Low-Threat Security Patches and Tools

Mohd A. Bashar? Ganesh Krishnan, Markus G. Kuhn,
Eugene H. Spafford, 5. S. Wagstaff, Jr.

COAST Laboratory

Department of Computer Sciences
Purdue University
1398 Department of Computer Sciences
West Lafayette, IN 479071398

{krishg,kuhn,spaf,ssw}@cs.purdue.edu

30 November 1996

Abstract

We consider the problem of distributing potentially dangerous in-
formation to a number of competing parties. As a prime example,
we focus on the issue of distributing security patches to software.
These patches implicitly contain vulnerability information that may
be abused to jeopardize the security of other systems. When a ven-
dor supplies a binary program patch, different users may receive it at
different times. The differential application times of the patch create
a window of vulnerability until all users have installed the patch. An
abuser might analyze the binary patch before others install it. Armed
with this information, he might be able to abuse another user’s ma-
chine.

A related situation occurs in the deployment of security tools. How-
ever, many tools will necessarily encode vulnerability information or
explicit information about security “localisms.” This information may
be reverse-engineered and used against systems.

We discuss several ways in which security patches and tools may
be made safer. Among these are: customizing patches to apply to
only one machine, disguising patches to hinder their interpretation,
synchronizing patch distribution to shrink the window of vulnerabil-
ity, applying patches automatically, and using cryptoprocessors with

*Current address: Alamadanga Kushtia, Bangladesh.

enciphered operating systems. We conclude with some observations on
the utility and effectiveness of these methods.

1 Introduction

1.1 The general problem

Suppose Zelda wishes to distribute sensitive information to Alice and Bob.
There are several potential problems in the process that we know how to
manage: preventing others from reading the information, preventing others
from altering the information, and marking the information in such a way
that Alice and Bob know who sent it. We know how to scale these solutions
affordably for many situations. We also know how to configure the solutions
to handle cases where Zelda sends frequent messages to different, but not
necessarily disjoint, sets of users, e.g., message 1 to Alice, Bob and Carol;
message 2 to Alice; and message 3 to Bob, Carol and David.

We have identified a class of situations to which there are as yet no for-
malized solutions. These situations occur when Zelda distributes informa-
tion to Alice, Bob and others who may be potential rivals. The information
offers each of them a competitive advantage if they receive and act on the
information before one of the others. Examples include distributing finan-
cial market information to investors, and providing bidding specifications to
potential contractors. Part of this problem is determining how to distribute
and protect the information in such a way as to reduce or eliminate the
time during which the difference in knowledge may be exploited. Another
major part of the problem is how to scale any solution to large numbers of
receivers, and how to accomplish this inexpensively.

Of particular interest to us are the cases of distributing security-relevant
updates and patches to software. When a vendor distributes a security-
related patch to customers, it contains implicit information about the vul-
nerability involved, and perhaps of the exploit itself. The patch must be sent
to customers and users if the vulnerability is known to others. However, the
nature of patch distribution is such that many users may not receive (or use)
patch information at the same time as others. There are global differences
in time zones, work weeks, holidays, workloads, and competence. During
the time between the first receipt of the patch, and the application of that
patch to the last remaining machine needing it may be a large window of
vulnerability. Our concern is how to reduce this vulnerability, raise the cost
of exploiting it, somehow “tag” the exploiter for later action, and otherwise
make the process safer for all the recipients.

The remainder of this paper discusses aspects of the general set of prob-
lems in the context of vendor patch distribution. Although this does not
have all the characteristics present in the general problem, it is one with
which most people are familiar, and presents sufficient complexity and risk
to warrant concern. In addition, we also discuss how some of our solutions
may also be applied to a closely-related problem: that of protecting security
tools developed or employed locally to each site. Each tool set contains an
implicit list of vulnerabilities—especially if customized for local conditions
and concerns—that may be exploited if the tools are obtained by another
and analyzed. In fact, as noted in [12] and [6], the tools may be modified
and then used as automated attack mechanisms. This represents a different
aspect of the general problem: one where distribution may also occur to
unauthorized parties of unknown number, and where the window of vulner-
ability may be arbitrarily large.

1.2 Summary of possible solutions

This paper investigates how patch distribution and security tool distribu-
tion can be made safer. We explore methods of protecting this information
during distribution and employment, and discuss the limitations of any such
protection. Although we suspect that it may be impossible to guarantee the
complete safety of distributed vulnerability-related information, we demon-
strate that there may be effective means of reducing the risk associated with
such distributions.

The crux of the patch distribution problem is this: how are we to dis-
tribute the solution of a problem without betraying any information about
the problem? This is difficult because the solution of a problem by its na-
ture contains clues about the problem. Thus, it may well be that the patch
distribution problem we consdier cannot be solved in its entirety. Therefore,
we must also consider ways to reduce the associated risk.

