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Abstract. The goal of the Cunningham Project is to factor numbers

of the form b
n

± 1 for small b. We explain why people factor these

particular numbers, tell about those who have factored them, list some

methods they used and describe some of their outstanding successes.

1 Introduction

The goal of the Cunningham Project is to factor numbers of the form bn ± 1
for integers 2 ≤ b ≤ 12. The factors of these numbers are important ingredients in
solving many problems in number theory. We will mention some of these problems
in the next section.

Then we will tell the stories of some of the people who have factored these num-
bers over the past two centuries. Naturally, one of them was named Cunningham;
we will say a great deal about him.

The fourth section explains some of the methods used to factor these numbers.
In order to know whether a factorization is complete, we must be able to determine
whether a large number is prime or composite. For a long time, primality testing
was about as hard as factoring. However, in the past quarter century primality
testing has become much easier than factoring. We will discuss the new advances
as well as the older methods. Computers and other devices have aided the Cun-
ningham Project immeasurably. We will mention some of their achievements and
also tell how people factored before computers.

In the final section we will mention some of the greatest accomplishments the
Cunningham Project has seen.

2 Why are these numbers interesting?

In elementary school, we learn how to convert fractions into repeating decimals.
For example, 1/37 = 0.027027027027 . . .. The length of the period of the decimal
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fraction for 1/p, where p is a prime other than 2 or 5, is the smallest positive integer
n for which p divides 10n − 1. The prime 37 divides 999 but not 99 or 9, so the
period of the decimal fraction for 1/37 is n = 3. The primitive prime factors of
10n − 1, that is, the ones which do not divide 10i − 1 for any 1 ≤ i < n, are the
primes p for which the period of the decimal fraction 1/p is n. In 1801 Gauss (see
Articles 308–318 of [12]) solved the general problem of determining the period of
the decimal fraction for the rational number a/b.

Since the ancient Greeks, people have called numbers like 6 and 28, which equal
the sum of their proper divisors, “perfect.” Euclid knew that if 2p − 1 is prime,
then 2p−1(2p − 1) is perfect. Thus, 22−1(22 − 1) = 6 and 23−1(23 − 1) = 28 are
perfect. Euler proved that all even perfect numbers have this form. The study
of perfect numbers led Mersenne to assert which numbers 2p − 1 are prime. The
search for Mersenne primes Mp = 2p − 1 continues today. For most of the past
few hundred years, the largest known prime has been a Mersenne prime. We still
don’t know whether there are any odd perfect numbers. Many theorems restrict
putative odd perfect numbers in some way. For example, Brent, Cohen and te Riele
[5] showed that any odd perfect number must exceed 10300. Furthermore, such a
number must have at least 29 prime factors, at least 8 of which are distinct, and
one of which exceeds 1, 000, 000. The proofs of these theorems have many cases
and require knowledge of factors of numbers of the form bn ± 1. See Williams [46]
for more about the history of perfect numbers and Mersenne primes.

Fermat thought that Fm = 22m

+ 1 is prime for every non-negative integer m.
The first five of these numbers, F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537,
are all prime. If Fermat tried to factor F5 = 4294967297, either he didn’t try many
divisors or else he made a mistake. Euler showed that F5 = 641 · 6700417, proving
Fermat wrong. Further study of the factorization of numbers 2n + 1 suggests that
it is most unlikely that there is another prime in the sequence {Fm} after F4.

If N is a large odd number and the factorization of N − 1 or N + 1 is known,
then it is easy to decide whether N is prime. One can use a theorem like this one
due to Kraitchik [16] and D. H. Lehmer [18] when the factors of N − 1 are known.

Theorem 2.1 Let N > 1 and a be integers such that aN−1 ≡ 1 (mod N). If

a(N−1)/p 6≡ 1 (mod N) holds for every prime p dividing N − 1, then N is prime.

