic slice, F' Dyn(P, x, S,t), includes all statements
actually and potentially affected by the variable = at line S for test case t where the actual
and potentia effect have the same semantics as those in exact dynamic slices (DPS) and
potential effect slices (PES) mentioned in Chapter 3.3.

Different scopes of selected dynamic slicesin’? and M arelisted as follows.
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e Dyn(P,v,$,t) and Dyn(M,v,$,t) with respect to the selected variable v as men-
tioned above at location / (usually the end of execution) for test case ¢, respectively.

These two dynamic slices are the basis for debugging.

e scope of Dyn(P,v,$,t) and Dyn(M,v,$,t) before line S where the statement is
mutated.

e scopeof Dyn(P,v,$,t)and Dyn(M,v,$,t) after line S.

e Dyn(P,xz,5,t)and Dyn(M, ', S,t) wherea' isthevariablereplacing = in P online
S formutant M (i.e., x inSpand 2’ in Sy;). They represent dynamic slicesregarding

the satisfaction of reachability and necessity conditions of P and M, respectively.

e forward dynamic slices F Dyn(P, x,S,t) and F Dyn(M,z',5,t) where 2’ is the

mutation variable of z in P online S for mutant M.

If line S isinside aloop while considering the scope of Dyn(P,v,$,t) and Dyn(M,v,$,t)
before/after line S, the first appearance of S isused. In the meantime, the last appearance
of S'isusedin Dyn(P,z,S,t) and Dyn(M, ', S,t).

Sp and Sy, arethe code specified by mutation—based testing criteria. If they arenotinthe
basis dynamic slicesfor debugging (i.e., Dyn(P,v,$,t) and Dyn(M, v, $,1), respectively),
then they do not contributeto the programfailures. Inthiscase, further dependency anaysis
on them could not provide helpful information for fault localization. Therefore, we always
first examine whether Sp and Sy, arein Dyn(P,v,$,t) and Dyn(M,v,$, 1), respectively.

Within the scope of Dyn(P,v,$,t) and Dyn(M,v,$,t) before S, the execution paths
between P and M are identical because both programs are executed against a given test
case and statements aboveline S of both programsarethe same. The sufficiency condition
is exposed in the scope of Dyn(P,v,$,t) and Dyn(M,v,$,t) after S. We thus examine
the situation of different execution paths between P and M in the scope of Dyn(P, v, $,1)
and Dyn(M,v,$,t) after S for further analysis.

O represents the logical operations for dynamic slices of P and M. This includes
intersection (P N M), union (P U M), and two difference operations (P — M and
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M — P). Thesefour operations help us focus on the common or different parts between

two selected dynamic slices and thus reduce the search domain.

By employing the proposed method (M7 ,C, P, M, O), we suggest a possible region

for further analysis. The possible results from the analysis are:
e N/A: not applicable;
e N/I: no information can be derived;
e Never: faulty statements will never appear in the region;

e Sometimes. faulty statements will sometimes appear in the region. In this case, we
will evaluate the possibility of containing faults within the reduced region by labeling
-1, 0, and 1 for the lowest, normal, and highest chance, respectively; and

e Always. faulty statements are always in the region. This is the most promising

result.

The analysis table of this method is too large to be listed here, and only a few entries
show promising results. We thus summarize a set of effective hints derived from thorough
examination and illustrate them according to groups of M7 in the following sections.
Notation and terminology in Chapter 4 and Appendix A are reused here.

For each M7 group, we first illustrate features of dynamic dlices in P and M that
are target regions to be examined. Then, detailed analysis is presented in the following
hierarchical order: 1) whether Sp and Sy, being in Dyn(P,v,$,t) and Dyn(M,v,$,1),
respectively; 2) the scope of Dyn(P,v,$,t) and Dyn(M,v,$,t) after line S; and 3) the
five possible cases of C. In the second level, the situation of different execution paths
between P and M in Dyn(P,v,$,t) and Dyn(M,v,$,1) after S are analyzed.

5.2.2 Statement Analysis— M7T1

The result of statement coverage after killing san mutants is the same as the one

of branch/block coverage testing methodologies. Only reachability is considered in the
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statement, block, or branch coverage, and no further information is provided. We thus
focus on sdl mutants. In M7 1, the necessity condition is assumed to be satisfied when
reachability is achieved. However, the execution flow of the sufficiency condition of sdl
mutants has not been examined. The scope of Dyn(P,v,$,t) and Dyn(M,v,$,1) after S,
which exposes the sufficiency condition, is therefore analyzed.

For dynamic slices regarding the original and mutated statements (Dyn (P, x, S,t) and
Dyn(M, «', S, 1)) of sdl mutants, Dyn(M, 2', S, t) is undefined because of the deletion of
S in M. Dyn(P,z,5,t) is defined only if Sp online S is an assignment statement and
x is the defined variable. So is the case for forward dynamic slices ' Dyn(P, x, S,t) and
FDyn(M, ', S,t).

Because Sp is deleted in M, our first consideration whether Sp and Sy, are in
Dyn(P,v,$,t)and Dyn(M,v,$, 1), respectively, hasonly twocases: Sp &€ Dyn(P,v,$,t)
or Sp € Dyn(P,v,$,1).

Casel. Sp & Dyn(P,v,$,t)

Inthis case, Dyn(P,v,$,t) equals Dyn(M,v,$,t), and we cannot obtain extrainfor-
mation from mutant A . Therefore, heuristicsin Chapter 4 by varying variableswith correct

or incorrect values are employed to reduce the search domain.

Case2. Sp € Dyn(P,v,$,1)

The effect of Sp isshownin both 73 and M 3 which are examined for further analysis.

Case 2.1 The same execution path in the scope of Dyn(P,v,$,¢) and Dyn(M,v,$,t)
after line S.

This case impliesthat the effect without executing S in M does not change the eval-
uation of predicate statements that are dependent on Sp, if any. If Sp does not affect
any predicate statement that affectstheresult, then thevariablev in Dyn(P,v,$,t) is
only affected by the data dependency from Sp. Inthis case, it isunlikely that # and

M will have the same value on v (i.e., Cases A and D), unless Sp is an assignment
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Dyn (P!V1$1t) Dyn (M,V,$,t) \\\ Dyn (P’Vl$’t)',"' Dyn (M,V,$,t)

Dyn (P,v,$,t) ,_.x"byn (M,v,$.1)

@ (b) (€)

— having statements in the path of the corresponding  Dyn (P,v,$t) or Dyn (M,v,$t)

-----x« no Statements in the path of line corresponding  Dyn (P,v,$,t) or Dyn (M,v,$,t)

Figure 5.3 Examples of the different execution paths between the scope of Dyn(P, v, $,t)
and Dyn(M,v,$,t) afterline S. Dyn(P,v,$,1) goesthrough the right hand side path and
Dyn(M,v,$,t) goesthe left hand side path. Three possible cases for having statementsin
the different paths within the scope of Dyn(P, v, $,t) and Dyn(M, v, $,t) after S indicated
in(a), (b), and (c).

statement with no effect on the defined variable. On the other hand, if Sp affects
some predicate statements that affect the result, then the value of the defined variable
in Sp after or before the execution of Sp will always choose the same path decided

by the predicate statements. These two cases are as follows.

Case 2.1.1 Sp does not affecting any predicate statement that affects the result.

For Case A where both P and M have the same correct result, we suggest
ignoring { Dyn(P,v,$,t)— Dyn(M,v,$,t)} and focusing on other regions. In
this category (Case 2.1.1), Sp affects v in P1 via data dependency. If Sy is
in the difference set, then it must be coincidentally correct letting P as well as
M have the same correct result. We prefer to postpone the examination of the
coincidental correctness after other regions being explored.

For Case D where both P and M have the same incorrect result, we suggest
examining { Dyn(P,v,$,t) N Dyn(M,v,$,t)} first. Statements involved in

both incorrect execution have more chance to be faulty. The faulty statement
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isunlikely in Dyn(P,x, S,t) because Dyn(P, x, S,t) isrelated to Sp whichis
removedin M. If Syisin Dyn(P,z,5,t), there exists at least one instance of

coincidental correctness letting M have the sameincorrect result as P has.

For Case E where P has an incorrect result but M has a correct one, we
suggest examining { Dyn(P,v,$,t) — Dyn(M,v,$,1)} first, i.e, statements
only involved in the execution of incorrect results. In Case E, S; should
be in {Dyn(P,v,$,t) because of the incorrect result of P. If S; isalso in
Dyn(M,v,$,1), then the effect of skipping Sp in M must adjust the effect of
executing Sy to let M have a correct result. We defer the examination of this

coincidental situation after statements leading to incorrect results are examined.

For Cases B and C, no significant hints are concluded.

Case 2.1.2 Sp affects predicate statements that affect the result.

For Cases A, D and E, we obtain the same hints as indicated in Case 2.1.1

mentioned above.

Case 2.2 Different execution pathsbetweenthescopeof Dyn(P, v, $,t)and Dyn(M, v, $,t)
after line S (e.g., the bold paths in Figure 5.3 — referred to asregion R).

Line S either affects the decision of a predicate statement or is a predicate statement
itself. Results of M are affected by the deletion of line S and/or the possible effect

from the faulty statement 5.

For Cases A and D where both P and M have the same result, we suggest ignoring
statements in the region £ (i.e., statements in the bold paths of Figure 5.3). If 5, is
in R, then there exists one instance of coincidental correctness for 2 and another one

for M tolet P and M have the same result.

For Case B where P has acorrect result but M has an incorrect one, we cannot derive

further hints because the cause of theincorrect result of A could just be thesdl effect.
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5.2.3 Domain Perturbation — M7 2

The program dependency graphs of the original program and mutants in this category
are the same because no new variables are introduced for mutants. The variable = of
Dyn(P,z,5,t) and Dyn(M, ', S,t) is the variable being perturbed, if any. If the mutant
operatorsare applied to aconstant of the statement at line S, then the defined variablesin Sp
and Sy are used for Dyn(P,x,S,t) and Dyn(M,«’, S, 1), respectively. Dyn(P,x, S, 1)
and Dyn(M,«’,5,t) do not exist, if there is no defined variable at line 5. Generally
speaking, if the existence of faulty statement .Sy is manifested while satisfying the necessity
condition, then Dyn(P, x, 5, t) (if existing) and statements affected by the variable x at Sp
(i.e, FDyn(P,x,5,t)) should be examined first.

Therearefour possible casesto be considered whether Sp and Sy, arein Dyn (P, v, $, 1)

and Dyn(M,v,$, 1), respectively.

Casel. Sp & Dyn(P,v,$,t) and Sy & Dyn(M,v,$,t)

In this case, Dyn(P,v,$,t) equals Dyn(M,v,$,t) which is the same as Case 1 of
MT1in Section 5.2.2. We thus have the same conclusion — to employ heuristics in

Chapter 4 for reducing the search domain.

Case2. Sp & Dyn(P,v,$,t) but Sy € Dyn(M,v,$,t)
Case 3. Sp € Dyn(P,v,$,t) but Sy & Dyn(M,v,$,t)

If P is an array or pointer free program, these cases will not happen at all. There
are two possible scenarios for the behavior of the statement at line S of P and M (Sp
and Sy,) that have no array or pointer reference. First, the statement does not affect any
predicate statements. In this scenario, P and M will have the same execution path. The
program dependency graphs of P and M areidentical in this mutant category. Therefore,
Sp and Sy will have the same effect on theresult (i.e., Sp € Dyn(P,v,$,t) if and only if
Sy € Dyn(M, v, $,1)).
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Second, the statement affects at least one predicate statement. In this scenario, the
execution paths of P and M could be different. For expanded dynamic program slices,
if the predicate statement has control dependency on the result, both actual and potential
effect will be included in EDPS. Thus, we get the same conclusion as the one in the first
scenario, “Sp isin Dyn(P,v,$,t) if and only if Sy isin Dyn(M,v,$,1).”

However, itispossiblethat Sp isinaDPSand S, isnot in the corresponding DPS and
vice versa, especially for the second scenario — statements affecting at least one predicate
statement.

For P with array or pointer reference, if mutant operators of this category (M7 2) are
applied to theindex of array/pointer referencein P, then the program dependency graphs of
P and M can be different because the perturbation on the index of array/pointer reference
may introduce new variables. In this case, the claim “Sp € Dyn(P,v,$,t) if and only
if Sy € Dyn(M,v,$,t)" are not always true. Example 5.3 illustrates a similar but not
identical case.

Because these two cases (Cases 2 and 3) only happen for programswith array or pointer
reference while the execution of 5, affectsthe index of arrays (or pointers), it isadifficult

task to derive further information for debugging in this complicated circumstance.

Case4. Sp € Dyn(P,v,$,t) and Sy € Dyn(M,v,$,t)

Information flow from line S' to the end of program execution is shown in the scope
of Dyn(P,v,$,t) and Dyn(M,v,$,t) after line S, which indicate the propagation of the
effect after Sp and 5, are executed, respectively. Therefore, we examine Dyn (P, v, $,1)
and Dyn(M,v,$,t) after S for further analysis.

Case 4.1 The same execution path in the scope of Dyn(P,v,$,¢) and Dyn(M,v,$,t)
after line S.

The effect of executing Sy, in M selects the same path in predicate statements, which
are dependent on S,;, as Sp does in P. While analyzing whether line S affects
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any predicate statement that affects the result, we have the same generic analysis as

Case 2.1 of M7 1in Section 5.2.2 and examine the following two subcases.