In the following sections, we consider the following methods of reducing
the risks accompanying security-relevent patch distribution:

e We can “customize” each patch or tool so that each one differs from
machine to machine. This will result in software that is different for
any two sites, possibly disguising common vulnerabilities. Further-
more, if the original software was likewise customized, then it is not
clear that reverse-engineering one particular patch set or tool would
result in generically useful information. This is, in some ways, related
to the way polymorphic computer viruses alter their structure to avoid

detection by pattern matching (e.g.,. [15]).

e We can introduce “noise” to mask changes. If a sufficiently large num-
ber of other, non-functional changes are made to a system when a
patch is installed, then it should be correspondingly difficult to deter-
mine the aspects of the patch that are critical to security.

e We can synchronize patch distribution and application so that all users
receive and install the patch at the same time. Given the uncertain-
ties of the present patch distribution channels and the varying degree
of security-consciousness among users, the goal of achieving perfect
synchrony in patch distribution and application seems impossible to
attain. Thus, we need to consider “loose” synchronization methods,
or prioritized distribution.

o We can use automated patching: Part of the operating system patches
itself when it receives an authenticated command over the network
from the vendor.

o Another approach involves cryptographic methods to obscure patches.
Presumably, a patch could be enciphered during distribution to pre-
vent the problems described earlier in this paper. This is not a simple
approach, as it raises additional questions: how would it be deciphered
for installation? And if it were installed somehow without the user
seeing it, could he deduce its form by comparing the old and new op-
erating systems? How would encryption protect the contents if the
antagonist were a legitimate recipient of the patch and the associated
keys? Could special hardware assist with encryption and decryption?

e A somewhat whimsical solution to the problem would be to have
trusted guards carry the patch to each site and force the system man-
agers install the patch at precisely noon GMT on a certain day.

In what follows, we classify solutions not requiring armed guards as
either software or hardware solutions. The software solutions are expected
to run on standard computer hardware. The hardware solutions require each
computer to have special hardware or firmware. The solutions requiring
deployment of armed guards , although appealing, is impractical for most
present-day software: several vendors’ products would require a full-time
agent present at each site.

2 Software solutions

These solutions will run on ordinary computers except that the vendor’s
computer may require a good random number generator that might involve
some special hardware (cf. [5]). Also, one of the solutions in section 2.3 uses
time locks, which might use special hardware to solve a puzzle. But this
requires only the machines used in the solution, and no user machines, to
have special hardware.

2.1 Customization

Each site or machine has its own unique Operating System (OS) binary code.
The vendor’s compiler uses a Good Random Number Generator (GRNG) to
determine code arrangement, register assignment, variable assignment, etc.
The vendor saves the sequence from the GRNG used for each site so that it
can prepare a patch that applies only to that one particular site.

As different sites have slightly different OS’s, they might have different
flaws and require patches for different problems. Thus, if a malicious user
looks at the patch or compares the old and new binaries to learn what
problem the patch fixes, then she might not be able to use this knowledge to
break into any other systems because perhaps only her system had that bug.
However, some OS bugs (design errors) may have such general nature that
they apply to all (or many) versions of the OS regardless of the use of the
GRNG when it was compiled. Then a malicious user could harm systems
that installed the patch later. These random variations in code for a given
program are used also in section 2.2 Obfuscation below.

2.2 Obfuscation

The patch is disguised, but not enciphered, to hinder, but not completely
prevent, reverse engineering.

As in section 2.1, Customization, the vendor’s compiler uses a GRNG to
determine code arrangement, make register assignments, and other changes.
The GRNG could also be used to introduce complex boolean expressions
by expanding the parse tree in those portions of the OS that are not time-
critical. These changes would make the code much more difficult for the
attacker to analyze, or possibly render the code impossible to understand.

! A pseudo-random generator is not appropriate, as discovery of the generator may
allow an attacker to reproduce the sequence of perturbations in the compilation. This
comment applies to the other schemes were we describe use of a GRNG.

Indeed, optimization itself may provide sufficient obfuscation of the program.
In contrast to section 2.1, now each site has the same version of the OS
generated by the same sequence from the GRNG. When the vendor fixes
the flaw, he recompiles the OS using a new sequence for the GRNG. The
malicious user who compares the old and new binary files will find thousands
(or more) of differences and thus have great difficulty discovering the security
flaw.

In a slight variation of this idea, the changes are drawn from a database
of harmless variations of the compiled code constructed when the OS was
compiled. (In later sections, we describe how to construct such a database
of false changes.) Almost all of these modifications are composed of seman-
tically equivalent changes of register assignment or order of execution of
commutative operations (e.g., b+a instead of a+b). Only a few, and possi-
ble no, changes in a set repair a real security problem. The malicious user
examining the set of changes would have to expend considerable effort each
month to find a security fix, and some months she would find nothing.

In this scheme, the vendor distributes a set of “false changes” at a regular
interval—say, 100 false changes per month—along with any real change that
may have been created during the intervening period. A false change is effec-
tively a placebo that leaves the functional behavior of a program unchanged.
These false changes act as noise that makes the real fix less discernible. False
changes must be generated under the following constraints:

1. The functional behavior of the program must remain unchanged.
2. The program execution time should not suffer.
3. The additional space requirement should not be too high.