The numbers N = bn ± 1, with small b, are ideal for primality testing via these
theorems because we know the prime factors of N ∓ 1 = bn. For most b and n it
is evident that bn ± 1 is composite because of an algebraic identity. For example,
if n = cd is composite, then bn − 1 is divisible by both bc − 1 and bd − 1. It turns
out that when b ≥ 2 the numbers bn ± 1 can be prime only in the cases 2p − 1,
with prime p, and b2m

+ 1. Otherwise, one can exhibit an algebraic factorization
of bn ± 1. The former numbers are called Mersenne numbers and the latter are
generalized Fermat numbers.

The factorization of the numbers bn±1 is determined partly by the factorization
of the polynomial xn − 1. If we let Φd(x) denote the d-th cyclotomic polynomial,
then we have

xn − 1 =
∏

d|n

Φd(x) (2.1)

for n ≥ 1. Although the cyclotomic polynomials are irreducible over the integers,
formula (2.1), with x = b, does not give the complete factorization of bn−1 since any
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factor Φd(b) might be composite. When N = Φd(b) is prime, one can often prove
its primality via Theorem 2.1 because the constant term of Φd(x) is 1 for d > 1,
and N − 1 is frequently divisible by a few powers of b. For example, let b = 12
and d = 109 (a prime). Then Φ109(x) = (x109 − 1)/(x − 1) and N = Φ109(12) =
(12109 − 1)/11 happens to be prime. The number N − 1 = 12(12108 − 1)/11 is easy
to factor because x108 − 1 splits into many factors over the integers, so it is easy
to apply Theorem 2.1. Hugh Williams found this proof in time for the 1983 first
edition of [7]. We may factor bn + 1 in a similar fashion using the identity

xn + 1 = (x2n − 1)/(xn − 1) =
∏

d|2n

Φd(x)
/

∏

d|n

Φd(x) =
∏

d|m

Φ2td(x),

where 2n = 2tm with m odd.
Sometimes tables of factored integers can lead us to new algebraic identities.

As a simple example, consider this table excerpted from a table of factorizations of
numbers 2n + 1.

n 2n + 1 2n + 1 factored 2n + 1 factored again 2n/2 + 1

2 5 5 1 · 5 3
6 65 5 · 13 5 · 13 9

10 1025 52 · 41 25 · 41 33
14 16385 5 · 29 · 113 113 · 145 129

It is easy to observe that the average of the two factors shown in the penultimate
column equals the number in the last column. This leads to the identity

24k−2 + 1 = (22k−1 − 2k + 1)(22k−1 + 2k + 1), (2.2)

which is easy to prove once it is noticed. There is an identity like (2.2) for each b
that is not a power. It algebraically factors either bn − 1 or bn + 1, depending on b,
for all n in a certain arithmetic progression. The two factors are labeled “L” and
“M” in [9] and [7]. These identities are named after Aurifeuille, who discovered
some of them. (See page v of [9].) In terms of the binary representation of integers,
Equation (2.2) shows that there exist integers with arbitrarily many 1 bits which
can be multiplied times a number with exactly three 1 bits to give a product with
exactly two 1 bits.

A polynomial t(x) of degree n > 1 in F2[x] is called primitive if it is irreducible
and it does not divide xd+1 for any divisor d of 2n−1. See Golomb [15] for important
applications of primitive polynomials in cryptography. The nondivisibility condition
in the definition is not hard to check, even when n is in the thousands, if one knows
the complete prime factorization of 2n − 1.

The numbers bn ±1 are among the most interesting large numbers and provide
exciting test cases for new factoring algorithms.

3 The people who have factored the numbers

The Cunningham Project takes its name from the book [9] of Cunningham and
Woodall.

