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ABSTRACT. We briefly describe the special number field sieve integer factoring algo-
rithm, emphasizing the polynomial selection, and tell how we have used it to factor
large integers on many workstations.

1. THE NUMBER FIELD SIEVE ALGORITHM

We could factor the odd positive integer n which is not a prime power if we could
find integers z, y so that 2 = y? mod n but x Z +y mod n. The first congruence
implies that n divides (x — y)(z + y). The second congruence implies that n does
not divide x — y or z + y. Hence, at least one prime factor of n divides z — y and
at least one prime factor of n does not divide z — y. Therefore, ged(n,z — y) is a
proper factor of n.

In the Continued Fraction Method and the Quadratic Sieve Method, many con-
gruences (relations) of the form a? = ¢ mod n are produced with q factored com-
pletely. Linear algebra (over GF(2)) is used to match up the prime factors of ¢ to
find a subset of the relations in which the product of the ¢’s is a square, y2, say.
Let x be the product of the a’s in these relations. Then z? = y? mod n.

The (Special) Number Field Sieve (NFS) factors numbers of the form n = r¢ —s,
where r and |s| are small positive integers. Actually, the Special NFS can be applied
to numbers of the form ar® + bs?, and not just to 7 — s. Let n = ar® +bs’. Ife
and j are about equal, then s=/n = ar®=7(r/s)? + b. This is a polynomial in (r/s)
and can be treated in somewhat the same way as r¢ — s.

The basic form works for n = r® — s as follows:

Choose a small positive integer d, the degree of an extension field. Let k£ be the
least positive integer for which kd > e. Let t = s - r*¥?=¢. Let f be the polynomial
X2 —t. Let m = r*. Then f(m) = rk? — 5. pkd=¢ = pkd—ep ig 3 multiple of n.

Let a be a zero of f. Let K = Q(a). We assume f is irreducible, else we could
use its factorization to factor n. The degree of K over Q is d. Let @,, denote the
ring of rational numbers with denominator coprime to n. The subring Q,[a] of K

consists of expressions Z;.iz_ol (si/ti)a’ with s;,t; € Z and ged(n,t;) = 1. Define a
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ring homomorphism ¢ : Q,[a] = Z/nZ by the formula ¢(a) = (m mod n), so that
O T (si/ti)ad) = (X0 sit; 'mi mod n) for s;,t; € Z and ged(n, t;) = 1.

In variations of the basic form, other polynomials may be used. The key prop-
erties required of the polynomial are that it is irreducible, that it has moderately
small coefficients so that the norm of « is small, and that we know a non-trivial
root m modulo n of it. The optimal degree for f is ((3+0(1)) logn/(2loglogn))'/?
as e — oo uniformly for r, s in a finite set. (See [4].) This optimal degree is about
5 for n of the size we have considered, which is between 100 and 160 digits.

For 0 < a < A and —B < b < B, NFS uses a sieve to find factors of a + bm and
the norm of a + ba in Z.

A pair (a,b) is saved in a file if a and b are relatively prime, a + bm is smooth
(has only relatively small prime factors), and the norm of a + ba is smooth. The
norm of a + ba is (=b)?f(—a/b).

Using linear algebra, one finds a non-empty set S of pairs (a,b) of relatively
prime integers such that

H (a 4+ bm) is a square in Z,
(a,b)€S

and

H (a + ba) is a square in Q,[a].
(a,b)€S

Let the integer = be a square root of the first product. Let 8 € Qn[a] be a
square root of the second product. We have ¢(3?) = x2 mod n since ¢(a + ba) =
a + bm mod n.

Let y be the integer for which ¢(8) = y mod n. Then z? = y? mod n, which
gives us a chance to factor n.

See [4] and the articles in [3] for a more complete description of the number field
sieve algorithm.

2. SoME EXAMPLES

These examples illustrate the NFS algorithm applied to numbers of the form
r¢ +1 from the book [1]. The individuals performing these computations are called
NFSNET.

Example 1: The number n to factor is a divisor of 6'°° — 1. We assume n =
6'9 — 1. Let d =5, f(X) = X® — 6 and m = 6%°. Then f(m) = 6n and o = 6'/°
is a zero of f. The number field is K = Q(a). The degree [K : Q] = 5 since f is
irreducible over Q.

The next four examples show how one can choose better polynomials in certain
cases.

Example 2: The number n to factor is a divisor of 10'%84+1. Assumen = 1038 4+1.
Note that 100n = 101%° + 100 = (2°)(5-103!)5 + 100. Hence 25n = 8m® + 25, where
m = 5-10%'. Let f(X) = 8X%+25. Then a = (—25/8)'/% is a zero of f and m is a
zero of f modulo n. The number field is K = Q(a). The degree [K : Q] = 5 since
f is irreducible over Q. The m = 5-103! is half what it would have been if we had
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used the polynomial f(X) = X® + 100. The coefficients of 8X° + 25 are smaller
than those of X% + 100 and consequently a + ba has a slightly smaller norm. Thus
a+bm and the norm of a + ba are smaller and more likely to be smooth than if we
had used the obvious polynomial. This trick can be used for any composite base r,
such as 6, 10 or 12, but clearly not for a prime base. It was not used in Example 1
because X° — 6 already has small coefficients.