4. The change code should blend well with the existing program code;
that is, it should be difficult to distinguish real changes from false ones,
otherwise an abuser will see through them for what they really are.

As a variation of issuing 100 changes per month, the vendor might issue
sets of 100 changes at random times satisfying a Poisson distribution with
mean one month. That way if it were necessary to repair a serious security
hole quickly, no one would notice the extra issue because it might have
occurred then anyway.

Some managers might install all changes; some managers might miss
some. How will the vendor debug systems with so many different versions
of the OS in use? The answer is the standard one: The manager must get
his system up-to-date first.

2.3 Synchronized patch installation

We assume that all the computers are on networks and each network is
connected to some site which in turn is connected to the a common network
(e.g., a dedicated private network, or the Internet). A site is under a single
administrative control and may contain multiple networks. In one variation,
each site has a security class as well. Higher security classes are assigned to
sites with greater need for protection and smaller chance of having malicious
users. Every site has a locally-trusted machine designated as the local patch
distributor through which encrypted patches and keys are distributed to the
local computers.

On the next higher level in the distribution hierarchy there is a set of
machines designated as regional distributors, each of which connects logically
to the set of local distributors. The regional distributors, along with a root
distributor, may be maintained by a vendor, a cartel of vendors, or some
independent body serving the industry.?

When a new patch is issued, the root distributor produces several en-
crypted versions of it using different keys—one key for each security class—
and sends the encrypted patches and keys to all the regional distributors.
Regional distributors then send the appropriate version of the encrypted
patches to all local distributors under their respective domains, and the
local distributors forward it to all machines within their respective sites.
Having distributed the encrypted patch, the regional distributors coordi-
nate among themselves to ensure that all sites with high security class have
received the patch. Then the regional distributors give out the keys to the
local distributors in successive waves—sites with the highest security class
receive their keys first and those with the lowest security class receive it last.
The regional distributors may again coordinate among themselves to ensure
that all higher security sites have received the keys before distributing keys
to the lower security sites.

The above scheme does not work for a machine that is either switched
off or temporarily disconnected from the network when the patch and the
key are distributed. To correct the situation, when this machine boots up
or reconnects back to network and before it executes any other process, it
contacts the local distributor and receives any patch that might have been
issued during the intervening period.

In a variation of this approach the patch is enciphered and sent to all
sites or made available by ftp from the vendor. With it are included (in

?We should note that this loosely corresponds to the current logical organization of
FIRST response teams.

plain text) instructions to install it at noon GMT on a certain day, at which
time the key to the cipher will be revealed. Clifl Stoll first described this
scenerio[17] and suggested that one good way to reveal the key would be
to publish it in a national newspaper such as USA Today or the New York
Times.

Other methods of distributing the key would be for the vendor to place
itin a public directory at noon GMT so that all sites may ftp it at the same
time; the vendor could email the key to all sites at once; or a special-purpose
protocol could be developed to broadcast the key to the whole network. Any
of these solutions would work if the number of sites was small, if they were
all on the same network, and enough of the machines on the network were
working at noon GMT so that all sites could get the key and install the patch
within a few minutes. If there were many sites to be patched or if they were
located on more than one network, the scale of distribution renders these
schemes ineflicient or impossible. In that case, one might use some form of
time locks (first suggested in [16] and independently developed in [13]) to
reveal the key (or keys) at the same time in different places.

One approach to time locks is to have each time lock server solve an
inherently sequential “time lock puzzle” which requires a precise amount of
computing to solve, and whose solution is the key. This sort of time lock
puzzle probably would not be suitable because some computers are much
faster than others and a close approximation to synchrony is important in
patch distribution. For example, one might be a PC and another a Cruncher
[4], which can solve “time lock puzzles” requiring arithmetic with large inte-
gers hundreds of times faster than a PC could solve it. In [2], a Cruncher is
programmed with the repeated squaring time lock puzzles of Rivest, Shamir
and Wagner [13], and execution speeds are compared on various machines
ranging from PC to Cruncher. They conclude, unsurprisingly, that some
machines are much faster than others at running time lock puzzles.