Case 4.1.1 Sp does not affect any predicate statement that affects the result.

For Case A where both P and M have the same correct result, we suggest ig-
noring Dyn(P,z,S,t)U{F Dyn(P,z,S,t)N (Dyn(P,v,$,t)after )} which
implies the faulty statement .5, isunlikely in the above region. In thiscategory
(Case 4.1.1), Sp affects v in Dyn(P,v,$,t) via data dependency. If Sy isin
the above region, then it must be coincidentally correct letting P and M have
the same correct result. We prefer to postpone examination of coincidenta

correctness until other regions are explored.

For Cases C, D and E where P has an incorrect result, we suggest examin-
ing Dyn(P,x,5,t) U {FDyn(P,x,S,t)inthe scope of Dyn(P,v,$,t) after
S} because the faulty statement is triggered while M is killed. The neces-
sity condition is satisfied via Dyn(P, x, S,t), and the sufficiency condition is
propagated via F' Dyn( P, x, S,t) inthe scope of Dyn(P,v,$,t) after S. More
specifically, the necessity condition is not significant enough to distinguish P
and M in Case D, and the effect of both the necessity condition and the faulty

statement makes M have the correct result in Case E.

For Case B, we do not know that the incorrect result of A/ is caused by the
necessity condition, the faulty statement, or both. No further hints can be

derived from this complicated unknown situation.

Case 4.1.2 Sp affects predicate statements that affect the result.

We accomplish the same hints of Case 4.1.1 mentioned above.

Case 4.2 Different execution pathsbetweenthescopeof Dyn(P, v, $,t)and Dyn(M, v, $,t)
after line S' (e.g., the bold paths in Figure 5.3 — referred to as region R).

For Case A where both P and M have the same correct result, we would suggest
ignoring statements in the union of Dyn(P,v,$,t) and Dyn(M,v,$,t) after line S
but not in the intersection of Dyn(P,v,$,t) and Dyn(M,v,$,t) (i.e., the scope of
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{(Dyn(P,v,$,1) U Dyn(M,v,$,1)) — (Dyn(P,v,.$,1) 0 Dyn(M,v,$,1))} after
line S). Otherwise, an instance of coincidental correctness must exist to let both P

and M generate the same correct result if the faulty statement is in the above region.

For Case C where P and M have different incorrect results, the faulty statement
could bein {(Dyn(P,z,S,t)N (Dyn(P,v,$,t) before 5)) U (FDyn(P,x,S,t)N
(Dyn(P,v,$,t) N Dyn(M,v,$,t) after S)}. The faulty statement is triggered by
either the flow to satisfy the necessity condition (the former subset) or the flow

propagated for the sufficiency condition (the latter subset).

For Case D whereboth P and M havethe sameincorrect result, we suggest examining
{Dyn(P,v,$,t)NDyn(M,v,$,t)} becauseof thesameincorrect result that iscaused
by the faulty statement 5, under the single faulty statement assumption. In this case,

the region R will be ignored.

For Case E where P has an incorrect result but A has a correct one, we suggest
examining {Dyn(P,v,$,t) — Dyn(M,v,$,t)} andignoring {(Dyn(M,v,$,t) —
Dyn(P,v,$,t)) beforeline S} because M could skip the execution of the faulty

statement and generate a correct result.

For Case B, no further hints can be derived for the same reason mentioned in
Case4.1.1.

5.24 Operand Replacement on the Use—part of a Statement — M7 3

Inthiscategory, P and M havethe same program dependency graph bel ow the statement
at line S where mutant operators are applied. The necessity condition lets the value of the
operand in Sp not equal the value of the replaced operand in Sy;. Dyn(P,x,S,t) and
Dyn(M,«', S,1), if defined, are different because of the operand replacement.

If the faulty statement S istriggered and causes program failures while satisfying the
necessity condition, then statements leading to the satisfaction of the necessity condition
as well as statements being affected by the execution of Sp and 5, should be examined.
Statements of the former case are in { Dyn(P, x, S,t) U Dyn(M,2',5,t)}, and those of
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the latter onearein { FF-Dyn(P, x,S,t) U F'Dyn(M,2',5,1)}. These two setswill be often

referred to in the following analysis.

Casel. Sp & Dyn(P,v,$,t) and Sy & Dyn(M,v,$,t)
Case2. Sp & Dyn(P,v,$,t) but Sy € Dyn(M,v,$,t)
Case 3. Sp € Dyn(P,v,$,t) but Sy & Dyn(M,v,$,t)

Thesame hintsfor Cases 1, 2, and 3 of M7 2in Section 5.2.3 arederived for M7 3 and
aresummarized asfollows. For Case 1, Dyn(P,v,$,t)isequal to Dyn(M,v,$,t). Cases2
and 3 only happen for programswith array or pointer reference under certain circumstances
because P and M have the same program dependency graph after the statement at line S.
In other words, “Sp € Dyn(P,v,$,t) if andonly if Sy € Dyn(M,v,$,1)” istrue for
programs without array or pointer reference. Although, it is possible that Sp isin a DPS
and S, isnot in the corresponding DPS and vice versa.

For these three cases, heuristicsin Chapter 4 are employed to reduce the search domain.

Case4. Sp € Dyn(P,v,$,t) and Sy € Dyn(M,v,$,t)

Statementsinthe scope of Dyn (P, v,$,t) and Dyn(M, v, $,t) after line S areexamined
because they indicate the propagation of the effect after the execution of Sp and Sy;.

Case 4.1 The same execution path in the scope of Dyn(P,v,$,¢) and Dyn(M,v,$,1)
after line S.

This case implies that the effect of executing Sy, in M selects the same path in
predicate statements, which are dependent on S, as.Sp doesin P. Fromtheanaysis
in Case 2.1 of M7 1 in Section 5.2.2 and Case 4.1 of M7 2 in Section 5.2.3, we
investigate two subcases (Case 4.1.1 and 4.1.2) for whether Sp affects any predicate

statement that affectstheresult, and derivethe same hintsfor both subcasesasfollows.
For Case A where both P and M have the same correct result, we suggest ignoring
statements in {(Dyn(P,z,5,t) U Dyn(M, ', S,t)) in the scope of Dyn(M,v,$,1)
before S} as well as {(F' Dyn(P,x,5,t) U FDyn(M,«',5,t)) in the scope of
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Dyn(M,v,$,t) after S}. If the faulty statement S; is in the dynamic slices as-
sociated with M, then either the necessity condition of Sy, offsetsthe effect of S to
let M have the same correct result as P or both the effect of the necessity condition
and Sy do not make an incorrect result simultaneously. We defer the examination
of this unusual situation, and thus assume that S is unlikely in Dyn(M,v,$,t) by
ignoring the statements leading to and being affected by the necessity condition in
M.

For Case B where P has a correct result but M has an incorrect one, there are two
possibleregionsforinvestigation: {(Dyn(P,x,S,t)UDyn(M,«’,S,t))inthescope
of Dyn(M,v,$,t)before S} U {(F Dyn(P,x,S5,t)UF Dyn(M,z', S, t))inthescope
of Dyn(M,v,$,t) ater S} and {Dyn(M,v,$,t) — Dyn(P,v,$,¢)}. Thefirstone
isfor Sy in Dyn(P,v,$,t) with aninstance of coincidental correctnessthat is broken
by the necessity condition in A/. The second one is for Sy not in Dyn(P,v,$,t)
but triggered in Dyn(M, v, $,t) to generate an incorrect result of M. However, if
the incorrect result of M is only caused by the necessity condition which implies

Sy & Dyn(M,v,$,1), then the second region is not effective.

For Case C where P and M have different incorrect results, we suggest examining
{(Dyn(P,x,S5,t) U Dyn(M, 2, S,t)) in the scope of Dyn(M,v,$,t) before S} U
{(FDyn(P,x,5,t) U FDyn(M,z',5,t)) in the scope of Dyn(M,v,$,t) after S}.
The faulty statement S is triggered when the necessity condition is satisfied and/or

the effect of executing 5y, is propagated to the end.

For Case D where both P and M have the same incorrect result, we suggest ignoring
statements in {(Dyn(P,z,5,t) U Dyn(M, ', S,t)) in the scope of Dyn(M,v,$,1)
before S} as well as {(F' Dyn(P,x,S5,t) U FDyn(M,z',5,1)) in the scope of
Dyn(M,v,$,t) ater S}. For Sy & Dyn(M,v,$,t), the effect of the necessity
condition in M must generate the same incorrect result as P. That is an unusual
situation. We thus ignore the statements indicated above. On the other hand, if
Sy € Dyn(M,v,$,1), then the same incorrect result of M is caused by S; or the
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combination of the necessity effect and S;. Because S isin Dyn(P,v,$,t) for
Case D, theregion { Dyn(P,v,$,t) N Dyn(M,v,$,t)} or the region mentioned in

Case C isworth being examined as the second choice.

For Case E where P has an incorrect result but M has a correct one, we suggest
examining the region mentioned in Case C and ignoring the region mentioned in
Case A. This combines the argumentsinCase C for an incorrect result of P and the

oneinCase A for acorrect result of M.

Case 4.2 Different execution pathsbetweenthescopeof Dyn(P, v, $,t)and Dyn(M, v, $,t)
after line S (e.g., the bold paths in Figure 5.3 — referred to asregion R).

For Case A where both P and M have the same correct result, it is likely that the
faulty statement S is not in the different execution paths P and A, i.e., the region
R. Because P and M have different execution paths, if the faulty statement isin the
above region, then there exist two different occurrences of coincidental correctness
in P and M to generating the same correct result at the same time. We postpone the

examination of thisunusual situation by ignoring the region R.

For Case B where P has a correct result and M has an incorrect one, there are
two possibleregions for investigation: {(Dyn(P,x,S,t) U Dyn(M,z’,S,t))inthe
scope of Dyn(M,v,$,t) before S} U {(F Dyn(P,x,5,t) U FDyn(M,2',S,t))in
the scopeof Dyn(M,v,$,t) ater S} and {Dyn(M,v,$,¢)— Dyn(P,v,$,t)}. The
firstoneisfor S¢in Dyn(P,v,$,t) withaninstance of coincidental correctnessthat is
broken by the necessity conditionin M. At the same time, we can ignore statements
in{RN Dyn(M,v,$,t)} because of the different execution paths between the scope
of Dyn(P,v,$,t) and Dyn(M,v,$,t) after line S. The second one is for Sy not
in Dyn(P,v,$,t) but triggered in Dyn(M, v, $,t) to generate the incorrect result of
M. However, if the incorrect result of A is only caused by the necessity condition

which implies S; ¢ Dyn(M,v,$, 1), then the second region is not effective.

For Case C where P and M have different incorrect results, we cannot conclude

further hints except the region suggested at the beginning of this category M7 3,
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{(Dyn(P,x,S5,t) U Dyn(M, ', S,t)) in the scope of Dyn(M,v,$,t) before S} U
{(FDyn(P,x,5,t) U FDyn(M,z',S,t))inthe scope of Dyn(M,v,$,t) after S'}.

For Case D where both P and M have the same incorrect result, we suggest first
examining { Dyn(P,v,$,t) N Dyn(M,v,$,%)} and ignoring R because the same
incorrect results of P and M could be generated by the execution of the faulty
statement Sy inboth P and M. If Sy isin R thatimpliesSy in{Dyn(M,v,$,t) N R}
for Case D, then the effect of the necessity condition in A/ must generate the same
incorrectresult as P. Thatisanunusual situation. Wethusignore statementsinz. For
the samereason, whileconsideringthecase Sy ¢ M1, wecouldignorethe statements
in {(Dyn(P,x,S,t) U Dyn(M,z',S,t)) in the scope of Dyn(M,v,$,t) before S}
aswell as{(F Dyn(P,x,S,t) U FDyn(M,2', S,t)) inthe scope of Dyn(M,v,$,1)
after S'}.

For Case E where P has an incorrect result but M has a correct one, we suggest
examining the region mentioned in Case C and ignoring the region R asindicated in
Case A. This combines the argumentsinCase C for an incorrect result of P and the
one in Case A for a correct result of M. Moreover, if the faulty statement Sy isin
both Dyn(P,v,$,t) and Dyn(M,v,$, 1), then either the necessity condition offsets
the effect of S to let M have the correct result or both the effect of the necessity
condition and 5, do not contribute to the correct result of A/. The examination of
this complicated unusual situation is deferred. We thus can ignore statements in
{Dyn(P,v,$,t) N Dyn(M,v,$,t)} at the beginning and re-examine them later if
needed.

5.2.5 Operand Replacement on the Define—part of a Statement — M7 4

Inthiscategory, P and M have the same program dependency graph above the statement
at line S where mutant operators are applied. Dyn(P, x, S,t) and Dyn(M, ', S,t) arethe

same because the right hand side (use—part) of line S is not changed.
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Let 5, bethelast statement which defines «” beforeline S (i.e., the reaching definition
of =" atline S) and 5, bethelast statement which defines = beforeline S (i.e., the reaching
definition of « at line S). Assumetheuse—partinlineS isg¢(y), i.e, x = ¢(y) in Sp and

' = g(y) in Syy.