Allan Joseph Champneys Cunningham was born in 1842 in Delhi [43] and edu-
cated at King’s College, London and at the Military Seminary in Addiscombe. As
a military engineer he saw action in Bhutan in 1865–66. The British annexation of
Assam State in eastern India in 1826 heightened border tensions with Bhutan. The
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situation simmered until 1863, when Sir Ashley Eden went to Bhutan to demand
reparations for border raids into Assam. The government of Bhutan responded
by holding him hostage until he signed a truce. Britain voided the truce upon
Eden’s release and attacked Bhutan. It was this battle in which Cunningham par-
ticipated. He taught mathematics at the Thomason Civil Engineering College in
Roorkee during 1871–1881. While there he conducted hydraulic experiments in the
Ganges Canal. This college became the Department of Civil Engineering at the
Indian Institute of Technology, Roorkee, in 1949, soon after India became inde-
pendent. Today it is the oldest and largest civil engineering department in India.
The Ganges Canal was built by the British in 1854 and used for irrigation. The
water in the canal comes from behind the Haridwar dam on the Ganges in the
foothills of the Himalayas near Roorkee. The canal must have been an interesting
testbed for Cunningham’s hydraulic experiments as it carries 7000 cubic feet of
water per second, is ten feet deep, 170 feet wide and 900 miles long. The United
States Army Corps of Engineers [30] studied the Ganges Canal and other large
irrigation systems of the world as it planned irrigation canals in California in the
1870’s. Cunningham returned to England in 1881. After he retired from the army
as a Lieutenant-Colonel in 1891, he devoted the rest of his life to the theory of
numbers. He was skilled as a computer and best known for his work on factoring
numbers of the form an ± bn. He died in London in 1928.

The Cunningham-Woodall book [9] is a little book (xx + 24 pp.) that compiles
the work of the authors and many others in factoring numbers of the form yn ± 1
for 2 ≤ y ≤ 12. Actually, the others contributed mostly to the tables for bases
y = 2 and y = 10. Factors for the other six bases are the authors’ original work.
The base 2 tables run up to the exponent n = 500, while the other tables extend
to exponent n = 100. Most earlier tables listed all the prime factors of yn ± 1 for
each n, resulting in much repetition of previously stated factors. The Cunningham-
Woodall tables [9] was the first work to list essentially only the primitive factors.
For each n it listed just the factors of the “maximal algebraic primitive factor” (M.
A. P. F.) of yn ± 1, that is, Φn(y) for yn − 1 and odd n, and Φ2n(y) for yn +1. The
Introduction to [9] explains this economy and also presents a hard-to-understand
explanation of the Aurifeuillian factorizations. If a prime p divides Φn(y) and also
Φd(y) for some proper divisor d of n, then p is called an intrinsic prime factor of
Φn(y). An intrinsic prime factor p of Φn(y) must divide n, and may divide Φn(y)
only once if n > 2.

Most of the factors given in [9] were discovered by trial division. This effort
by many people found all factors of 2n ± 1 below 300, 000 and all factors below
100, 000 for higher bases. In 1925, it took much labor to discover whether a large
odd number was prime or composite. Large prime cofactors were written in full in
[9], composite cofactors were generally omitted and cofactors of undecided primality
sometimes were listed and followed by a question mark. The blank spaces and
question marks signaled unexplored territory. They and the credit given to the
discoverers of notable prime factors inspired later researchers to try to complete
the unfinished work.

Many researchers before Cunningham contributed to factoring bn ± 1. Marin
Mersenne asserted which numbers 2p − 1 were prime. Fermat thought that the
numbers Fn were all prime. Euler showed that F5 is composite because 641 divides
it. Legendre [17] showed that every primitive prime divisor of bn ± 1 must have
the form 2nx + 1, which accelerates trial division by a factor of about n. In a
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famous quotation, Gauss (in Article 329 of [12]) stated that the problem of factoring
integers was important. He also introduced the congruence notation and produced
some ideas for factoring integers. W. Looff [25] published a table of known factors
of 10n − 1 for 1 ≤ n ≤ 60. C. G. Reuschle [38] published a table of known factors
of bn − 1 for b = 2, 3, 5, 7, 10 and n ≤ 42. Landry gave a simple proof that 231 − 1 is
prime (Euler had done this with a tedious calculation) and factored F6 in several
months when he was 82 years old.