Example 3: The number n to factor is a divisor of (7'87 — 1)/(717 — 1). Note
that 187 = 11-17. If we assumed that n = 7'*7 — 1, then n would be larger and we
would have to do more sieving than if we assumed that n = (7187 — 1)/(7'7 — 1).
But this n does not have the form r¢ — s and we must work harder to find a suitable
polynomial and root. Write ¥ = 7'7. Then n = (k' —1)/(k — 1) = g(k), where
g(X) = X0 4+ X%+ ...+ X + 1. Degree 10 is too large. We attempt to reduce the
degree to about 5. Factor an X?® from g:

gX) =X5(X + X 4+ X34 X2+ X 41+ X T X 24 X34 X4 4 X°9).

Since the expression in parentheses is unchanged when X is replaced by X!, it
can be written as a polynomial in X + X ~!. One computes that this polynomial is

f(X)=X54+X*—4X3-3X%+3X +1.

Then X°f(X + X7') = g(X). Let m = k + k~' modn. The numerator and
denominator of m are small and k°f(m) = g(k) = 0 mod n. Since ged(k,n) = 1,
we have f(m) = 0 mod n. Let a be a zero of f. As f is irreducible over Q, the
degree [Q(a) : Q] = 5. When a and b are small, the norm of a + ba is near 734
which is 7% smaller (and more likely to be smooth) than if we had used n = 7187 —1,
f(X)=49X° -1 and m = 7%".

Example 4: The number n to factor is a divisor of (2°%9 —1)/(2%3 — 1). Note
that 559 = 13-43. If we assumed that n = 2% — 1, then n would be larger and we
would have to do more sieving than if we assumed that n = (255 — 1)/(2%% - 1).
To find a suitable polynomial, write k = 2*3. Then n = (k'® —1)/(k — 1) = g(k),
where g(X) = X2 + X' + ...+ X + 1. Since X 5¢(X) is unchanged when X is
replaced by X1, it can be written as a polynomial in X + X~'. One finds that
this polynomial is

f(X)=X+X° -5X*—4X®+6X>+3X — 1.

Then X8f(X + X~1) = g(X). Let m = k + k~! mod n. Then kb f(m) = g(k) =
0 mod n. Since ged(k,n) = 1, we have f(m) = 0 mod n. Let a be a zero of f. As f
is irreducible over Q, the degree [Q(a) : Q] = 6. When a and b are small, the norm
of a+ ba is near 28¢ which is 22° smaller (and more likely to be smooth) than if we
had used n = 2%%° —1, f(X) = 16X° —1 and m = 2'!'!. The f in this example was
the first sextic used by NFSNET.

Example 5: The number to factor is a divisor of 5%%° — 1. Of course this is X® —1
for X = 5'91. The polynomial factors as X — 1 times a biquadratic polynomial.
Both factors are irreducible over the integers. However, when X = 55", where h is
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odd, the value of the biquadratic polynomial splits into two nearly equal factors.
This Aurifeuillian factorization (see III C 2 of [1]) is

550 — 1 = (5" — 1)Lsp Mgy,

where
Lsp, Msp, = 50 + 3. 50 + 1 5(-+1/2 (50 4 1),

The particular number of this example is a divisor of
n = Msos = 5" + 52 + 3.5 + 55 + 1.
This suggests using NFS with the biquadratic polynomial
F(X)=25X"+25X3 +15X%2+5X + 1

and root m = 550, Indeed n = f(m). We used the same polynomial f with the
root m = 5% to factor a divisor of Mjs.

3. THE NFSNET PROJECT

NFSNET is a collaboration of the following people to factor numbers by the
Number Field Sieve.

Bob Silverman wrote the core of the sieving code. Richard Wackerbarth wrote
the task distribution and result collection code, makes the assignments, and collects
the relations. The sieving process is divided into many small tasks, each consisting
of sieving a + bm and the norm of a + ba for a in a short interval and for all b.
Each participating computer requests a task from a central computer, performs it
and sends the relations it finds to the central computer when it requests the next
task.

Sam Wagstaff counts, checks and filters (that is, condenses) the relations. When
enough relations have been collected, he tells Richard to start sieving the next
number. Marije Elkenbracht-Huizing and Peter Montgomery do the linear algebra
to solve the large matrix of equations and extract the square root in the algebraic
number field. The code for the filtering, linear algebra and square root stages,
mainly written by Peter Montgomery, is described extensively in [2].

The volunteer sievers run the sieve program, which takes most of the time, on
their computers. They include: Leo Broukhis, Ed Buzzi, Damien Doligez, Oyvind
Eilertsen, Lamont Granquist, Bill Hodgeman, James Howe, Matthew Jackson,
Michel Kern, John Reiser, Harry J. Smith, Gene Stark, Ray Van Tassle, Richard
Wackerbarth and Paul Zimmermann.

We currently have about 100 computers on three continents. We need more
volunteer sievers. If you would like to join this elite group, please contact Richard
Wackerbarth at rkw@dataplex.net to get the sieve program.

So far we have factored more than a dozen numbers, including the ones in the
examples above. All of the numbers we have factored come from [1].
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