P M
S]/w r = y S]/W T = ’
Sproxl = Sproal =
Spr x=g(y); Sv: @' =g(y);

There are four different types of the necessity condition while x and =’ are compared
before and after the execution of Sp and Sy, at lineS. The least restricted one (/V0) does
not make any comparison. As long as the reachability of the statement is satisfied, we
assume the necessity isalso achieved. The second one (V1) requires that the value of ¢(¥)
does not equal the value of «’ before S is executed, i.e., g(y) of S # «’ of Sp. But thevalue
of ¢(7) could equal the value of « before the statement at line S isexecuted. The third one
(N2) requiresthat the value of ¢(i) does not equal the value of « before S is executed, i.e.,
g(y) of S = x of S},. But the value of ¢(i) could equal the value of «’ before the statement
a line S is executed. The most restricted one (V3) is the combination of N1 and N2,
i.e, g(y)of S # a2’ of Sp and ¢(y) of S # x of 5),. Inthisstudy, we chose the most
restricted one (/N 3) as the necessity condition to ensure that different program states exist
between P and M right after the execution of Sp and 5y,.

Inthe scope of V3, not only variablesz and «’ of line S but also =’ of S, aswell as x of
S areinvolved to satisfying the necessity condition. In addition to Dyn(P, x, Sp,t) and
Dyn(M, «', Sy, 1) that are the same as mentioned above, we introduce Dyn( P, z', Sp, 1)
and Dyn(M, z, S},,1) for later usage. For the same reason, we introduce two new forward
dynamic slices F' Dyn(P,«', Sp,t) and F' Dyn(M, x, Sy,,t) associated with S, and S5},,

respectively. If the faulty statement S is triggered and causes program failures while
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satisfying the necessity condition, then statements |l eading to the satisfaction of the necessity
condition, { Dyn(P, x, Sp,t)UDyn(P,a’, Sp, t)UDyn(M, x, S}, 1)} aswell as statements
being affected by the execution of Sp and Sys, { F Dyn(P,z,5,t) U FDyn(M,a',S,t) U
FDyn(P, ', Sp,t) U FDyn(M,x, S}y, 1)}, should be examined.

Casel. Sp & Dyn(P,v,$,t) and Sy & Dyn(M,v,$,t)

Because Sp and Sy, do not affect the results of P and M, Dyn(P,v,$,t) equals
Dyn(M,v,$,t). Only Cases A and D whereboth P and M have the same result will occur
in this case, and we cannot derive further hints. Thus heuristics in Chapter 4 are needed to

reduce the search domain.

Case2. Sp & Dyn(P,v,$,t) but Sy € Dyn(M,v,$,t)
Case 3. Sp € Dyn(P,v,$,t) but Sy & Dyn(M,v,$,t)
Case4. Sp € Dyn(P,v,$,t) but Sy € Dyn(M,v,$,t)

For these three cases, at least one of the origina or the mutated statement affects
the results of P or M, respectively. Except for the forward dynamic dlices, the same
analysisis applied to these three cases. F' Dyn(P,x,S,t)inCase2(Sp ¢ Dyn(P,v,$,t))
and F'Dyn(M,a',5,t)inCase 3 (Sy ¢ Dyn(M,v,$,t)) should be ignored because the
corresponding statements does not affect the results. Detailed analysis for these three cases
is the same as the one mentioned in Case 4 for M7 3 in Section 5.2.4. Therefore, we only

present the derived hints as follows.

Case 4.1 The same execution path in’?3 and M 3.

For Case A where both P and M have the same correct result, we suggest ig-
noring statements in {(Dyn (P, z,Sp,t) U Dyn(P,a', Sp,t) U Dyn(M, x, S}, 1))
in the scope of Dyn(M,v,$,t) before S} as well as {(FDyn(P,z,S,t) U
FDyn(M,«',5,t) U FDyn(P,2',5p,t) U FDyn(M,z,Sy,t)) inthe scope of
Dyn(M,v,$,1) after S}.
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For Case B where P has a correct result but A/ has an incorrect one, there are
two possible regions for investigation:  {(Dyn(P,x,Sp,t) U Dyn(P,2', Sp,t) U
Dyn(M, x, S}, t))inthescopeof Dyn(P,v,$,t)beforeS} U {(FDyn(P,z,S,t)U
FDyn(M,«',5,t) U FDyn(P,2',5p,t) U FDyn(M,z,Sy,t)) inthe scope of
Dyn(P,v,$,t) ater S} and {Dyn(M,v,$,t) — Dyn(P,v,$,t)}.

For Case C where P and M have different incorrect results, we suggest exam-
ining {(Dyn(P,x,Sp,t) U Dyn(P,2',Sp,t) U Dyn(M,z,S5),,1)) in the scope
of Dyn(P,v,$,t) before S} U {(FDyn(P,z,5¢) U FDyn(M,z',S,t) U
FDyn(P, ', Sp,t) U FDyn(M,x,5),,1)) inthescopeof Dyn(P,v,$,1t) after 5}.

For Case D where both P and M have the same incorrect result, we suggest ig-
noring statements in {(Dyn(P, z,Sp,t) U Dyn(P,2’, Sp,t) U Dyn(M, x, Sy, 1))
in the scope of Dyn(M,v,$,t) before S} as well as {(FDyn(P,z,S,t) U
FDyn(M,«',5,t) U FDyn(P,2',55,t) U FDyn(M,z,S},,t)) inthe scope of
Dyn(M,v,$,t) after S}. Moreover, theregion { Dyn(P,v,$,¢) N Dyn(M,v,$,1)}

or the region mentioned in Case C is worth being examined as the second try.

For Case E where P has an incorrect result but A has a correct one, we suggest
examining the region mentioned in Case C and ignoring the region mentioned in
Case A.

Case 4.2 Different execution pathsbetweenthescopeof Dyn(P, v, $,t)and Dyn(M, v, $,t)
after line S (e.g., the bold paths in Figure 5.3 — referred to asregion R).

For Case A where both P and M have the same correct result, it is likely that the
faulty statement 5, is not in the different execution paths of P and M, i.e., theregion

R. We thusignore statementsin R.

For Case B where P has a correct result but A/ has an incorrect one, there are
two possible regions for investigation:  {(Dyn(P,x,Sp,t) U Dyn(P,2', Sp,t) U
Dyn(M, x, S}, t))inthescopeof Dyn(P,v,$,t)beforeS} U {(F Dyn(P,z,S,t)U
FDyn(M,«',5,t) U FDyn(P,2',5p,t) U FDyn(M,z,Sy,t)) inthe scope of
Dyn(P,v,$,t) ater S} and {Dyn(M,v,$,t) — Dyn(P,v,$,t)}.
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For Case C where P and M have different incorrect results, we cannot conclude
further hints except the region suggested at the beginning of this category M7 4,
{(Dyn(P,x,Sp,t) U Dyn(P,a2',Sp,t) U Dyn(M,z,S),,1)) in the scope of
Dyn(P,v,$.1) before S} U {(FDyn(P,z,5,t) U FDyn(M,z',5,t) U
FDyn(P,2',Sp,t) U FDyn(M,x,S5),1)) inthe scope of Dyn(P,v,$,t) after
S}.

For Case D where both P and M have the same incorrect result, we suggest first ex-
amining { Dyn(P,v,$,t) N Dyn(M,v,$,t)} andignoring R. While considering the
case Sy ¢ Dyn(M,v,$,t), we could ignore the statements in {(Dyn (P, x, Sp,t) U
Dyn(P,z',Sp,t) U Dyn(M, x, Sy, 1)) in the scope of Dyn(M,v,$,t) before 5}
as well as {(FDyn(P,z,5,t) U FDyn(M,2',S,t) U FDyn(P,z',50,1) U
FDyn(M,x,S),t)) inthescope of Dyn(M,v,$,t) after S}.

For Case E where P has an incorrect result but M has a correct one, we suggest
examining the region mentioned in Case C and ignoring the region R as indicated
in Case A. Statements in { Dyn(P,v,$,t) N Dyn(M,v,$,1)} can beignored at the
beginning and re-examined later if needed.

5.2.6 Control Dependency Variation — M75

The glr and rsr mutants will radically change the transformation of execution flow and
cause mutants to be easily killed without manifesting the existence of faults. This extreme
situation is unlikely to provide useful information for debugging purposes. We therefore
focus on the control dependency variation made by predicate statements. In program
mutation, al hidden paths [DLS78] implicit in a compound predicate will be tested. The
compound predicateisunfolded into aseries of smplepredicatesthat all paths are exercised
in mutation-based testing. For simplicity, we assume that al compound predicates have
been unfolded. The predicate statement in our analysisisasimplelogical expression at line
S. Sp istheorigina predicate statement of P, and S}, is the mutation predicate statement
of M.
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To satisfy the necessity condition of a given predicate statement, the values of all
variables in Sp and Sy, are considered to differentiate the evaluation results of Sp and
Sy. Thus, Dyn(P, x, S,t) and Dyn(M, 2’ S,t) will be the union of dynamic slices with
respect to al variables in Sp and S, respectively. So are the forward dynamic slices
FDyn(P,z,5,t)and FDyn(M,2', S, t). The statements leading to the satisfaction of the
necessity condition arein { Dyn(P, x,S,t) U Dyn(M,2',S,1)}, and those being affected
by the execution of Sp and Sy, arein {F Dyn(P,x,S,t) U FDyn(M,2',5,t)}. If faulty
statement Sy is triggered and causes program failures when the necessity condition is
satisfied, then these statements mentioned above should be examined. In consequence
of the satisfaction of the necessity condition, P and M will execute different statement
blocks decided by the predicate at line S. That impliesthere exist different execution paths
between the scope of Dyn(P,v,$,t) and Dyn(M,v,$,t) after line S (e.g., the bold paths
in Figure 5.3 — referred to asregion R).

Casel. Sp & Dyn(P,v,$,t) and Sy & Dyn(M,v,$,t)

Inthiscase, Dyn(P,v,$,t) equals Dyn(M,v,$,t) that isthesame asCase 1 of M71
in Section 5.2.2. We thus have the same conclusion — to employ heuristics in Chapter 4

for reducing the search domain.

Case2. Sp & Dyn(P,v,$,t) but Sy € Dyn(M,v,$,t)
Case 3. Sp € Dyn(P,v,$,t) but Sy & Dyn(M,v,$,t)

These two cases happen only when using Exact Dynamic Program Slicing (EDPS) to
construct Dyn(P,v,$,t) and Dyn(M,v,$,t). As for EDPS, the predicate statement at
line S will be included for both the potential and actual effect, and only Cases 1 and 4 are
considered. The analysis for Cases 2 and 3 based on EDPS is similar to the one of Case 4

asfollows.
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Case4. Sp € Dyn(P,v,$,t) and Sy € Dyn(M,v,$,t)

While examining the change of program dependency graph between P and M, we
classify the mutation predicate statements into two scenarios. 1) no variable replacement
involved in Sp and Sy;; and 2) replacement for the variable operand of the predicate
statement. The first scenario includesthelogical connector replacement (Icr), therelational
operator replacement (ror), and the constant replacement for the constant operand of a
predicate statement (crp and src, if any).

For the first scenario, the program dependency graphs of P and M are the same.
Because there exist different execution paths between the scope of Dyn(P,v,$,t) and
Dyn(M,v,$,t) after line S as mentioned above, this circumstance is the same as the
Case 4.2 of M7 2 in Section 5.2.3. For the second scenario, the program dependency
graphs of P and M have the same program dependency graph below the statement at line
S. This circumstance is the same as the Case 4.2 of M7 3 in Section 5.2.4. Results for
both circumstances are not repeated here.

In this category MT5, if a faulty predicate statement is a compound one and has a
wrong logical connector or relational operator, then two kinds of error—indicating mutants
will help us locate the fault. The first one is the mutant having the correct version of the
faulty predicate (i.e., the connector replacement of Icr or the rel ational operator replacement
of ror). The second one is the mutant with the LEFTOP or RIGHTOP of Icr as well as
the FALSEOP or TRUEOP of ror, where LEFTOP returns the left operand (the right is
ignored); RIGHTORP returns the right operand; FALSEOP always returns FALSE; and
TRUEOP aways returns TRUE. When trying to kill mutants in the second case, we are
forced to construct test cases for exercising certain hidden paths in order to satisfy the
necessity condition, and these test cases likely cause program failures because of different

execution paths decided by the faulty predicate.
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5.3 Summary

An effective approach to identify statements directly affecting the program failure,
Critical Slicing, has been developedin thischapter. 1tisderived from the statement deletion
mutant operator of mutation—based testing. An experiment to confirm the effectiveness of
critical slicingispresented in Chapter 6.2.4. Also, aset of suggestionsthat are deduced from
the information of mutation—based testing has been presented. We believe the suggestions
provide valuable hints to help users focus on the right place for further analysis. By
combining the approach proposed in this chapter with the heuristicsin the previous chapter,

we can further reduce the search domain for fault localization.
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6. A PROTOTYPE IMPLEMENTATION AND EXPERIMENTATION

This chapter gives an overview of the prototype debugging tool SPYDER to demonstrate
the feasibility of applying the proposed heuristics on fault localization. A set of prelimi-
nary experiment results is then presented to confirm the effectiveness of our approach by
providing examples.

The focus of the implementation overview is on the integration of our approach into
SPYDER. A brief summary of the software components and the user interface of SPYDER s
illustrated without details.