Lucas [26] supplied important ideas for deciding whether a large number is
prime, including a special, fast test for Mersenne numbers 2p − 1. His tests used
ideas which in modern terms would be described as properties of the finite fields Fp

and Fp2 . Pepin [31] developed a swift test for the primality of Fn that is still used
today. Proth [37] and Pocklington [32] invented new and faster tests for primality.

A few contemporaries of Cunningham also concerned themselves with factoring
numbers. Maurice Kraitchik was born in Minsk in 1882 and lived in Belgium after
obtaining a doctorate from the University of Liége in 1910. He wrote several books
on number theory and was an expert in factoring and primality testing. He died
in 1957. D. N. Lehmer was born in Indiana in 1867, earned a doctorate from the
University of Chicago in 1900, and was a professor of mathematics at the University
of California, Berkeley, from 1904 until he died in 1938. He published a table of
prime numbers and a table of factors up to about 107. He also created a set of
stencils for factoring large numbers manually and wrote a review [20] of [9].

D. H. Lehmer (or Dick Lehmer), the son of D. N. Lehmer, was born in Berkeley
in 1905 and obtained a Ph. D. at Brown University in 1930. While still an under-
graduate student at Berkeley he sent new factors of bn ± 1 to Cunningham. He
developed new factoring and primality testing methods and was a coauthor of [7].
Dick Lehmer died in 1991.

Dick Lehmer, whose wife Emma always helped him with his research, was
joined by Selfridge and Brillhart and others in continuing the Cunningham Project
through the 1950’s, 1960’s, 1970’s and 1980’s. In the 1960’s, Tuckerman searched
for factors below 108 of bn±1 and also sought new Mersenne primes, finding M19937.
Morrison and Brillhart [28] developed the continued fraction factoring method, the
first general factoring algorithm with a subexponential running time, in the early
1970’s. Wagstaff joined this group in the late 1970’s, checking the on-line Cunning-
ham tables and then finding new factors of the numbers, first by trial division and
then by many other methods. Their efforts resulted in the publication of updated
Cunningham tables [7] as a book in 1983, 1988 and 2002. Yates published a book
[50] about “repunits” which gave known factors of 10n − 1.

In the late 1970’s, the invention of the RSA cryptosystem [39], whose security
relies on the intractability of factoring large integers, made factoring suddenly fash-
ionable, important and worthy of funding as a research area. Modern cryptography
turned number theory into applied mathematics. As the Cunningham numbers
are the most interesting sequence of numbers to factor, many people joined the
factoring bandwagon in the 1980’s. Davis, Holdridge and Simmons [10] of Sandia
Labs implemented the quadratic sieve and factored all of the “Ten Most Wanted”
numbers of the first edition of [7]. Bob Silverman wrote programs for the latest
factoring algorithms, starting with the continued fraction factoring algorithm and
methods invented by Pollard in the 1970’s, and found many new Cunningham fac-
tors with them. Peter Montgomery implemented the same algorithms and found
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faster ways to compute with large integers. He was the first to write a good pro-
gram for H. W. Lenstra’s [24] elliptic curve factoring method, ECM, invented in
1985. Suyama advanced ECM and factored many Cunningham numbers on a tiny
personal computer (PC). Hugh Williams contributed new ideas for proving primal-
ity and supplied many prime proofs for the first edition of [7]. Mike Morrison and
Brillhart [28] wrote the first continued fraction factoring program and Marvin Wun-
derlich automated it. Selfridge and Wunderlich wrote an automatic prime proving
program based on the ideas of Brillhart, Lehmer and Selfridge [6].

