1. Consider a hash function SHU with the same architecture as SHA-0. However, SHU uses XOR (of five 32-bit words) in place of the ADD (add modulo 2^{32}) operation and all 80 non-linear functions are MAJ, the majority function. SHU is similar to SHA-0 in all other respects.

 a. Tell how to find a collision in SHU if you can choose all 80 message blocks $W^{(i)}$ independently. Your solution should hash substantially fewer than 2^{80} messages.

 b. Tell how to find a collision in SHU if the message blocks $W^{(i)}$ are defined from the first sixteen blocks by the expansion formula of SHA-0. Your solution should hash substantially fewer than 2^{80} messages.

 Do not write any computer programs to solve parts a and b. If you feel the need to run a program, tell what the program would do, roughly how long it would run and what results you would expect from it.

2. The year is 2020. As the Chief Scientist of a large computer security company, you are implementing a new cryptosystem that uses 1000-digit primes as keys. The (dumb) algorithm chooses a random 1000-digit integer R and then tests $R + 1, R + 2, \ldots$, for being prime until it finds the first prime number $R + k$ greater than R. What is the average (or expected) number of integers $R + i$ the algorithm tests for being prime?

3. Two problems about pseudoprimes.

 a. Show that if n is a pseudoprime to base a and a pseudoprime to base b, then n is a pseudoprime to base ab.

 b. Find a composite number n and two bases a and b so that n is a strong pseudoprime to base a and a strong pseudoprime to base b, but not to base ab.

4. Prove that if you are given a large odd composite integer n and an integer a so that n is a pseudoprime to base a, but not a strong pseudoprime to base a, then you can factor n in polynomial time.

5. A linear congruential generator $x_{i+1} = (ax_i + b) \mod m$ with $m = 65537$ (a prime) produces the three consecutive x_i values 10413, 9953, 14267. Find a and b.