Asmentioned before, the purpose of fault localization isto provide areduced search do-
main for locating faults. Thus, the effectiveness of fault localization techniquesis eval uated
by the accuracy and the size of the reduced search domain. The information provided by
the first factor decides whether the reduced domain still contains faulty statements without
misleading users. At the same time, the second factor demonstrates the effort which could
be saved in terms of the number of the suspicious statementsto be examined. We therefore
develop two comparison methods to evaluate the effectiveness of the proposed heuristics
of Chapter 4 and the Critical Slicing of Chapter 5.1.

6.1 SPYDER: A Prototype Debugger

In order to support the new debugging paradigm proposed in Figure 1.1 of Chapter 1.2,
a prototype debugging tool, SPYDER [ADS91a, ADS91b, AS88, Agr9l], has been con-
structed to perform the slicing and backtracking functions. Features of SPYDER are briefly
summarized here. Readers are referred to [Agr91] for details of the implementation and
functions of SPYDER.

Heuristics in Chapter 4 and the Expanded Dynamic Program Slicing in Chapter 3.3
are integrated into SPYDER to enhance the capability of fault localization in the proposed
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Zhone/pan/dis/Ch6/deno/call.c

/% If the dates are in the same nonth, we can compute the numer of days
betueen then imnediately, =/
if (nonth2 nonthl)

retval ay? - dayl3

13
/% Are we in a leap year? =/
0) 11 ({year % 100

/# Start uwith days in the tuo months, #/
retval = day2 + {daysinlmonthl - 11 - dayl);

/% Add the days in the intervening months =/
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Threshold Selection
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> dynanic program slice on “retval” at line 54 for testcase # B
> run on testcase 7
stopped at line 59,
> continue
stopped at line 5d,
> dynanic program clice on “retval” at line 54 for testcage & 7
> run on testcase 8
stopped at line 59,
> continue
stopped at line 54,
> dynanic program slice on “retval” at line 54 for testcase & 8
> show the statements indicated by HE
> the actual rank threshold is 40,0%
the actual general threshold is 60,6%
show the statements indicated by H3

Heuristice Selection (Exact Dynanic Analysis)

H1 #* stmts in all available dynanic slices

H2 # stnts in the success set

H3 = stmts with lou inclusion frequency in the success set

H4 - stnts in the failure set but not in the success set {H3), plu
H5 = stats in every success slices .., studying the necesity of th
HE # stnts in the failure set

H? = stmts with high inclusion frequency in the failure set

H8 = stnts in every failure slices

HI # stuts in the failure set but not in the success set <H6 - HZ
H10 * stats in every failure slices but not in the success set {H§
Hi1 = stats in the success set but not in the failure set ... study
H12 * stats in every success slices but not in the failure set ...
H13 = stmts with high inclusion frequency in the failure zet (H7) 4
Hid ¥ predicate stnts of those stmts highlighted by the above heuri
H15 = stmts with high influence frequency in a selected failure zli
H16 - stnts with low influence frequency in a selected success slidg

C guess )( expand )( refine )(:

ok

)( reset )( cancel )

@h

Current Testcase #: 8 error-revealing

Figure6.1 X Window screen dump from SPyDER during a software debugging session
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Table 6.1 Software components of SPYDER.

Component Description
tstgen Generate a software test/debug directory structure.
tblgen Compile source files with debug mode (-g) and generate data

tables for debugging (e.g., program dependency graph).

tcgen Manually generate program test data with correctness confirmation.
mdb Invoke SPYDER X Window interface (main window).

tcmark Update the test case database (attributes of each test case).

gettcs Display all test cases.

tblview Display the datatables in a given software test/debug directory.

debugging paradigm. Table 6.1 summarizesthe software componentsof SPYDER. Figure6.1
provides a snapshot of the SPYDER interface during a debugging session with the heuristics

window.

6.1.1 Screen of SPYDER

The main window of SPYDER (i.e., the left window in Figure 6.1) is divided into five

parts from top to bottom as follows. [Agro1]
e FileLabel: containsthe name of the source file currently displayed in Source Panel.

e SourcePanel: displaysthe sourcecode being debugged alongwithlinenumbers. The
program execution counter (an arrow icon) and setting of break-points (stop icons)
are also displayed to the left of associated source lines. Statements in a selected
program slice or a search domain suggested by the heuristics will be highlighted in

reverse video.

e Commands Panel: contains buttons for functions provided by SPYDER that will be
discussed in the next section.



83

e Output Message Panel: displays functions (command buttons) being invoked and
the response messages.

e TestCaselLabel: containsthetestcase number currently being selected (or executed).

The main window of the heuristics selection (i.e., theright lower window in Figure 6.1)

is divided into three parts from top to bottom as follows.

e Label: indicatesthe dynamic dlicing option (i.e., approx. dynamic, exact dynamic,

or expanded dynamic) selected for this heuristics session.
e Selection Panel: containsalist of all available heuristics.

e Commands Panel: contains command buttons to traverse the heuristics family tree
proposed in Chapter 4.2. Details of these commands will be discussed in the next

section.

6.1.2 Functions of SPYDER

As mentioned above, we give only a brief summary of functionsin SPYDER. Details of
the fault localization (heuristics) facility are addressed here.
Functions provided by SPYDER can be characterized into the following five groups and

are invoked by clicking buttons in the Commands Panel.

e Slicing Criteria Selection: Four program slicing analysis criteria are available via
a set of toggle buttons that are located on the top row of the Command Panel and
arelabeled as static analysis, approximate dynamic analysis, exact dynamic analysis,
and expanded dynamic analysis. Users have to select one of the dlicing criteria to
obtain associated program slices. For dynamic analysis, atest case must be specified

via the testcase button.

e Program Slicing Commands. Functions in this set alow users to select not only a
program slicewith respect to the specified variable, location, and test casefor dynamic

analysis, but also components of the program slice such as data slice, control dlice,
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reaching definition, and control predicates. They are labeled as p-dice, d-dlice,
c-dlice, r-defs, and c-preds.

e Backtracking Commands: Like forward execution commands, users are allowed to
backtrack program execution one step at a time (stepback) or to a preset breakpoint
(backup).

e Traditiona Debugging Commands: These include setting and removing breakpoints
(stop and delete), rerunning and continuing the program execution (run and continue),
printing contents of selected variables (print and select-prt), and selecting test cases
(testcase).

e Fault Localization Commands. Heuristics supported by SPYDER are invoked by
clicking theheuristicsbutton. Moreover, SPYDER providesbasi ¢ operation commands
(subtract, add, intersect, swap, and save under the button basic_ops) to let users

conduct their own guessing strategies by dealing with one program slice at atime.

After clicking the heuristics button, SPYDER executes all enabled test cases one by one
to collect program dlices associated with the dynamic slicing criterion (approx., exact, or
expanded dynamic analysis) with respect to aspecified variableand location. Thenthemain
window of heuristics pops up. Users can select any heuristics based on their own judgment
or use the random guess, expand, or refine commands to traverse the heuristics family tree
proposed in Chapter 4.2. Each heuristic will highlight a set of suspicious statements as
a reduced search domain. The family tree indicates the superset and subset relationships
between its members. The expand button will traverse the tree in the bottom—up direction
to expand the search domain gradually. On the other hand, therefine button will traverse the
tree in the top—down direction to refine the search domain. The guess button will randomly
select a heuristic as afirst try. The purpose of fault localization is achieved by employing

these heuristics to obtain different reduced search domains.
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6.1.3 Implementation Features

The development environment of SPYDER ison a Sun SPARCstation 1 running SunOS-
4.1.1. SPYDERIs built into the GNU C compiler “gcc” [Sta90] and the GNU source-evel
debugger “gdb” [Sta89]. Instead of writing a new compiler and debugger, modifying an
existing compiler and debugger is preferred because our goa is to show the feasibility
of new approaches in a prototype. GNU tools are chosen because they are available for
delivery and support full ANSI C. Modification of “gcc” as well as “gdb” is illustrated
in[Agro1].

Whileintegrating heuristicsinto SPYDER, we have to choose the basic unit to be counted
— executable statements or nodes (vertices) in a program dependency graph — for the
inclusion and influence frequency.

A straightforward and intuitive way to define an executable statement is that a smple
statement ends with a semicolon except i f —statement, f or —statement, whi | e—statement,
and swi t ch/ case—statement. However, each of the following statements is counted as
one executable statement: i f (expression), for (expression; expression;
expression;), while (expression), switch (expression), and case
const ant - expr essi on The nodes (vertices) in a program dependency graph as de-
fined in [Agr91] correspond to simple statements and predicates where a simple statement
is defined as a statement with one memory modification (e.g., an assignment statement
“a = b + ¢”). Thefor (expression; expression; expression;) will be
represented by three vertices (one for each expression). Other than the f or —statement,
statements of the exceptions mentioned above will be represented by one vertex per state-
ment. However, if there is more than one variable reference in the read statement, then
each memory modification (i.e., variable reference) will be one vertex.

Because dynamic program slicing is the basic instrumentation supported by SPYDER
and is implemented based on the program dependency graph, all the dependency anaysis
is internally associated with nodes rather than executable statements. Although users
often deal with source code based on executable statements, information provided by

nodes of the program dependency graph will be more accurate than those of executable
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statements in terms of dependency analysis. In addition, thisis consistent between internal
representation and external display that statements suggested by a heuristic are based on the
corresponding nodes. We thus chose to implement the heuristics based on the nodes in a
program dependency graph to avoid confusion. However, theinterpretation of experimental
results based on executable statements addressed in [PS93] is similar to those based on the

vertices in a program dependency graph addressed in the next section.

6.2 An Experiment

We conducted a simple experiment to confirm the effectiveness and feasibility of the
proposed heuristics. Results of coverage and effectiveness analysis are presented. The
coverageanalysisdetermineswhether thefaulty statementsarein thereduced search domain
suggested by our approaches, and the effectiveness comparison evaluates the size of the
reduced search domain. Exhaustive experiments were not the goal of this dissertation and
are suggested as promising future work.

Heuristics proposed in Chapter 4 (i.e., heuristicswithout the assistance of further testing
information) and Critical Slicing proposed in Chapter 5.1 are examined. As mentioned in
Chapter 5.2, we did not conduct experiments for the heuristics and hints proposed in that
section because of the limitation of existing prototype tools.

In this section, we first describe the experimental methods as well as criteriafor com-
parison. Then, aset of tested programs that are faulty and have been previously referred to
in the software testing community is illustrated. Features of these programs vary in fault
types and locations that match previous studies of fault categories and frequenciesin major
projects[Lip79] that indicate 26% logic faults, 18% data handling faults, 9% computational
faults, .. ., etc. Although the sample space of tested programsis not large, wetry to balance
the features of our samples according to previous studies.

Finally, experimental results are presented in tables and figures with a detailed discus-
sion. Theresultsbased on thetested programsare positive and showsthat the proposed fault
localization technigques are a promising approach to handle faulty programs with similar

features of our tested programs.
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6.2.1 Evauation Methods

To evaluate the approaches of fault localization, two major criteria associated with the
reduced search domain and the given faulty programs should be explored: 1) whether the
reduced domain contains faulty statements, referred to as coverage analysis and 2) the
size of the reduced domain is compared with the size of the tested program as well as the

basis of dynamic dlices, referred to as effectiveness comparison.

Coverage Analysis

Thisanalysis assures that the search domains suggested by fault |ocalization approaches
still contain faulty statements and will not mislead users in further debugging. If the
reduced search domain contains faulty statements, then the coverage analysis result is
positive, otherwise it is negative. Results of analysis are presented in tables regarding
tested programs and heuristics. Moreover, for each heuristic, the percentage of total tested
programs with positive coverage analysis results is calculated. The higher the positive
coverage percentage a heuristic has, the more the affirmative effect of fault localization a

heuristic can promise.

Effectiveness Comparison

This comparison reflects the degree of improvement from the whole program to the
reduced search domain and also indicates the possible effort to be saved for locating faults
after employing approaches in fault localization.

For heuristics proposed in Chapter 4, the size of the reduced search domain suggested
by each heuristic is compared with the size of the original program aswell asthe size of the
root heuristic (H1). The following two ratios are computed for each heuristic with respect

to atested program.

R # of statements indicated by a heuristic (6.1)
“  #of executable statements of a tested program '

o # of statements indicated by a heuristic 6.2)
b # of statements indicated by H1 '
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Asmentioned in Chapter 6.1.3, the implementation of heuristicsin SPYDER is based on ver-

tices of the program dependency graph of a given tested program rather than the executable

statements of the program. The above two equations are rewritten as.

o # of vertices indicated by a heuristic (6.3)
“  #of verticesin the corresponding program dependency graph '

R # of verticesindicated by a heuristic (6.4)
b # of verticesindicated by H1 '

In Chapter 4.1, two kindsof threshold for heuristicswith threshold requirements (Heuris-

tics 3, 4, 7, and 13) areintroduced. They are measured in this experiment.

therank of the critical level
rank threshold = % of ranked lovels (6.5

_ #of vertices (stmts) within and below the critical level
general threshold = # of vertices (stmts) in a selected heuristic 66

A similar experiment based on executabl e statements in Equations 6.1 and 6.2 has been
reported in [PS93].