Another approach to time locks is to use trusted agents. These are
tamper proof computers that publish previously secret values periodically.
These agents can synchronize their internal clocks by a cryptographic trans-
action once every few days. Besides revealing secret values periodically,
these agents also respond to requests of the form, “Here are values for M
and ¢. Please return (K, M), the encryption of message M under the se-
cret value K which you will reveal at future time ¢.” To use a time lock
agent to distribute a patch, the vendor would make such a request to each
time lock agent with M = the key for the patch. Then the vendor would
send the message (agent_id, ¢, (K, M)) to each site served by that agent.
At time ¢, the site would get K from its time lock agent, use this to decipher

E(K, M), then use M to decipher the patch, and finally install the patch.
Here is another variation of synchronized patch installation similar to
the scheme discussed in [16]. Suppose that the patch fixes a major security
hole and must be installed as soon as possible. The enciphered patch is sent
to all sites and each site is told to respond when it is ready to receive the key
and install the patch. As soon as a certain percentage (e.g., 99%) of the sites
reply that they are ready, then the key is broadcast to all sites. However,
if several (e.g., two or more) sites are compromised by rogues using this
security hole, then the key is broadcast immediately and without waiting
for the required percentage of the sites to reply that they are ready for
it. Good authentication of messages in this protocol is essential to prevent
forged “I am ready” messages. Weights could be assigned to various sites
if some were thought more important than others. Then the key would be
broadcast when 99% of the weighted sites were ready to install the patch.

2.4 Automatic Patch Application

Part of the OS automatically installs properly authenticated patches that
it receives from the vendor over the network. The patch message authen-
tication would have to be of the highest quality. The part of the OS that
installs patches would replace some of the OS binary files. If necessary, it
would then reboot the system. One problem is that different systems are
configured differently, and one might have to consider this when installing
certain patches and either not apply them or apply them differently on dif-
ferent systems. The user might not even know that his OS had been patched
unless he received mail about it or he monitored the last modification time
of the OS binary files. Special arrangement would have to be made to patch
machines not connected to Internet.

Some users would worry about having an OS feature that allows arbi-
trary modification of their OS upon receipt of a special message from another
computer. Many users might not care. Someone (the manager or the auto-
matic patch applicator) should save a copy of the old unpatched OS binary
file in case the patch breaks something and the new OS does not work. How-
ever, this copy would need to be saved locally — the patched version may
not run so as to allow the remote patcher to revert the code base. This local
copy might then enable code comparison, thus reintroducing the problem
we are attempting to solve.

This is the only patch application technique that can help sites whose
managers are inconsistent about installing patches, or where issues of scale
are significant. System administrators are often overloaded with more im-

portant work, or ignorant of security issues, or both. At many sites, there
are too few administrators to manage changes on all the machines present
— especially at the rate some vendors issue patches. If the installation of
security patches requires manual intervention, many system administrators
often do not care about the problem until they receiveget a personal demon-
stration (friendly or hostile) of how seriously the security flaw can affect the
security of their system. It would therefore be useful to have a tool that
will automatically install security patches in a system without any system
administrator intervention. Patches must of course only be installed if they
have been authorized by some highly trustworthy entity, and if automatic
tests before the patch installation have shown that the patch is unlikely to
cause any troubles. After the patch has been performed, a number of au-
tomated tests of the fixed functionality should be performed and the patch
should be undone automatically if these tests fail.

The problem with automatic patching in general is that the actual system
environment found on a particular machine might vary considerably among
the sites and from what the operating system manufacturer had in mind.
System administrators may reorganize files and invent path structures as
they feel appropriate. As few systems have good automatic software install
mechanisms, the installation scripts of many software products apply in an
uncontrolled way their own private patches to the system and its configura-
tion files. Thus, it is difficult to identify a “standard” installation.

As with section 2.3, synchronized patch installation, automatic patch
application does not work for machines that are turned off or disconnected
from the network. The solution to this problem is the same as before:
Apply the patch when the machine is rebooted or network connectivity is
reestablished.

2.5 Watermarks

The idea here is to digitally sign or place a “watermark” in an OS binary file
so that if a patch is reverse-engineered and someone uses the flaw it fixes to
break into another site, then there will be evidence left at the compromised
site pointing to the perpetrator. The patch is “signed” but not enciphered
or disguised. Whether this can be done may depend on the type of flaw
being fixed. This does not prevent decompilation but may be used to track
which other user had decided to use this against us. These marks may not
need to be highly specific for each site if they are are structured to work
with other indicators such as those described by Krsul and Spafford in [9].

10

3 Hardware solutions

The following solutions require all user computers to have special hardware
or firmware not found on conventional machines. Specifically, some or all of
the instructions of the OS would be enciphered—mnot simply encoded—and
the special hardware or microcode would decipher some or all instructions
either when they are fetched from main memory or when they are loaded
from disk. In the latter case, main memory would have to be protected from
the users view. For example, the user could not get a core dump. By having
some the code enciphered, comparisons and analysis of changes becomes
much more difficult or impossible within any limited time period.

3.1 Enciphered Operating System

All OS binary files are enciphered by the vendor using a block cipher. Users
receive only the enciphered binary files. To run the OS, either (a) the
enciphered OS is loaded into main memory and the microcode or hardware
deciphers each instruction as it is fetched or (b) the entire OS is deciphered
when it is loaded into main memory and user access to it is prohibited. The
patch is enciphered with the same key as the OS so that it may replace
the proper OS binary files. Enciphering makes the patch unintelligible so
that its installation need not be synchronized. The cipher must be simple so
that performance will not be degraded. The block size must be large enough
(e.g., > 128 bits) to prevent cryptanalysis with a logic analyzer. The key
might be the same for every machine or each machine might have its own
key. The latter choice complicates patch distribution but provides excellent
copy protection for the OS.