Beginning in the middle 1980’s the number of people helping the Cunningham
Project exploded. I can only list the names of the most important contributors
and hope I haven’t missed anyone. In addition to those mentioned above, those
who contributed something to the Cunningham Project include Guy, Robinson,
Brent, te Riele, Kida, Pomerance, Gerver, Schnorr, A. K. Lenstra, Alford, Buell,
Atkin, Morain, Cohen, Odlyzko, Adleman, Rumely, Keller, McCurdy, Niebuhr,
Rickert, Smith, Gostin, Manasse, Lioen, Winter, Dixon, Granlund, Peralta, Ley-
land, Franke, Golliver, McCurley, Couveignes, Riesel, Bosma, van der Hulst, Shallit,
Woltman, Seah, Crandall, Doenias, Norrie, Young, Mayer, Papadopoulos, Taura,
McLaughlin, Elkenbracht-Huizing, Dilcher, Cavallar, Bernstein, Contini, Durman,
Gallot, Kuwakado, Daminelli, Curry, Kleinjung, Lodin, Sassoon, Buhler, Harley,
Kruppa, Muffett, Murphy, Ruby, Samidoost, Stevens, Wackerbarth, Wambach,
Zimmermann and an anonymous factorer whose calls himself (or herself) “Marin
Mersenne.”

4 The methods used to factor the numbers

Most of the facts in this section come from [7] or [46]. We mention some of the
algorithms and machines used to factor Cunningham numbers and also tell how to
determine when a large number is prime.

4.1 Prime testing. When one factors large integers, one must be able to tell
when one has finished. This requires the ability to recognize primes so that one
does not try to factor them.

One naive way of proving p prime is to show that it has no prime factor ≤ √
p.

This process may be accelerated if one can restrict the possible divisors, as explained
in the next section. One advantage of this method is that it factors p if p turns out
not to be prime.

Fermat’s little theorem provides a simple test for compositeness. If p is odd
and for some a not a multiple of p we have ap−1 6≡ 1 (mod p), then p is composite.
In applying this test to a divisor p of bn ± 1 one must avoid choosing a = b because
usually bp−1 ≡ 1 (mod p) whether p is prime or composite. When this caution is
observed, the test is quite reliable. In case ap−1 ≡ 1 (mod p), and a 6= b, it is
quite likely that p is prime, but this statement has not been proved; p is merely a
probable prime. This test is quick because ap−1 mod p may be computed by fast
exponentiation.

Much effort has been placed in seeking ways to prove that a probable prime p
really is prime. Theorem 2.1 gives one answer but it requires factoring p−1. Much
earlier Euler showed that if an integer p can be written as the sum of two relatively
prime squares in only one way, apart from sign changes and swapping the squares,
then p is a prime power. (It is easy to distinguish the first power of a prime from its
higher powers.) Gauss generalized this approach to other binary quadratic forms.
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Theorem 2.1 is one possible converse to Fermat’s little theorem. Many other
theorems that conclude, “then p is prime,” may be viewed as converses to Fermat’s
little theorem. They include the theorem of Pepin [31] that the Fermat number
Fn is prime if and only if 3(Fn−1)/2 ≡ −1 (mod Fn), the Lucas-Lehmer test for
primality of the Mersenne number Mp, and many theorems that apply to general
numbers. The latter were proved by Lucas [26], Proth [37], Pocklington [32], Brill-
hart, Lehmer, and Selfridge [6], and Morrison [29]. Some of these theorems allowed
factors of p + 1, in place of or in addition to factors of p − 1, to contribute to the
proof that p is prime.

Note that p − 1 and p + 1 are the first two cyclotomic polynomials evaluated
at x = p. Williams and his associates [48], [49], [47], [44] generalized the theorems
mentioned above to some higher cyclotomic polynomials, proving that one can
rigorously decide in polynomial time whether p is prime, given a sufficiently large
completely factored divisor of

(p − 1)(p + 1)(p2 + 1)(p2 − p + 1)(p2 + p + 1).

Adleman, Pomerance and Rumely [1] invented a new prime proving method that
generalizes Williams’ results to even higher cyclotomic polynomials and correctly
decides whether p is prime in < (ln p)c ln ln ln p steps for some constant c. This nearly
achieves the long-sought polynomial-time primality test since, although ln ln ln p →
∞ as p → ∞, it has never been observed doing so. Cohen and Lenstra [23], [8]
and Mihăilescu [27] improved this algorithm, making it faster and more practical.
Odlyzko used this method to prove primality of many large primes from the second
edition of [7].