For Critical Slicing as described in Chapter 5.1, the size of a critical slice with respect to
atest case is compared with the size of the original program, the size of the corresponding
expanded dynamic program slice, and the size of the corresponding exact dynamic program
dice. Thefirst and second onesindicate the degree of improvement, and the last one shows
the difference between critical slices and exact dynamic program dlices in terms of size.
The following ratios are computed for every critical dice, i.e., every error—revealing test
case of tested programs. Because theway to build critical slices uses astatement asthebasic

unit, the ratios associated with critical slices are based on statements instead of vertices.

o # of statementsin aCS 6.7)
¢ #of executable statements of atested program '

R # of statementsina CS (6.8)
°  #of statementsin the corresponding EDPS '




R, =

# of statementsinaCS

While considering the degree of improvement presented in R,

# of statements in the corresponding DPS
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(6.9)

andR., weare

actualy interested in the reduction rate between our approaches and the selected domain,

i.e., the percentage of reduction from the size of a tested program to the size of region

suggested by a heuristic. Therefore, these ratios are redefined as follows to be easily

interpreted.

R,

Ra

1-R!

if R, >0
ifR, =0

if R, >0
if R, =0

if R, >0
ifR,,=0

if R. £ 0
if R. =0

if R%, 0
if R, =0

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

To compare effectiveness of heuristics by analyzing R, and R, a large value of a

ratio (reduction rate) indicates that the degree of effectiveness of the associated heuristicis

high. R.,, R., and R, indicate the effectiveness of corresponding critical dlices, i.e., the

reduction rate for the size of the search domains. The larger the value of a reduction rate

has, the more effective a corresponding approach is.
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Table 6.2 Tested programs. #ES, #V, #Bl, #De, #P-u, and #A-u represent the number of
executabl e statements, verticesin its program dependency graph, blocks, decisions, p—uses,
and all—uses, respectively.

Program | #ES #V | #Bl #De #P-u #A-u fault types

Pl: aveg 35 57|36 18 40 79 | wrong logical expression
P2:caend | 29 51 | 22 10 16 31 | wrong logical operator

P3: findl 33 53| 32 18 80 124 | wrong variablereference
P4. find2 33 53| 32 18 80 124 | wrong variablereference
P5: find3 32 52| 32 18 80 122 | missing a statement &
faults of find1 and find2
P6: gcd 57 97 | 57 36 124 230 | wronginitiaization (value)

P7: naurl 37 60 | 28 18 48 80 | missing simplelogical expression

P8: naur2 37 60 | 28 18 50 82 | missing simplelogical expression

PO: naur3 36 58 | 28 18 46 78 | missing predicate statement
P10: transp | 155 319 | 156 73 135 361 | wrong initialization (value)
P11: trityp | 37 55 | 47 39 99 113 | wrong logical operators

6.2.2 Tested Programs

Eleven test programs were selected and constructed from seven programs. Most of
these programs were collected from previous studies and are well-known programs with
previously studied faults.! They have different characteristics in terms of program size,
number of functions, the type of program application (e.g., matrix calculation vs. text
processing), and fault types as well as locations.

Table 6.2 gives the size, complexity, and characteristics (fault types) of each tested
program. The second and third columns show the size of atested program by listing the
number of executable statements and the number of vertices in the program dependency
graph of the program. Columns 4 to 7 are obtained from a data flow coverage testing tool
— ATAC (Automatic Test Analysis for C programs) [HL91], developed at Bellcore.

1The programs are described in Appendix C.
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Column blocks (#Bl) represents the number of code fragments not containing

control flow branching.

Column decisions (#De) shows the number of pairs of blocks for which the
first block ends at a control flow branch and the second block is atarget of one

of these branches.

Column p—uses (predi cate uses, #P-u) indicates the number of triples of blocks
for which thefirst block contains an assignment to a variable, the second block
ends at acontrol flow branch based on a predicate containing that variable, and

the third block is a target of one of these branches.

Column all—uses (#A-u) is the sum of p—usesand pairs of blocks for which the
first block contains an assignment to a variable and the second block contains

ause of that variable that is not contained in a predicate.

The data flow coverage criteria (columns 4 to 7) help us understand the complexity of a
tested program. Fault types of each tested program are described in Column 8.

Most of thetested programshave only onefault, except P5and P11, so that we can easily
examine the effectiveness of our proposed heuristics for fault localization. Although P5
and P11 have two and three faulty statements, respectively, the multiple faulty statements
in each program are related to each other. To evaluate the experimental results of P5 and
P11, our analysis is based on the circumstance in which any one of the multiple faulty
statementsis highlighted by our approaches. We believe that for P5 and P11 aslong as one
faulty statement is discovered, the others can be easily identified.

The tested program “P9: naur3” has a specia fault type — missing statements. As
mentioned in Chapter 3.3, the missing statement will not be highlighted by any of our
proposed approaches. The purpose of having this sample in our experiment is to observe
the effectiveness compari son of the suggested search domains, although thedomainsaways
have negative coverage analysis. The ratio of effectiveness comparison in this case will be

compared with others to perceive any significant difference.



92

Table 6.3 ATAC’s measurement of test case adequacy

| Prog. |[TC # | % blocks | % decisions | % p-uses | % al-uses |
PLaeg | 1, 8(9) | 100 (36/36) | 100 (18/18) | 73 (29/40) | 81 (64/79)
T; 6 100 (36/36) | 94 (17/18) | 70 (28/40) | 77  (BL79)
P2 cdend | T, 5 100 (22/22) | 90 (9/10) | 94 (15/16) | 97 (30/31)
Ty 3 91 (2022) | 60 (6/10) |69 (1116) |74 (23/31)
P3: findl | 7, 6 100 (32/32) | 100 (18/18) | 79 (63/80) | 84 (104/124)
Ty 3 97 (3U32) | 94 (17/18) |76 (61/80) | 82 (102/124)
P& finiz | I, 5 100 (32/32) | 100 (18/18) | 79 (63/80) | 84 (104/124)
Ty 3 97 (3U32) | 94 (17/18) | 74 (59/80) | 81 (100/124)
PS5 find3 | 7, 6 100 (32/32) | 100 (18/18) |80 (64/80) | 85 (104/122)
T 4 97 (3U32) | 94 (17/18) | 75 (60/80) | 80 (98/122)
P gcd | T, 8(10) | 100 (57/57) | 89 (32/36) | 69 (85/124) | 71 (163/230)
Ty 9 95 (54/57) | 81 (29/36) | 64 (79/124) | 67 (153/230)
Prnarl | 7, 12 | 100 (28/28) | 100 (18/18) | 65 (3U48) | 66  (53/80)
Ty 2 96 (27/28) | 89 (16/18) |56 (27/48) | 61  (49/80)
P8 nar2 | 1, 2 100 (28/28) | 100 (18/18) |66 (33/50) | 67 (55/82)
Ty 3 100 (28/28) | 100 (18/18) |62 (31/50) | 65 (53/82)
PO nar3 | 1, 6 100 (28/28) | 100 (18/18) | 70 (32/46) | 69  (54/78)
Ty 7 100 (28/28) | 100 (18/18) | 78 (36/46) | 79  (62/78)
P10 transp | T, 5(7) | 94 (146/156) | 89 (65/73) | 81 (110/135) | 85 (307/361)
T 4 96 (150/156) | 90 (66/73) | 79 (107/135) | 84 (304/361)
PLL trityp | 7, 6(14) | 98 (46/47) | 97 (38/39) | 716  (75/99) | 78 (88/113)
Ty 3 66 (3U47) | 51 (20/39) | 37 (37/99) |39 (44/113)

In Chapter 3.1, we suggest conducting a thorough test before applying the proposed
heuristics. ATAC was used to conduct the thorough test by obtaining two test case sets, the
non—error—revealing (success) test case set 7, and the error—evealing (failure) test case set
Ty. A set of data—flow criteriafor a selected program is provided after the tested program
isanalyzed by ATAC (e.g., blocks, decisions, p—uses, and all-uses). Each test case satisfies
the criteria to a certain degree when executed against the tested program. A summary of
the degree of satisfaction presented in Table 6.3 consists of both percentage and counts
of al four criteria to show the adequacy of selected test cases. ATAC was employed to
satisfy the coverage of criteria as much as possible and to guarantee the adequacy. In
our experiment, test cases in 7, were added to improve the degree of satisfaction without

causing program failures. Test casesin7’; were added to improve the degree of satisfaction
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under program failures. Information presented in Table 6.3 contains the highest percentage
that was reached by the selected test cases. The number of test casesin; and 7'y for each
program is presented in Column 2 of Table 6.3.

According to the analysis in Chapter 3.1, only test cases associated with input domains
causing failure are useful for debugging. Thus, all test cases in7'; and some test cases in
T, are employed for debugging purposes after the thorough test. For instance, in the entry
T, of P1, the total number of non—error—revealing test cases obtained from ATAC is nine,
which isinapair of parentheses, but only eight of them are related to program failures and
useful for debugging. Other non—error—evealing test cases arethe“noise” in the debugging

process. So are programs P6, P10, and P11.

6.2.3 Results of Heuristics without the Assistance of Further Testing Information

Inthisexperiment, the exact dynamic program slicing approach (DPS) isused because all
faulty statements (except the missing statements) are a\ways covered by the corresponding
exact dynamic slices. Also, DPS deals with a smaller region than EDPS does.

The group of heuristics under H2 (success set) without threshold requirements(i.e., H5,
H11, and H12) are looking for statements highly involved in the success dlices, and the
purpose of employing these heuristics is to understand the necessity of the statements for
correct results. Therefore, it is not appropriate to compare results of these heuristics with

others. Results of this group and other heuristics are separately presented.

6.2.3.1 Coverage Analysis
Heuristics 1to 16 Except H5, H11, and H12

Table 6.4 presentstheresult of coverage analysisfor heuristicsthat consider all available
test cases (i.e., Heuristics 1 to 14) except H5, H11, and H12. They are grouped according
to their characteristics in the heuristics family tree. In the table, a symbol / indicates that
the reduced domain suggested by a heuristic still contains faulty statements (i.e., a positive

result), and a symbol x indicates a negative result. Thresholds of the heuristics with
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Table 6.4 Coverage anaysis for Heuristics 14, 6-10, and 1314 proposed in Chapter 4
except H5, H11, and H12. / and x indicate positive and negative results, respectively.
The last column indicates the percentage of positive results.

P1 P2 P3 P4 P5 P6 P7 P8 PO P10 Pl1| %
Heu. | aveg caend findl find2 find3 gcd naurl naur2 naur3 ftransp trityp | Pos.
Root and subroot heuristicsin the family tree
HL 1 v v Y Y Y Y VY X vV | 91%
H2 V V V V v X Vv Vv X X v | 73%
He | v v v v Vv v VvV VX VooV | 9%
Heuristics under H6 (failure set) without threshold
8 | v v v v vV v VY X vV | 91%
H10 | x X X X X vV X X X vV X | 19%
H9 X X X X X vV X X X vV x| 19%
Heuristics with threshold requirements
H3 vV vV vV vV v X vV vV X X v | 73%
Ha | v v v v VY VY X vV | 91%
7 | v v v v Vv v VY X vV | 91%
HB | v v v v vV v VvV Y X vV | 91%
Supplemental heuristics for predicate statements
H14 | / V V V v X V Vv X X v | N/A
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Table 6.5 Coverage Analysisfor Heuristic 16 — statements with low influence frequency
in a selected success dice. [T, 4/, and x indicate the number of non—error—revealing
(success) test cases, a positive result, and a negative result, respectively. Thelast column
indicates the percentage of positive results.

%
Prog. | 75| | ts, ts, tss  tsy tsg  tsg  ts; tsg  tseg sy tsy  lsp  tsis sy | POS
P1 89 | NNA  / V V V NV N N 100%
P2 5 X X V V X 40%
P16 | x v Vv Vv Vv V 84%
P4 5 X N4 N4 X N4 60%
P5: 6 v v v v v v 100%
P6: | 8(10) | NJA  N/A X X X X X X X X X 0%
p7 12 v oV X X v vV VY 84%
P8 2 X v 50%
P9 6 X X X X X X 0%
P10: | 5(7) X N/A  x N/A  x X X 0%
P11: | 614 | v NA NA  NA NA v NA NA NA NA ./ | 100%

threshold requirements will be set to 100% for the coverage analysis. The percentage of
positive results for each heuristic with respect to all tested programsis presented in the last
column.

Heuristic 14 is designed to highlight only predicate statements for supplemental pur-
poses. If the faulty statements are not predicates, then they will not be covered by H14.
Thus the percentage of positive results is not applicable for this heuristics.

Without considering P9 (with a missing statement) in Table 6.4, we conclude that most
heuristics have high positive coverage and the faulty statements of each tested program
can always be highlighted by many heuristics. For programs with the missing statement
fault, it isimproper to conduct coverage analysis because the missing statements will not be
highlighted by any dynamic slices. We thus change the measurement of coverage anaysis
from statements to basic statement blocks. If any statements in the basic block the missing
statement also belongs to is highlighted by a heuristic, then the coverage analysis becomes
positive. We believe that examining statements in the same block the missing statements

were supposed to be is a strong clue to discover missing statement faults. In this case,
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Table 6.6 Coverage analysisfor heuristics under H2 (success set) without threshold require-
ments proposed in Chapter 4. / and x indicate positive and negative results, respectively.
The last column indicates the percentage of positive results.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 | %
Heu. | aveg caend findl find2 find3 gcd naurl naur2 naur3 ftransp trityp | Pos.