The diagram illustrates how the CPU fetches instructions either directly
from memory or from memory through decoding hardware. A multiplexor
chooses the source of the instruction.

The operating system could decrypt executables immediately prior to
loading the binary image into main memory. Access control mechanisms
would be necessary, which prevent even system administrators from access-
ing the plain text binary (for example, under Unix, /dev/mem, the “panic
core” and similar facilities need access restrictions to memory locations that
map decrypted executable pages). As the initial vector of the old and new
software module version would be different, the attacker has no means to
compare the old and new version, except by observing file length changes
and execution timing and behavior differences. System call traces should be
disabled for encrypted binaries.

11

RAM

DECODE
UNIT
Y Y
CIPHER CONTROL
SIGNAL ——» MUX
CPU
CPU CHIP

INSTRUCTION FETCHES IN A CRYPTO-CHIP

12

This approach is not feasible for operating systems where the user has
full access to the kernel source code and its compiling environment. By dis-
assembling, the decryption keys of kernels that are only available as binaries
can be identified also relatively easily. Therefore, decrypting binaries when
they are loaded makes the attack a little bit more difficult, but not consid-
erably. This concept provides no protection against retrieving the plain text
software from the system bus.

3.2 Certain Modules Enciphered

A small number of OS instructions, such as a security module or part of
a patch that would reveal a security hole, are enciphered. To execute pro-
grams efficiently, the enciphered instructions are placed in one segment and
a segment flag tells whether its instructions are enciphered or not. Seeing
this flag, the instruction decoder would decipher instructions from this seg-
ment before executing them. Since only rarely would instructions have to
be deciphered, a more secure (and probably slower) cipher could be used
than if all instructions were enciphered as in section 3.1.

4 Methods of Generation of Pseudochanges

In this section and the next, we illustrate some methods of making random
variations in the code generated by a compiler. These are used in sections
2.1 and 2.2
When compiling a program, we use a flow graph [11] as an intermedi-
ate representation. A flow graph is a directed graph in which each node
represents a basic block through which program control flows linearly and
can be constructed using one of the standard techniques [1]. We perform
global data flow analysis on this flow graph using Kildall’s [7] scheme that
associates with each statement in the program a pool of data that is being
propagated through the program. This data pool is a set of expressions
that are partitioned into equivalence classes such that each member in a
particular equivalence class has the same value. Here is an example:
Label Code Data Pool (Equivalence Classes)
1 a:=b
2 d:=f {(a,b) }
3 c:=at+d {(a,b),(df)}
4 p:=q+r {(ab),(df),(c,a+d,a+f,b+d,b+f) }
Using the information in the equivalence classes we can generate equival-
ence-preserving changes. For example, we can replace the statement labeled

13

3 with any one of the following statements:

¢ := b+d
c:= atf
¢ := b4+f

Each of the above statements may be used as a false change. With every
false change statement that is selected in this way, we associate a label that
serves as a mapping between the original program statement and the corre-
sponding change statement. When we finish compiling the original program,
we also compile the change statements and resolve all external references so
that we can create the editing directives for installing the changes. We then
save the binary changes along with corresponding editing directives to be
used by the change applicator in our false change database. A technique for
compiling this kind of changes and building up a database is described in
Krauser [8], while Sayward [14] discusses the practical issues about program
equivalence.

Omne complication with this way of false change generation occurs when
a real change alters some of the original equivalence classes. If this happens,
we need to distribute additional changes to correct the situation where some
already distributed false changes are no longer harmless. We also need to
modify the false change database.

If a program is not to be globally optimized during compilation, we
can generate a significantly larger number of false changes using techniques
like constant folding, copy propagation, dead code elimination, hoisting and
sinking and other optimizing methods. On a related note, we can view an
optimized program as simply the unoptimized program with a sequence of
false changes applied to it.

5 Methods of Customization and Obfuscation of
Binary Files

In this model the vendor carries out certain code rearrangement and/or
modifications so that the resulting binary executable looks quite different
from the unpatched version, while remaining functionally equivalent except
for the patch. Here are some of the ways in which these rearrangements or
modifications may be performed:

14

5.1 Intra-block code rearrangement

There is normally more than one way in which we can order the independent
computations inside a basic block so that the resulting object code has the
optimum cost in terms of instruction counts and load/stores. Such orderings
are normally obtained from topological sorts of the dependence graph for a
block. Aho, Sethi and Ullman [1] present an algorithm to generate optimal
orderings for evaluating the nodes of a DAG representing the basic block.
When applying a patch, we can reorder the computations in some of the basic
blocks so that the affected blocks are still optimal, but look very different
from the original blocks.