Goldwasser and Killian [14] invented an elliptic curve analogue of a primality
testing theorem of Pocklington [32] and Lehmer. It runs in probabilistic polyno-
mial time. Atkin and Morain [3] turned it into a practical algorithm that works well
for numbers up to a thousand decimal digits or more. It was used for the difficult
prime proofs of the third edition of [7]. In August, 2002, Manindra Agrawal, Neeraj
Kayal and Nitin Saxena announced a deterministic polynomial-time primality test-
ing algorithm. It uses fairly simple mathematics but has not been used to prove
primality of any Cunningham number.

4.2 Factoring. The earliest and simplest method of factoring an integer N
was trial division. Each number, usually a prime, in a sequence is divided into N to
see if it divides exactly. Sometimes many trial divisors can be ignored because one
can prove they cannot divide N . Gauss observed that if r is a quadratic residue
modulo N , then it must be a quadratic residue modulo every prime factor p of
N and so the Law of Quadratic Reciprocity restricts p to lie in only one-half of
the possible residue classes modulo 4r. If one knows t (independent) quadratic
residues modulo N , then only one out of 2t residue classes is allowed for p. (A set
of quadratic residues is independent if no non-empty subset of them has a square
product.) In addition to these restrictions, if one is trying to factor bn±1, then one
can use a valuable theorem of Legendre: Every prime factor of the primitive part
of bn ± 1 is ≡ 1 (mod 2n). Thus, only about one out of every n possible divisors of
N need be tried.

Fermat invented a difference-of-squares factoring algorithm in which one tries
to express N as x2 − y2. The algorithm works well when N has a divisor very near
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√
N , but runs slowly otherwise. Mersenne may have used this method to find that

233 divides 229 − 1. (See page 37 of [46].)
Pollard invented two factoring methods in the 1970’s that discovered many

Cunningham factors. His rho or Monte Carlo method [34] discovers a prime factor
p of a larger number N in about O(

√
p) arithmetic operations modulo N . His

p − 1 method [33] finds a prime factor p provided p − 1 has only small prime
factors. Note that if p is a primitive divisor of bn ± 1, then 2n divides p − 1 by
Legendre’s theorem. This factor makes the p−1 method well-suited for application
to Cunningham numbers. Williams [45] created a p + 1 analogue that finds p if
p+1 has only small prime factors. Later H. W. Lenstra, Jr. [24] invented an elliptic
curve analogue of Pollard’s p−1 method. These four methods have found hundreds
of Cunningham factors in the past 25 years.

The fastest known factoring methods today combine congruences modulo N
to construct a congruence x2 ≡ y2 (mod N), which will factor N provided that
x 6≡ ±y (mod N), a condition that holds at least half of the time. The earliest use of
congruences to factor N goes back to Legendre [17], who used them to find quadratic
residues modulo N and accelerate trial division. The first use of congruences to
construct a congruence x2 ≡ y2 (mod N), and factor N directly, seems to have been
done by Kraitchik [16], who obtained congruences by ad hoc means and factored
some Cunningham numbers. Fifty years later, Morrison and Brillhart [28] used

the continued fraction expansion for
√

N to generate many congruences x2 ≡ q
(mod N) with small |q|. They matched up the prime factors of |q| to construct x2 ≡
y2 (mod N). They called this algorithm the continued fraction factoring algorithm
and factored many Cunningham numbers, beginning with F7. Pomerance [35]
discussed the quadratic sieve algorithm which replaces the slow trial division of the
continued fraction factoring algorithm with a fast sieve to factor quadratic residues.
Gerver [13], Davis and Holdridge [10], Silverman [41], Montgomery, Lenstra [22]
and others implemented versions of this algorithm and factored many Cunningham
numbers. Pollard created the cubic sieve which reduces the size of the numbers that
need to be factored in the quadratic sieve. He refactored F7 on a small computer to
test his new method. He, the Lenstra brothers and Pomerance [21] extended this
method to higher degree polynomials (and even smaller numbers to factor) and
invented the number field sieve, NFS, the current fastest known factoring method.
Curiously, this method favors Cunningham numbers. The first task of the NFS is
to find a polynomial with certain properties. When the number to factor has the
form bn ± 1 it is trivial to find an excellent polynomial for the NFS. It requires
much more work to find a good polynomial for numbers not of these forms.