Heuristics under H2 (success set) without threshold
H5 Vv X X X v X X X X X v | 28%

H12 | x X X X X X X X X X X 0%
H11 | x X X X X X X X X X X 0%
H5 X v NV X NV Vv X Vv X | 64%
HR2 |\ v vV Y VY Y xS [ %
Hu | v v v v Y Y Y Y xS Y [9%

we get 100% coverage analysis for all heuristics in Table 6.4 except H9 and H10 that are
extremely well suited to identify wrong initialization only.

Heuristics based on the influence frequency (i.e., Heuristics 15 and 16) are not included
in Table 6.4 because they deal with one test case at atime. The coverage analysis for H16
is presented in Table 6.5. The entry with “N/A” means that the corresponding non—error—
revealing test case is not used by our heuristics for fault localization. The negative result
of an entry indicates that the faulty statements of atested program are not covered by the
corresponding success dlice at all. The behavior of the faulty statements will decide the
percentage of positive coverage analysis for the given program.

The coverage analysisfor H15 is not needed because the heuristic highlights statements
in a selected failure dice. At least one of the faulty statements in the program will be
included in the failure dice. Thus, the coverage analysis is always positive, except for the

missing statement fault type.

Group of Heuristics Under H2 (Success Set) Without Threshold Requirements
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Thisgroup of heuristics (H5, H12, and H11), presented in Table 6.6, has the worst posi-
tive coverage because they are looking for statements highly involved in the success slices.
Only few statements are highlighted by these heuristics as indicated in the effectiveness
comparison. These statements are used for further analysis after studying the necessity
of them for correct results. Thus, they should not be merely treated as a reduced search
domain containing faults. It isnot appropriate to employ these heuristics with others at the

same time.

6.2.3.2 Effectiveness Comparison

Thispart of the experiment was conducted on Sy DER, which hasthe proposed heuristics
implemented based on the vertices of the program dependency graph as mentioned before.
Equations6.10, 6.11, 6.5, and 6.6 arechosen to calculateR ,, R, therank threshold, and the
general threshold, respectively. Results of the comparison are presented in figures to show
the overall effectiveness and the degree of improvement. Heuristics with positive coverage
analysis are indicated by the symbol / in the figures for reference. The presentation of

effectiveness comparison is partitioned into three groups.

e Group 1. heuristics considering all available test cases except H5, H11, and H12,
i.e., heuristicsin Table 6.4. Figures 6.2 and 6.3 present the resultsin the order of the

heuristics.

e Group 2: heuristics under H2 (success set) without threshold requirements, i.e.,
heuristicsin Table 6.6. Figure 6.4 presents the resultsin the order of the heuristics.
FigureD.1in Appendix D hasthe sameresultsasin Figures6.2 to 6.4 (both Groups 1

and 2) but presents the resultsin the order of the programs.

e Group 3. heuristics based on the influence frequency, i.e., H15 in Figure 6.5 and
H16 in Figure 6.6.

e Group 4: comparison between the rank threshold and the general threshold. Fig-

ures 6.7 and D.2 present the comparison results of the most effective heuristics
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H3, H4, H7, and H13 in different format. Thresholds for influency frequency are
presented in Figures 6.8 and 6.9.

Tomeasurethe effectiveness of heuristicswith threshold requirements(i.e., Heuristics 3,
4, 7, 13, 15, and 16), we set the threshold on the critical point defined in Chapter 4.1
to highlight a minimum set of statements still containing faulty statements. The ratios
R, and R, are then calculated based on the minimum set of statements. For program
“P9: naur3” with the fault type — missing statements, which cannot by highlighted by
any of our approaches as mentioned earlier, setting the threshold to 100% does not provide
helpful information for analysis. Therefore, an alternative method is employed. We first
identify some statements that are closely related to the missing statement and would lead to
discovering the missing one. Three statements are identified in P9. Then, the threshold is
enlarged until al three statements are included, and areduced domain is obtained. Finally,
R, and R, for heuristics applied to P9 are calculated based on the domain. In this case,
the effectiveness comparison for programs with missing statements is similar to, although

not the same as, the one for programs with other fault types.

Group 1. Heuristics1to 14 in Table 6.4

Figures 6.2 and 6.3 illustrate the effectiveness of each heuristic against all tested pro-
grams. We are interested in the ratios with high reduction rate in the figures.

Because H1l istheroot of the heuristicsfamily treeand highlightsall statementsinvolved
in the proposed heuristics (i.e., the maximum size), R, of H1 is always 0.0 that means no
reduction and can beignored. R, of H1 in Figure 6.2 indicates the reduction from awhole
tested program to the set of statements involved in all dynamic dlices (i.e., the basis set)
for our heuristics. The R, of H1 for tested programs ranges from 0.35 to 0.67, and most
of them reside between 0.40 and 0.45. From the overall point of view, we conclude that
in this experiment our proposed heuristics (the basis set) averages around a 43% reduction

from the whole program.
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The scope of each heuristic (i.e., the suggested search domain) is a subset of the scope
of the corresponding H1 slice. This means that the search domain of other heuristicsin the
tree will be further refined from the one of H1.

H2 and H6 are subroots in the family tree for the success set and the failure set,
respectively. Thus, their results are similar to those of H1.

H9 and H10 deal with statementsin the difference between thefailure set and the success
set, and haveextremeresultsasshownin Figure 6.2. For most programs, thesetwo heuristics
will highlight nothing because of the rigorous approach. However, if the suggested search
domain is not empty, the domainisvery small and contains faulty statements, especially for
failed programs with single faulty statement. Programs “P6: gcd and “P10: transp” have
the same fault type— wrong variableinitialization. H9 and H10 are extremely effectivefor
these two programs, i.e., having 99% reduction rate with positive coverage analysis. From
this experiment, we suggest employing these two heuristics first for the extremely small
search domain. If the domain is not empty, then our goal is quickly achieved. Otherwise,
continue to employ other heuristics.

Heuristics with threshold requirements (i.e., Heuristics 3, 4, 7, and 13) are presented in
Figure6.3. By observing R, wefind most of these heuristicswill provideafurther refined
search domain fromthebasis H1. Around two-third'sof R, are above 0.2 (20% reduction)
which means the corresponding domains are effectively reduced from H1. Moreover, all
R., which are associated with the whole program, are above 0.35. Many R;, and R, with
high reduction rate in Figure 6.3 show the promise of these heuristics. In addition, H4, H7,
and H13 have positive coverage for all programs except P9 (with amissing statement). We
conclude that heuristicsin this category are the most effective onesin the heuristics family.

Heuristic 14 is designed to enhance the location of faultsin predicate expressions when
other heuristics are not effective enough. The total number of predicates in a program is
used as the numerator of the corresponding R, and R,,. Therefore the ratios of H14 in
Figure 6.3 only show the percentage of predicate statements in atested program.
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Group 2: Heuristics under H2 (success set) without threshold requirements.

Asmentioned in the previous section, heuristicsin this group are looking for statements
highly involved in the success dlices. H11 and H12 have a more rigorous approach to
focus on statements in the success set but not in the failure set. Therefore, these two
heuristics will not highlight many statements. However, studying the necessity of the few
highlighted statements (e.g., H12 and H11 on P6) for correct results and semantics of the
statements could help users discover the faults. If an empty set is provided by one of these
three heuristics, the corresponding complement heuristic isignored because in this case the
search domain indicated by the complement heuristic will have the same size as the one
suggested by H1.

From our experimental results of this group heuristics presented in Figure 6.4, we
suggest first applying other heuristics that are more effective than heuristics in this group.
Statements highlighted by this group heuristics will be used by others.

Figure D.1 presents the resultsin Figures 6.2 to 6.4 from a different point of view. The
result is presented by the order of the programs employing all heuristics. We found that for
every tested program there exists at least one heuristic with positive coverage analysis as
well as high reduction rate of both R, and R. This supports our belief that we can always
find at least one effective heuristic to localize faults in atested program.

Group 3: Heuristics based on the influence frequency (Heuristics 15 and 16)

By comparing H15 in Figure 6.5 and H16 in Figure 6.6, we notice that H15 is more
effective than H16 in terms of high R, and R;,. H15 deals with error—revealing test cases
causing the programtofail. For H15in Figure 6.5, around two-third'sof R, are above0.2
(20% reduction rate) which means the corresponding domains are effectively reduced from
H1. Moreover, all R, of H15, which is associated with the whole program, are above 0.35.
The large amount of R, and R, in Figure 6.5 with high reduction rate shows the promise
of H15. From this experiment, we suggest applying H15 rather than H16 while considering

the influence frequency.
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Group 4. Comparison between the rank threshold and the general threshold

The general and rank thresholds for Heuristics 3, 4, 7, and H13 are presented in
Figure 6.7. The same results presented by the order of tested programsisin Figure D.2.

We chose thethresholds of H3, indicating statementswith low inclusion frequency inthe
success set —Uﬂ Dyn(P,v,1,T,,),onprogram*“P2: calend” asan exampleto explainthe
construction of ranks, groups, and thecritical level asintroducedin Chapter 4.1. The screen
dump of SPYDER for this example is presented in Figure 6.1. Five groups with different
inclusion frequency are obtained from the success set of P2: thefirst group (ranked 1) has
the lowest inclusion frequency 1 and contains eight vertices, the second group (ranked 2)
contains twelve vertices with inclusion frequency 2; the third group (ranked 3) contains
one vertex with inclusion frequency 3; the fourth group (ranked 4) contains one vertex
with inclusion frequency 4; and the fifth group (ranked 5) contains eleven vertices with
inclusion frequency 5. The faulty statement (Statement 30) is in the second group. Thus,
the critical level of H3 on calend is 2 (i.e., associated with the second group). To get an
effective threshold, we had better set the threshold to the critical point so that those twenty
vertices (including the faulty one) in thefirst group (having eight statements) as well asthe
second group (having twelve statements) are highlighted. Thus we set the rank threshold
(defined in Equation 6.5) as 2/5 = 0.4 and the general threshold (defined in Equation 6.6)
as 20/33 = 0.6.

The threshold of a heuristic will be gradually enlarged until 1.0. If a heuristic has 1.0
threshold but does not have the indication of positive coverage (1/), this means the faulty
statements cannot be highlighted by the heuristic, e.g., e.g., H3 on P6 and P10, and H7 on
Po.

Asmentioned in Chapter 4.1, an efficient threshold, which makes the suggested domain
reasonably small and consistently contain faults, is highly desirable for the first guess. In
Figure 6.7, general thresholds (¢) are distributed from 0.02 to 1.0. A standard threshold
cannot be decided from this situation. However, wefind that around 69% of rank thresholds
() have a value < 0.5 and around 91% of rank thresholds have a value < 0.75. This

provides a consistent metric for evaluation. Moreover, the rank threshold is easy to use
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(e.g., from the first to the last ranked level, gradualy). Therefore, we chose the rank
threshold with the first 75% (or 50%) of ranked levels as a standard threshold for the
first—time criterion when employing H3, H4, H7, and H13.

The rank and general thresholds of H15 and H16 cannot be characterized according to
their distribution in Figures 6.8 and 6.9. For H16 in Figure 6.9, the range of the generd
threshold is even smaller than the range of the rank threshold. The general threshold
is therefore preferred in H16. Because these two heuristics are based on the influence
frequency for one dynamic slice at a time, users employ them for detailed (local) analysis
with respect to a selected test case. Thus, the effect of choosing the standard threshold for
H15 and H16 is not an important issue.

From the coverage analysis and effective comparison mentioned above, results of this
experiment support our claim in Chapter 4 that the overall debugging power from uniting
these heuristicsis expected to surpass that of currently used debugging tools and to provide

effective fault localization techniques.

6.2.4 Resultsof Critical Slicing

According to the definition and features of Critical Slicing (CS) in Chapter 5.1.1,
statements are the basic unit for constructing critical slices. Therefore, Equations 6.12,
6.13, and 6.14 are used to evaluate experimental results of critical slices. Every error—
revealing test case will construct one critical slice, and all non—error—revealing test cases

are not used in this experiment.

6.2.4.1 Coverage Analysis

Table 6.7 presents results of coverage anaysis. All critical slices of “P9:naur3” have
negative coverage results because of the missing statement fault. For program “P6:gcd”
that has a wrong initialization fault, the memory initialization of the system environment
will decide whether the faulty statement isincluded in a corresponding critical dlice. If the
memory initialization for all variablesis zero, which is not the case on our platform, then

all critical slices of P6 will have positive coverage. For test caset y, of program“P3:find1”,
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Table 6.7 Coverage Analysis for Critical Slicing. [I'y| and #FV represent the number of
error—revealing (failure) test cases and variables involved in the failure, respectively. In
each entry, \/ indicates apositive result and x indicates a negative one.

Program | |T| | #FV | ty, ty, tg tp tr tg ty tg i
PL: aveg 61 2|V Vv VvV V V V

P2: cdend | 3 1|1V v V

P3: findl 3 1 | x

P4: find2 3 1 |1V Vv V

P5: find3 4 1 1V Vv VvV VY

P6: gcd 9 2 X X X X X X X X X
P7: naurl 2 1 |V V

P8: naur2 3 1|1V v V

P9: naur3 7 1 X X X X x x X

P10: transp | 4 2 |V VvV VvV VY

P11: trityp | 3 1|1V v V

% of the positive results based on all test casesinl’y = 30/47 = 64%
% of the positive results based on all tested programs = 9/11 = 82%

Without considering P9 that has the special fault type — missing statements,
% of the positive results based on all test casesinl’y = 30/40 = 75%
% of the positive results based on all tested programs = 9/10 = 90%
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the execution of P3 without the faulty statement against ¢, generates different result but
does not reach the same point of original failure. Therefore, the corresponding critical slice
does not contain the faulty statement and has a negative coverage. Strictly speaking, inthis
experiment, only the critical slice with respect to ¢, and “P3:find1” has negétive coverage.