5.2 Change of control flow

We can alter the thread of execution in a program without changing its
functional behavior by altering the order of execution of some of the inde-
pendent basic blocks, thus altering the look of the binary executable. In
the global data flow analysis phase during compilation of a program, we
can generate a dependence graph between basic blocks. Any ordering of
the basic block execution sequence produced by the topological sort of the
dependence graph will be functionally correct.

During patch application, we can opt for an alternative execution se-
quence (as produced by a topological sort) for some of the basic blocks
through jumps, thereby altering the binary executable. One must develop
an algorithm to analyze the effect of the modified execution sequence on the
register contents and to change the executable code accordingly.

5.3 Register and variable renaming

We can rename all the data registers used in the program. Interchanging
some variable addresses consistently will also change the appearance of the
program. One way of doing this was described in section 4. Another way is
to have the GRNG select a random permutation of the variables and then
rename the registers or variables according to this permutation.

Usually security patches change only a few lines of code. Sometimes only
the type of a variable is corrected, one line of code is added or removed, or
a branch condition is slightly modified. Because the same compiler and
the same compile options are usually used to create both the old and new
executable binary, we will observe only a few bytes of changed machine
code. The code produced by compilers allows easy recognition of subroutine
boundaries. Therefore, even if part of the machine code has been relocated

15

and many absolute addresses in the code have been changed, simple length
comparisons and searches for the longest common subsequence will quickly
identify those subroutines that have been modified. This allows the attacker
to concentrate her reverse engineering efforts onto a few subroutines, which
can save a lot of time.

We suggest therefore the development of the following mechanism. Take
the code generation module of an existing compiler and add algorithms that
allow many variations in the machine code produced. The code generator
and optimizer of a compiler often make an arbitrary selection among many
different machine instruction sequences that all fulfill the same purpose and
that are comparable in memory and runtime efficiency. If these alternative
machine sequences can be identified by the code generator, the selection of
the machine code sequence actually used can be determined by a random
number generator (GRNG). This way, by providing a new seed value for the
GRNG as a compiler option, we can cause the compiler to generate a new
executable binary, which shows in most bytes significant differences from
any executable generated previously from the same or any similar source
code.

The following mechanisms can (among others) be used to vary the output
of machine code:

e Memory locations of variables can be permuted.

e Sequential instructions can be permuted, as long as this will not alter
the program semantics. The optimizer keeps a great deal of data about
how instructions depend on each other, therefore this should not be
difficult to figure out.

e The order of procedures in the final code can be permuted.

o Code segments that are not marked as being in some time-critical in-
ner loop can be generated using suboptimal but semantically identical
machine sequences.

e The memory layout of code can also be reorganized by inserting many
jump commands.

e Simple boolean expressions can be replaced by more complicated equiv-
alent expressions. If the attacker tries to develop automatic soft-
ware that is supposed to reverse this artificial complication, she might
quickly face a number of NP-complete problems.

16

The compiler should support a “critical” directive to signal especially
time-critical parts of the source code to exclude them from suboptimal modi-
fications. For the rest of the software, it is perfectly acceptable if the pseudo-
random variations in the code generation process cause the code produced
to take some more time and memory than with the normal optimization
techniques.

If the GRNG seed value is changed for every distributed software version,
the attacker will find that reverse engineering only the differences between
the old and new versions is at least as difficult as reverse engineering the old
software version alone and searching in it for security problems. This way,
the goal of secure patch distribution will have been accomplished nicely for
binary files.

6 Hardware-supported decryption: cryptoproces-
sors

With special hardware capable of decoding an encrypted instruction before
feeding it to the CPU, we may be able to apply an encrypted patch directly to
the binary executable. This would prevent a user from seeing the decrypted
version of the patch.

A patch will be encrypted and be applied to the binary executable in the
encrypted form. CPU control logic recognizes an encrypted instruction by
a special marker on the segment. In the instruction decoding phase of the
execution cycle for an encrypted instruction, the routine instruction decod-
ing will be preceded by a decrypting step in which the encrypted instruction
will be decoded by a hardwared decoding unit with an embedded decryption
key.

To avoid having a longer clock cycle time because of the decrypting
phase, we may prefetch some of the encrypted instructions and pipeline
them through the decryption unit. To keep the decryption pipelining scheme
simple, we may leave the branch instructions in the patch unencrypted in
the first place.

Apart from the cost of the additional hardware, this scheme requires
some central authority to decide what the encrypting and decrypting keys
will be.

Why would users buy a cryptoprocessor — a machine that executes
encrypted programs? One marketing advantage is that software would be
cheaper for a cryptoprocessor because the vendor knows that it can be used
on only one machine. Copy protection is enforced.