4.3 Devices. The earliest factorizations of bn ± 1 were done by hand. This
is how Euler factored the 10-digit F5, Landry factored the 19-digit F6 and Cole
factored the 21-digit M67. The first devices to aid computation were mechanical
calculators. These were used by Cunningham, Kraitchik, the Lehmers and many
others. About 100 years ago, paper strips and stencils were used in sieving. Over the
years, Dick Lehmer built sieve devices of bicycle chains, gears, electronic delay lines
and shift registers and used all of them to factor bn ± 1. See [19] for a description
of one of them.

Nearly every type of electronic computer has been used for the Cunningham
Project. Dick Lehmer used one of the earliest ones, the ENIAC (Electronic Nu-
merical Integrator and Computer), to find 85 new factors of 2n ± 1 for n ≤ 500
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“during a holiday weekend” in 1949. Emma Lehmer and John Selfridge factored
Fermat numbers and other numbers on the SWAC ([National Bureau of] Standards
Western Automatic Computer) at UCLA in the early 1950’s. Raphael Robinson
[40] programmed the Lucas-Lehmer primality test for Mp on the SWAC and imme-
diately found the Mersenne primes with p = 521, 607, 1279, 2203 and 2281. Much
factoring of bn ± 1 was done on the IBM 701, 704, 709, 7090, 7094, 1130, 4341, 360
and 370 computers by many researchers. Wagstaff used a DEC 10/KI to perform
trial division to 235 on the tables of [7]. Baillie found many new factors with Pol-
lard’s p − 1 method on a CDC 6500. Hiromi Suyama found many factors on an
8-bit microcomputer. H. Williams factored some hard numbers on an Amdahl 470
and completed many prime proofs on that machine.

Many supercomputers contributed to the Cunningham Project. Dick Lehmer
factored many numbers on the Illiac IV supercomputer. Davis and Holdridge [10]
used a Cray-1 and Cray X-MP to factor all of the “Ten Most Wanted” numbers
from the first edition of [7]. McCurdy and Wunderlich factored 5171 + 1 via the
continued fraction algorithm on an MPP (Massively Parallel Processor). H. te
Riele et al. factored (7104 + 1)/(78 + 1) on a Cyber 205. Later they factored more
Cunningham numbers with the quadratic sieve on a NEC SX-2 and on a Cray
Y-MP4. Using a MasPar computer, A. K. Lenstra factored many Cunningham
numbers with programs for the quadratic sieve, the number field sieve and his
brother’s elliptic curve method. Young and Buell used a Cray-2 to show that F20

is composite.
Several special computing devices other than Lehmer’s sieves were used to

factor Cunningham numbers. Smith and Wagstaff [42] fabricated the EPOC (Ex-
tended Precision Operand Computer), with a 128-bit word length and a bank of
parallel remaindering units, at the University of Georgia and used it to factor
3204 +1 with the continued fraction algorithm. Dubner and Dubner [11] fabricated
a special card, which plugs in to a PC, for rapidly performing arithmetic with large
integers. They ran Pollard’s rho method and the elliptic curve method on it and
found many new factors. This machine also contributed to the primality proof of
the “repunit” (101031 − 1)/9.

In the past fifteen years, networks of small computers have cooperated to
achieve results that previously could only be done on supercomputers. At first,
local area networks were used. For example, Alford and Pomerance [2] ran the qua-
dratic sieve, a highly parallelizable algorithm, on several hundred PC’s in a student
laboratory at the University of Georgia. Y. Kida had similar success using many
small computers in Japan, as did G. Sassoon with all the PC’s on the Isle of Mull
in Scotland. Silverman [41] ran the quadratic sieve on many SUN workstations
at the MITRE Corporation and contributed many important factorizations to the
Cunningham Project. More recently, large groups of computers of various types
around the world have cooperated to achieve astounding factorizations. Groups of
researchers with names like ECMNET and NFSNET have set record after record
factoring harder and harder Cunningham numbers.