Thehigh percentage of positive coverageresults presented in thetable showsthe promise
of employing Critical Slicing for fault localization. Although there is a negative coverage
for P3, we still can find other critical slices of P3 with positive coverageto contain thefaulty
statement. In addition, the faulty statements that are not included in critical dlices (e.g.,
P6) are always covered by the corresponding expanded dynamic program slices, except
for PO with a missing statement. This supports our claim in Chapter 5.1.2.3 that expanded
dynamic slices are used for fault localization when the corresponding critical dlices fail to

include the faulty statements.

6.2.4.2 Effectiveness Comparison

Figure 6.10 presents the degree of reduction for the size of a critical slice being refined
from the corresponding exact dynamic slice (DPS) and expand dynamic slice (EDPS).

The R, of al critical dlices range from 0.38 to 0.90 with medium 0.64, mean 0.642,
and standard deviation 0.170. In this experiment, we claim that the scope of critical slices
is at least 38% reduction from the whole program and the average reduction rate is around
64%.

It is expected that the reduction rate from exact dynamic dlices is smaller than the
one from expanded dynamic dlices because DPS is a subset of EDPS as indicated in
Chapter 5.1.2. In addition, there is no superset/subset relationship between CS and DPS,
because of the incomparability between CS and DPS as mentioned in Chapter 5.1.2.1,
Thus, the value of R, which represents the reduction rate from the corresponding exact
dynamic dlice to a selected critical dlice, could be negative. In this case, the size of the
critical sice is larger than the size of the corresponding exact dynamic slice. ‘R, of the
program “P10:transp” in the figure demonstrates this specia case (i.e., al four R, with

negative value) which often happens for programs with heavy array and pointer reference.
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Figure 6.10 Effectiveness comparison of critical slices.
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In this circumstance, excluding a statement with array/pointer reference will have serious
side-effects and let the statement be easily included into the corresponding critical slice.
We also notice that statements in a critical slice of P10 may not be in the corresponding
expanded dynamic slice because of the array/pointer reference asindicated in Chapter 5.1.2.

In our experimental results, R. rangesfrom0.0to0 0.76 with medium 0.37, mean 0.366,
and standard deviation 0.247. Meanwhile, R, ranges from -0.25 to 0.76 with medium
0.23, mean 0.289, and standard deviation 0.273. This implies that the scope of a critical
dlice has around 35% and 25% average reduction rate from the corresponding EDPS and
DPS, respectively.

Our experiment indicates that Critical Slicing (CS) not only has the power of containing
faulty statements as EDPS but also an effectively reduced scope for the search domain.
Moreover, CS provides another view for examining statements directly related to program
failures other than program dependency analysisfor dynamic slicing. For programswithout
heavy reference of arrays or pointers, the size of a critical dlice is smaller than the size of
the corresponding exact dynamic slice, and most of the R, in Figure 5.2 will be greater
than 0.2.

6.3 Summary

Heuristics for fault localization have been integrated into the prototype debugging
tool SPYDER. This version of SPYDER will suggest confined search domains to let users
continue the debugging process within the scope of the domain. SPYDER was used for our
preliminary experiment. The results provide evidence to support the effectiveness of the
proposed heuristics and Critical Slicing for fault localization.

A graphic summary of our experimental resultsis presented in Figures 6.11 and 6.12.
Figure 6.11 illustrates the reduction rate from the whol e program to statements highlighted
by the heuristics proposed in Chapter 4 (R,) or to a critical dice (R.,) for each tested
programs with positive coverage analysis. Figure 6.12 demonstrates the reduction rate
from the base domain of our approach (e.g., H1), R, and R,. Both figures give us an

overall picture about the distribution of our experimental results based on the heuristics
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coverage anaysis.
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and the Critical Slicing approaches. The reduction rate of Critical Slicing for each tested
program is more stable than those of the heuristics, and is within a smaller range.

Val uabl e experience and suggestions are derived from thisexperiment. For the heuristics
of Chapter 4, the 43% average reduction rate from the whole program as the base scope
(i.e., region suggested by H1) for the heuristics family tree is a significant improvement
for reducing the search space. In addition, some heuristics (e.g., H9 and H10) can handle
certain fault typeswith greater than 90% reduction rate from the base scope of H1, although
not often. Generally speaking, heuristics with threshold requirements are more effective
than others. To set the rank threshold with 75% or 50% as the standard value for the first
guess is an efficient way to start employing the heuristics with threshold requirements.

On the whole, we suggest employing the heuristics in the following order:

1. Invoke H9/H10, which provides a very small region easy to check athough often
empty.

2. Apply heuristics with threshold requirements by varying thresholds for different
purposes after the standard one is used for the first try.

3. Apply other heuristics and extend the search domain to the basis suggested by H1, if
needed.

By uniting the heuristics and Critical Slicing, we expect the power of fault localization
to surpass that of any existing debugging tools. Algorithms for applying the heuristics
and the Critical Slicing as one fault localization process are presented in Appendix E. In
short, the high positive coverage percentage of the heuristics and Critical Slicing as well
as the significant reduction of the confined search domain confirms the effectiveness of the

proposed fault localization techniques.
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7. CONCLUSIONS AND FUTURE WORK

Debugging is a complex and time—consuming activity. According to previous studies,
locating faults is the most difficult task in the debugging process. In this dissertation,
we have recognized that designating suspicious statements related to program failures
is an important step done by experienced programmers to locate faults, and proposed a
new approach to identify suspicious statements. Instead of looking at the whole program
without effective clues, areasonably small subset of the program with suspicious statements
that directly contribute to program failuresis suggested by our proposed fault localization
techniques. We believe the task of locating faults will be improved in an efficient way so
that users perform analysis at the right place — areduced search domain containing faults.
Further analysis for locating faults such as predicting fault types and locations, verifying
the fault prediction, and fixing the faultsis suggested as future work.

Despitetheeffort requiredto conduct program dependency analysis and mutati on—based
testing, the proposed approach based on dynamic program slicing and information from
program mutation is an effective means for fault localization and fault identification. A
new debugging paradigm was thus proposed. Then, a prototype debugging tool wasimple-
mented to demonstrate the feasibility of the approach whose effectiveness was confirmed
by experiments. Inthischapter, we summarizethe experimental resultsof our approach, re-
view the new debugging paradigm, discuss some lessons |earned from the implementation,

and suggest future work.

7.1  Summary of Our Approach

From our research, alist of affirmable statements about our approach is presented as

follows:
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Results with a high percentage of positive coverage analysis assure that the reduced
search domain suggested by our fault localization techniques often contains faulty
statements and will not mislead users in further debugging. Moreover, if our
heuristics are based on basic blocks instead of statements, then we get positive

coverage anaysis for al heuristics as long as the reduced domain is not empty.

From the overall point of view, our proposed heuristics (the basis set, H1) average
43% reduction from the whole program for programsin our study. Other heuristics
will further refine the search domain. This is a significant improvement on fault

localization, and we believe our approach can be generalized to real programs.

Heuristics 9 and 10, which deal with statements in the difference between the failure
set and the success set, are extremely effective in identifying afaulty statement with
wrong variable initialization by indicating a region with 99% reduction from the
whole program as well as positive coverage analysis for programsin our study. We

suggest employing these two heuristicsfirst.

Heuristics with threshold requirements (i.e., H3, H4, H7, and H13) are the most
effective ones in the heuristic family. From our experiments, we decided to use the
rank threshold with thefirst 75% of ranked levels as a standard threshold for the first

try while employing these heuristics.

Heuristics under H2 (success set) without threshold requirements as presented in
Table6.6 arenot powerful enoughinboth coverageanalysisand effective comparison.

We can ignore them at the beginning.

For local analysis based on theinfluency frequency, we suggest employing H15 rather
than H16.

Critical Slicing is a low cost approach with high percentage of positive coverage
analysis as well as significant reduction from the whole program for reducing search
domain. The average reduction rate from the whole program for programs in our

study is around 64%. We strongly recommend this approach for fault localization,
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especially when mutation—based testing is used during the testing phase. Inthiscase,
we get critical dlices at no additional cost.

7.2 A New Debugging Paradigm

With the support of dynamic instrumentation (e.g., dynamic program slicing and back-
tracking) and fault localization techniques, an integrated testing and debugging tool can
perform the following new debugging paradigm.

1. Users find program failures after a thorough test and analyze the failures before

switching to the debugging mode.

2. The debugging tool interactively helps users reduce the search domain for localizing
faults by employing the proposed approaches based on dynamic instrumentation and
information from testing. At this stage, users can easily switch between testing and

debugging.

3. Further analysis based on the reduced search domain and information fromtesting is

performed to locate faults.

4. After the faults are located and fixed, users can retest the program to assure program

failures have been eliminated.

Developing fault prediction strategies to be used in Step 3 is a future direction of this re-
search. Inthisparadigm, if users are not satisfied with the help provided by the debugging
tool in Steps 2 and 3, they still can use their own debugging strategies by employing dy-
namic instruments (e.g., dynamic program slicing and backtracking) and information from
testing. In this case, users are performing the traditional debugging cycle (hypothesize—
set—examine) with powerful facilities and valuable information that are not supported by
traditional debugging tools. We believe this paradigm will enhance the debugging process

and save human interaction time.
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7.3 Limitation of the Paradigm

As suggested by the proposed model in Chapter 3, a thorough test is preferred be-
fore the debugging process is started in order to collect enough information. We then
identify the non—error—revealing test cases that are only related to program failures based
on the proposed domain failure analysis for debugging purposes. Among current testing
methodologies, only input domain testing and partition analysis can achieve the goa of
domain failure analysis without extraeffort. For other testing methodologies, specia effort
is needed to classify test cases, which are created to satisfy different testing criteria, into
domain failure analysis according to the specification and the program behavior. Without
this step, the approach is still applicable but may not be efficient enough because of those
irrelevant non—error—revealing test cases.

The display of dlices does not explicitly reflect the exact behavior among multiple
occurrences of the same statement, i.e., statements inside a loop. For both dynamic
program slicing and critical glicing, the execution of a loop is unfolded as consecutive
identical blocks for analysis. The effect of each iteration is passed to the next iteration.
Slicing analysiswill highlight statementsbased on the unfolded executionflow. A statement
could be highlighted because of the effect of one iteration only. Nevertheless, the display
of slices cannot distinguish whether highlighted statements in the loop are referred to once

or multiple times. Extra effort is needed to figure out the exact behavior in this scenario.

7.4 Lessons Learned from the Prototype Implementation

In this section, we focus on the implementation of fault localization techniques. As
mentioned in Chapter 6.1.3, a given program is converted to a program dependency graph
for internal analysis and usage. The basic unit of a program dependency graph is a vertex
that represents a simple statement or a predicate where a smple statement is defined as a
statement with one memory modification (e.g., an assignment statement « = b + ¢;).
On the other hand, a statement is the basic presentation unit of a program for testing and

debugging purposes.



122

We decided to implement heuristicsbased on the verticesin aprogram dependency graph
to take advantage of the internal implementation techniques of program slicing. Detailed
discussion is in Chapter 6.1.3. In this case, the consistency between internal reference
(vertices) and external display (statements) must be considered, and should be handled at
an early stage in order to store the necessary information. Instead of the whole statement
being highlighted while a dlice is displayed, only part of the statement which corresponds
to avertex of the diceis highlighted.

There might be aproblem when wetry tointegrate mutati on—based testing with SPYDER.
A mutant is a slight change of the original program. If the mutant has the same program
dependency graph as the original one, then we can reuse the original one to get dynamic
slices with respect to the new program parameter. Nevertheless, the execution history and
dynamic program dependency graph could be different from the original one. If a mutant
changes the variable reference, then the whole dependency graph could be changed. An
efficient way to construct, save, and retrieve the dependency graph (static and especialy the
dynamic) of mutantsis needed to reduce the overload. The compiler integrated testing to

support program mutation [Kra91] is a possible avenue of research to resolve the problem.

7.5 Future Work

In this section, new directions of this research are discussed.

7.5.1 Fault Guessing Heuristics

The reduced search domain suggested by the proposed fault localization techniques
can be immediately used as the working scope to locate faults. Moreover, we believe this
region contains valuable information that can be used to predict possible fault types and
locations. To develop a set of fault guessing heuristics for identifying possible fault types
and locations by analyzing testing criteriain thisregion is promising future research. Other
white-box testing methodologies, especially data flow testing, should be re-examined for

this purpose.
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7.5.2 Exhaustive Experiments

The experiment in this dissertation demonstrates the positive results of the proposed
approach for faulty programs with similar features of the tested programs. We need
exhaustive experiments involving faulty programs with various program sizes, program
applications, fault types, and fault locations. This exhaustive experiment will help to
confirm the effectiveness of the approach and also indicate the situations which can best be
handled by each heuristic. With enough samples, we can make a strong claim about the
average reduction rate of the confined search domain as well as the threshold requirements

for different kinds of faulty programs.