17

The ideal solution would somehow have to avoid having anyone outside
the software development team get access to the plain text version of the
software, both the old unpatched and the new patched version. That would
certainly provide the highest level of security and would at the same time
allow effective software piracy prevention. Mechanisms that completely pre-
vent (even hardware) access to the executed software include:

e Secure main board packages as implemented in the ABYSS system [18].
The CPU, the RAM, and some peripheral devices are all enclosed in a
tamper-proof package. Software is stored in encrypted form on a hard
disk outside the security shield or loaded in encrypted form over a net-
work. The (machine specific) decryption keys are stored in a battery
buffered RAM inside the secure package. The software is decrypted
when it is loaded from external storage into the RAM. The secure
package prevents hardware observation of the decrypted software in
the system RAM or on the system bus lines. The operating system
kernel is also loaded encrypted into the machine and can therefore not
be modified to release the protected software.

e Cryptoprocessors perform the decryption between the memory inter-
face of the CPU chip and the on-chip cache. The security package is
limited to the CPU package, which simplifies manufacture and servic-
ing, and avoids memory capacity limitations. Cryptoprocessors have
first been described in [3] and existing implementations include the
DS5002FP microcontroller and the iPower security processor. A cryp-
toprocessor concept suitable for operation in a modern multitasking
workstation, in which it is not even necessary to trust the operating
system, is the TrustNol processor concept described in [10].

Although cryptoprocessors provide in our opinion the basis for the most
secure patch distribution concepts, they are at the moment more of academic
interest, because they are currently available on the civilian market only
for microcontroller applications and there exists today no cryptoprocessor
for personal computer applications. Therefore, the cryptoprocessor concept
should be considered as an ideal solution and should be documented as a
reference for systematic comparison with other patch distribution concepts,
but considering the lack of existing hardware, these concepts are probably
not what we should recommend in the near future. We could of course
consider developing such a chip based on an existing microprocessor design.

18

7 The costs

It is not easy to modify a compiler to make it use a GRNG to determine
code arrangement, register assignments, etc. Thus, the methods described
in section 2.1, Customization, and section 2.2, Obfuscation, have a high
cost in development. Customization has the additional cost of compiling
the program once for each customer, each compilation using a different seed
for the GRNG. If there are tens of thousands of customers and hundreds
of thousands of lines of code to be compiled, this cost will preclude the
use of customization. Customization could be made feasible by customizing
the OS only for a special class of customers who pay for this service. The
vendor would compile the patch once for each special customer (each time
with a unique GRNG seed) and once more for all regular customers together
(using one more GRNG seed). In contrast, obfuscation requires that the OS
be compiled only once per release. One vendor (HP) maintains a database of
customer options that might serve as a model for the record keeping needed
for customization.

A major cost of synchronized patch installation, as described in section
2.3, is the creation of the patch distribution hierarchy. Of course, patches
are already distributed now. Perhaps a slight modification of the present
system would suffice. If cryptography is to be used, then an appropriate
cryptosystem must be chosen and implemented; the political and key man-
agement issues likely make this solution unworkable at present. Likewise,
time locks would add to the cost if they were used.

One cost of automatic patch application, as described in section 2.4, is
the development of the OS module that applies patches and the authenti-
cation system it uses. Another cost is the creation of a patch application
hierarchy similar to the patch distribution hierarchy above. The installation
module must know which features of the OS were selected when the OS
was created so that it will not try to patch a non-existent module. It must
also know which version of the OS is currently running. Customers should
be able to undo a patch that they do not want. The people we have asked
about this approach overwhelmingly said they did not want automatic patch
application on their systems.

The cost of the hardware solutions are the special hardware, firmware or
software to decipher instructions and/or protect main memory from direct
user access. There are also the costs of the cipher, of key management, and
of enciphering many copies of the OS. The latter cost may be as prohibitive
as that of compiling many copies of the OS as in section 2.1. What if a
customer bought many systems? Would they have different keys or the

19

same key? An additional cost of the method described in section 3.2 is the
redesign of the OS to put all security functions in one segment.

8 Present practice

What do vendors currently do about patches? We asked some, and here is a
summary of their responses. (All of the vendors who responded spoke with
us only on condition of anonymity.)

One vendor does not issue patches. The only software changes are new
releases of the OS. (By observation, this is true for several vendors.)

Another vendor simply issues the patch and forgets about it. If the patch
fixes a security flaw, the patch starts with the message, “This patch fixes
a security flaw. Install it now or else the consequences are your problem.”
This vendor guesses that about half of its customers actually install patches.

A third vendor built a prototype of an automatic patch installation sys-
tem similar to that described in section 2.4. It was never put into use
because a survey of their customers found that they would have nothing to
do with it. This vendor uses the following system to distribute patches: A
service agent calls customers who pay for patch service and tells them what
patches are available. Over the telephone, the customers select the patches
they want, and the service agent sends these patches to them by FedEx. In
addition, all patches are posted on a web site from which any customer can
download whatever she wants. As with the second vendor, security fixes
carry a message, “Install this soon or else it is your problem.”

9 Our recommendations

Based on our study to date, we recommend automatic patch application
provided users can be made to accept it. It is effective and its costs are
moderate. If users will not accept it, then our second choice is a combination
of the techniques presented in sections 2.2 and 2.3. The cost should be only
slightly more than the automated application method and it would be nearly
as effective. The enciphered OS approach may become feasible some day if
vendors produce cryptoprocessors to prohibit program copying.