5 Records, Champions and Accomplishments

Here we mention some of the great advances that have promoted the Cunning-
ham Project.
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First of all, the invention of the electronic digital computer has removed most
of the tedium and inaccuracy of hand calculation. It has relieved humans of some
of the disappointment of failure to factor a number after many hours of hard work.

Rigorously deciding primality has made the greatest advance in algorithms.
In Cunningham’s time, the primality of many twenty-digit numbers could not be
decided. Until about 25 years ago, deciding the primality of N often was as difficult
as factoring a hard composite number about the same size as N . Now we can decide
whether a thousand-digit number is probably prime in a few seconds, and give a
rigorous proof in an hour if it is prime. The primality of a thirty-digit integer can
be decided rigorously in less than a second.

Even the quick probable prime test of N has improved beyond simply checking
whether aN−1 ≡ 1 (mod N). The combination of a strong probable prime test and
a Lucas probable prime test proposed by Baillie, Pomerance, Selfridge and Wagstaff
[4], [36] has no known failure. Its first extensive use was in checking all the probable
primes in the first and second editions of [7]. The test is considered so reliable that
the American National Standards Institute has just adopted it as ANSI Standard
X9-80, the official recommended method for choosing “industrial-grade primes” to
use in cryptography.

There have been great advances in factoring methods, too, but we still don’t
know a polynomial-time algorithm for this problem. It was not until the 1988
second edition of [7] that all numbers considered in [9] were factored. We do not
yet know methods that will factor all numbers listed in even the first edition of
[7]. We don’t know an algorithm that can complete the factorization of F12, the
smallest unfinished Fermat number (unless it has at most one large prime factor).

At this writing, all of the following most wanted numbers of the third edition
of [7], published just a year ago, have been factored. The notation “2, 673− C151”
means “the 151-digit composite divisor of 2673 − 1.”

Ten “Most Wanted” Factorizations of [7].

1. 2, 673− C151 6. 6, 257− C173
2. 2, 647+ C169 7. 5, 289+ C156
3. 3, 397− C178 8. 5, 298+ C189
4. 3, 397+ C162 9. 12, 178+ C145
5. 10, 223− C211 10. 11, 197+ C205

If Cunningham had made a similar list for [9], it would probably look like this:

Ten “Most Wanted” Factorizations of [9].

1. 2, 79− C21 6. 5, 22+ C13
2. 2, 83− C23 7. 6, 17+ C13
3. 2, 67+ C21 8. 10, 20+ C16
4. 3, 28+ C12 9. 11, 16+ C12
5. 10, 23− C23 10. 12, 11+ C11

Since Cunningham had not actually tested the remaining cofactors for pri-
mality, the notation “C21” here means merely, “a 21-digit integer of questionable
character.” In fact the “C23” of 2, 83−, the “C23” of 10, 23−, the “C13” of 5, 22+
and the “C11” of 12, 11+ all turned out to be prime. The other six numbers really
are composite.



The Cunningham Project 11

The largest Fermat number known to be composite today is F2145351, since
John Cosgrove discovered the divisor 3 · 22145353 + 1 on February 21, 2003. This
factor is one of the largest known primes. The largest known prime today is the
Mersenne prime M13466917 discovered by the Great Internet Mersenne Prime Search,
GIMPS, on November 14, 2001. Lew Baxter recently discovered that the repunit
(1086453−1)/9 is a probable prime. Earlier, Dubner found that (1049081−1)/9 is also
a probable prime. The largest repunit whose primality proof has been completed
is (101031 − 1)/9, proved by Williams and Dubner (see Section 12.4 of [46]).
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