7.5.3 FalureAnaysis

The failure and fault analysis mentioned in Chapter 3 is worth completing. Because of
the variety of software applications, ageneric classification of failure modesisnot feasible.
Focusing on specific applicationswill makeit easier for usto identify variousfailure modes.
A study of real world program failures and faults must be conducted. Then, the possible
cause and effect rel ationshi ps between failures and faults should be examined. By analyzing
the relationships and other information, we may be able to devel op another set of heuristics
to locate faults more efficiently. In addition, the classification of failure modes can be used

in other areas such as software reliability and system integration testing.

7.5.4 Large Scale Programs

For debugging programs with a large number of statements and many function calls,
it is not practical to consider all statements at one time. A feasible way isto first identify
the functions (or models) with abnormal behavior, and then we can construct a dependency
graph for the large program by using functions/models as the basic nodes. The graph
should carry more information about the interface among functions and will be a superset
of acorresponding simplecall graph. Then, the principle of our approach can be extended to

localizing suspicious nodes in the dependency graph. After reducing the search domain of
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possibly faulty functions, we then employ our approach again to localize faulty statements.

This kind of top—down method helps us debug large scale programs more efficiently.

7.5.5 Other Applications

As mentioned in Chapter 2, we have considered only structured programs written in
C or Pascd in this research. An immediate extension is to examine how the proposed
approaches can be applied to programs for different environments, such as paralel and
distributed programs, aswell asprogramswritten in other languages, such as object-oriented
languages and functional languages. In order to construct more powerful techniques for
debugging, testing methodol ogies on the above domains should also be explored.

Another possible application of thisapproachisfor software maintenance and regression
testing. Because the dynamic information of the given program has been recorded and
anayzed in our approach, only the parts related to the faults fixed should be retested after
the debugging process. With the dynamic information and the testing criteria related to
faults, we can designate the testing criteria needed to be satisfied when the program is
retested to assure that the old program failures have been eliminated and no new faults

introduced.
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Appendix A: Notation and Terminology

Notation and terminology used in our proposed heuristics are as follows:

Ty . asetof error—revealingtest cases that detect the existence of faultsin P thus causing

P tofail. |7| represents the number of test casesin 7.

T, . aset of non—error—revealing test cases that do not detect the existence of faultsin P

thus letting P have success results. |7| represents the number of test casesin 7.

Vi (Vi) : aset of variables that have incorrect (correct) value with respect to the given

location /, test caset, and P.

Ly (Ls) : asetof locations where the given variable v hasincorrect (correct) value with
respectto¢ and P.

Dyn(P,v,l,t) : adynamic slice contains statements of P affecting the value of v at
location [ when P is executed against test caset. The dynamic sliceis either an exact

dynamic program dslice (DPS) or an expanded dynamic program slice (EDPS).

Dyn(P,v,1,Ty,) © 1< <|Ty|, T, € Ty, adynamic slice with respect to the given P,

v, [, and error—revealing test case 7', (i.e., a failuredice).

Dyn(P,v,1,Ts,) : 1< <|Ty|, Ty, € Ts, adynamic slice with respect to the given P,

v, [, and non—error—revealing test case 7T, (i.e., asuccess slice).

Dyn(P, Vi, 1,t) © L< 35 <|Vy|, V;, €V}, adynamic slice with respect to the given P,

[, t, and variable V;, with incorrect value.

Dyn(P,Vy,,1,t) © 1< 5 <|Vi|, Vi, € Vi, adynamic slice with respect to the given P,

[, 1, and variable Vi, with correct value.

Ugfl' Dyn(P,v,1,T) : union of the dynamic slices for different test case parameters

with respect to al error—revealing test cases (i.e., the failure set).
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U Dyn(P,v,1,T,,) : union of the dynamic slices for different test case parameters

with respect to al non—error—revealing test cases (i.e., the success set).

N Dyn(P,v,l,Ty,) : intersection of the dynamic slices for different test case param-
eters with respect to all error—revealing test cases (i.e., statements appearing in every

dlice of the failure set).

N Dyn(P,v,1,T,,) : intersection of the dynamic slices for different test case param-
eters with respect to all non—error—revealing test cases (i.e., statements appearing in

every slice of the success set).

Inclusion frequency of a statement : number of dynamic slices containing the statement,
Fe.

Influence frequency of a statement in Dyn(P, v,[,t) : number of timesthe statement was

referred to in terms of data and control dependency in Dyn(P,v,1,t), F;.

Y 7

Some dlightly different notations are also used in this study:  Dyn(P,v, Ly, ,1),
Dyn(P,v, Ly, t), UM Dyn(P, Vi, 1,6), UYL Dyn(P, Vi, 1), N Dyn(P,Vy,, 1, t),
and ﬂjngyn(P Vi,,1,t). Theirinterpretations are similar to those presented above.
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Appendix B: A List of Heuristics Proposed in Chapter 4

Heuristic Description

HIO) | {US Dyn(Po,LT,) } U {UZ] Dyn(P,o,1Ty) }

H2(t) | {UZ1 Dyn(Po, L T,) )

H3(t, F.) | { statementsin U'Z Dyn(P,v,1,T,,) withinclusion frequency < 7. },
where F. is an inclusion frequency number decided by the threshold given
by users to select low inclusion frequency.

Ha(t, F.) | { H3(t,F.) U HO®) }

H5(1) | { N1 Dyn(P,o, 1, T,) }

H6(H) | { UL Dyn(Pv,1,Ty) )

H7(t, 7.) | { statementsin U™ Dyn(P,v,1,T},) withinclusion frequency > F, },
where F. is an inclusion frequency number decided by the threshold given
by usersto select high inclusion frequency.

H8(t) | { N2 Dyn(Poo,1.Ty) )

HO(1) (U5 Dyn(P v, 1,15) Y — {UE Dyn(Pv,1,T,) Y, ie, {H6 - H2}

H10() | { N Dyn(Pv, 1,T5) Y — { UL Dyn(P,v,1,T,,) }, e, {H8—H2}

H1L(t) | (UL Dyn(Po L T,) Y — (UL Dyn(Po 1,Ty) ), e, { H2— H6}

H12() | { N Dyn(P,v,1,T) Y — {UZ Dyn(P,v,1,T;) }, e, {H5—H6}

H13 Indicate statementsin all dynamic slices with high inclusion frequency in
the failure set and low inclusion frequency in the success set.

H14 A supplemental heuristic for predicate statements.

H15 { statementsina Dyn(P,v, [, Ty,) with influence frequency > F; },

(T, F¢) | where F; isan influence frequency number decided by the threshold given
by usersto select high influence frequency.

H16 { statementsina Dyn(P,v, [, Ts,) with influence frequency < F; },

(Ts,, F¢) | where F; isan influence frequency number decided by the threshold given
by usersto select low influence frequency.
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Appendix C: Programs Tested

Program aveg first calculates the mean of a set of input integers. Then, percentages
of the inputs above, below, and equal to the mean (i.e., the number of inputs above, below,
and equal to the mean divided by the total number of inputs) are reported. Our version
is directly translated from a Pascal version, and afault was accidentally introduced during
the transformation. Thefaultis anincorrectlogical expressioninani f —statement. If the
temporary variable for the mean of the given integers has the value zero during calcul ation,
then the result isincorrect.

Geller’scalendar program calend [Gel 78], which was analyzed by Budd [Bud80], tries
to calculate the number of days between two given days in the same year. A wrong
logical operator (== instead of !=) is placed in a compound logical expression of an
i f —statement. This fault causes errorsin leap years.

Thefind program of Hoare [Hoa61] deals with an input integer array « withsizen > 1
and an input array index f, 1 < f < n. Afterits execution, al elements to the left of
a[f] areless than or equal to «[f], and al elements to the right of «[f] are greater than or
equal to «[f]. Thefaulty version of find, called buggyfind, has been extensively analyzed
by SELECT [BEL75], DeMillo—Lipton-Sayward [DLS78], and Frankl-Weiss[FW91]. In
our experiment, find3 isthe C version of buggyfind, which includes one missing statement
fault and two wrong variable references (in logical expressions). The two wrong variable
references were placed in find1 and find2, respectively.

Bradley’sgcd program [Bra70], which was also analyzed by Budd [Bud80], calculates
the greatest common divisor for elementsin an input integer array «. In our experiment, a
missing initialization fault of gcd was changed to a wrong initialization with an erroneous
constant.

Gerhart and Goodenough [ GG75] analyzed an erroneoustext formatting program (orig-
inally by Naur [Nau69]). Minor modification of this programwas madefor our experiment.

The specification of the program is as follows:
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Given atext consisting of words separated by BLANKs or by NL (New Line)
characters, convert it to a line-by—line form in accordance with the following
rules: (1) line breaks must be made only when the given text has a BLANK
or NL; (2) each lineisfilled as far as possible, aslong as (3) no lines contain
more than MAXPOS characters.

Program naurl has a missing path fault (e.g., asimple logical expression in a compound
logical expressionis missing). With thisfault, ablank will appear before the first word on
the first line except when the first word has the exact length of MAXPOS characters. The
form of the first line is, thus, incorrect as judged by rule (2). Program naur2 also has a
missing path fault (e.g., a smple logical expression in a compound logical expression is
missing). Thisfault causesthe last word of an input text to be ignored unless the last word
is followed by aBLANK or NL. Program naur3 contains a missing predicate statement
fault (e.g., ani f —statement is missing). In this case, no provision is made to process
successive line breaks (e.g., two BLANKS, three NLs).

Program transp [McN71], which was adopted for experiment by Frankl and Weiss
[FW91], generates the transpose of a sparse matrix whose density does not exceed 66%.
Two faults were identified in the original FORTRAN program. [Gus78] We trandated the
correct version to C and reintroduced one of the faults. The other fault happens because of
features of the FORTRAN language and cannot be reproduced in C. The fault presentisa
wrong initialization with an erroneous constant.

The last tested program, trityp, is a well-known experimental program.[RHC76] It
takes three input integers as the length of three sides of a triangle, and decides the type of
the triangle (scalene, isosceles, equilateral, or illegal). The program contains three faulty

statements with the same fault type, wrong logical operator (> instead of >).
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Appendix D: Figures of Experimental Results Presented by the Order of Programs Tested
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Appendix E: Algorithmsfor Applying the Proposed Heuristics

Main /* main procedure of the debugging mode */
Detect program failures after thorough test.

Analyze the failures and designate non—error—revealing test cases related to the
failures based on the analysis in Chapter 3 for debugging purposes.

loop
if (the search domain is empty or a new search domain is needed) then
if (mutation—based testing information is needed) then

Quit this debugging mode temporarily, switch to the testing mode
to conduct further testing as needed, and switch back to the
debugging mode | ater.

else
Enter fault_localization to get areduced search domain.
endif
endif
Predict the fault type and location.
Verify the prediction.
until (thefault isidentified or users give up).
Fix the fault.
end Main.

Procedure fault_localization
if (using mutation—based testing information) then
Enter apply_heu_ch5 to get a suggested search domain.
if (choosing the heuristics proposed in Chapter 4 for more help) then
Enter apply_heu_ch4 to get another suggested search domain.
Analyze these two search domains to obtain a new one.
endif
else
Enter apply_heu_ch4 to get a suggested search domain.
endif
return the current search domain.
end fault_localization.
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Procedure apply_heu_ch4

Select dynamic dlicing criteriasuch as variable, test case, location, and dynamic
analysis technique (exact dynamic dlicing or expanded dynamic slicing).

if (for global analysis) then
if (have sufficient computing resources) then

Invoke all heuristics, then apply the meta-heuristic that intersects
regions suggested by Heuristics 1-4, 6-10, and 13.

if (the suggested domainissatisfactory) then return thedomain.
endif
Invoke H9 and H10 to provide avery small region.
if (the suggested domainis satisfactory) then return the domain.
switch (number of error—revealing and non—error—revealing test cases):

casel: no non—error—revealing test cases
Apply heuristicsin the following group order: a) H8 (same as H10
inthiscase); and b) H7.

case2: few non—error—revealing but many error—revealing test cases
Apply heuristicsin the following group order: a) H8 and H13;
b) H7; and c) H4 and H3.

case3: similar # of non—error—revealing and error—revealing test cases
Apply heuristicsin the following group order: a) H13; b) HS;
¢) H7; and d) H4 and H3.

cased: many non—error—evealing but few error—revealing test cases
Apply heuristicsin the following group order: a) H8 and H13;
b) H4 and H7; and c) H3.
endswitch

if (the suggested domainis satisfactory) then return the domain.

Apply the supplemental heuristic H14 based on the information from previous
heuristics for possible faulty predicate statements.

if (the suggested domainis satisfactory) then return the domain.
Apply other heuristics and extend the search domain to the bottom line (H1).
if (the suggested domainis satisfactory) then return the domain.
else /* forloca analysis*/
Apply H15 or H16 for a selected test case (H15 is preferred).
if (the suggested domainis satisfactory) then return the domain.
return an empty Set.
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end apply_heu_ch4.

Procedure apply_heu_ch5

if (theinformation of Critical Slicingis needed) then
Get critical slices with respect to selected error—revealing test cases.
return thecritical dlices.

else

Follow the categories M7 1to M7 5to find the best fit case and get the
suggested region.

return theregion.
end apply_heu_chb.
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