10 Future work

Many of the issues examined in this paper raise more questions than we
answer here.

20

How much of this paper applies to security tools, too? Consider the
issues raised in section 2.1, for example. Could we customize a password
checker to make it work only on one machine? If an OS were customized,
would an audit tool have to be customized in a compatible way? Some
questions which arise in that section are where in a compiler to use the
random numbers (intermediate code or final code generation), what are
the best ways to make random choices, and how this may affect program
efficiency? Eventually, we might produce a compiler with this sort of GRNG
controlling its code generation. We discuss some of this in other sections of
the paper, but the issues are not resolved..

These questions arise in section 2.2: Can we show it is NP-hard to find a
security fix in this collection of changes? Or can we think of any disassembly
tools that would facilitate discovery of the real security fix? How good are
disassemblers? Are zero-knowledge proof techniques relevant here? Can one
use program mutation techniques [14] to generate the false changes? Many
mutants are equivalent and may be used to generate pseudochanges. Are
100 changes enough?

The automatic patch installer of section 2.4 is a highly system-dependent
mechanism. Some vendors (e.g. SunSoft) offer already comfortable and
semiautomatic patch installation systems. We could develop a completely
new state of the art automatic patch distribution system for one specific en-
vironment, and document its design concepts, the practical experiences, and
the unresolved problems in some papers. Alternatively, we could try to im-
prove existing semiautomatic patch systems with additional functionalities
towards fully automated operation.

Here are some questions concerning Section 3. What ciphers should
be used? When the program is swapped out, should its data variables be
enciphered? How do we recover or repair system “crashes” or component
failures if we cannot recover the key? Can we combine this mechanism with
other cryptographic needs on the system.

We hope to be able to answer some of these questions with our future
research.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachusetts, 1988.

[2] Lyle T. Bertz, Ganesh Krishnan, Markus G. Kuhn, E. H. Spafford, and
S. S. Wagstaff Jr. Remarks on time locks. In preparation.

21

[3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

Robert M. Best. Preventing software piracy with crypto-micro-
processors. In Proc. IEEF Spring COMPCON 80 San Francisco, Cali-
fornia, pages 466-469, February 25-28, 1980.

Chris Caldwell. The Dubner PC Cruncher—a microcomputer copro-
cessor card for doing integer arithmetic. J. Recreational Mathematics,
25(1),1993. This hardware is available from H & R Dubner, 449 Beverly
Road, Ridgewood, New Jersey 07450.

Donald E. Eastlake, Stephen D. Crocker, and Jeffrey 1. Schiller. RFC-
1750 Randomness Recommendations for Securily. Network Working
Group, December 1994.

Daniel Farmer and Fugene H. Spafford. The COPS security checker
system. In Proceedings of the Summer Conference, Berkeley, CA, June,
1990. Usenix Association.

Gary Kildall. A unified approach to global program optimization. Con-
ference Record of ACM Symposium on Programming Languages, pages
194-205, 1973.

Edward Krauser. Compiler-integrated Software Testing. Ph. D. thesis,
Purdue University, 1991.

Ivan Krsul and Eugene H. Spafford. Authorship analysis: Identifying
the author of a program. In 18th National Information Security Con-
ference, volume 2, pages 514-524, October, 1995.

M. Kuhn. Sicherheitsanalyse eines Mikroprozessors mil Busver-
schliisselung. Diploma thesis, Lehrstuhl fiir Rechnerstrukturen, Uni-
versitit Erlangen-Nirnberg, Erlangen, July, 1996.

Karl Joseph Ottenstein. Data-flow graphs as an Intermediate Program
Form. Ph. D. thesis, Purdue University, 1978.

Tim Polk. Automated tools for testing computer system vulnerability.
Technical Report NIST SP 800-6, National Institute of Standards and
Technology, 1993.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release crypto. Prepreint, 9 pages.

F. Sayward and D. Baldwin. Heuristics for determining equivalence of
program mutations. Research Report 161, Georgia Institute of Tech-
nology, April, 1979.

22

[15] Eugene H. Spafford. Viruses. In John J. Marciniak, editor, Fncy-
clopedia of Software FEngineering, volume 2, pages 1433-1441. Wiley-
Interscience, 1994.

[16] Eugene H. Spafford. The pros and cons of disclosure. In Conference on
Systems Administration and Nelwork Security. USENIX, May, 1995.
Invited address not in proceedings.

[17] CIiff Stoll. Telling the goodguys: Disseminating information on secu-
rity holes. In Proceedings of the Fourth Aerospace Computer Securily
Conference, pages 216-218, Washington, DC, 1988. IEEE Computer
Society.

[18] Comerford White. ABYSS: A trusted architecture for software protec-
tion. In Proc. 1987 IFEE Symposium on Securily and Privacy, Oakland,
California, pages 38-51. IEEE Computer Society Press, April 27-29,
1987.

23

