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On August 23, 2008, a computer at UCLA

found the first known prime number with more

than 10,000,000 digits and won a $100,000

prize from the Electronic Frontier Foundation.

We explain how it was found and give some

applications of this achievement.

1



We will give the answer to this problem later

in this talk.

Let b(n) equal the number of 1 bits in the

binary representation of the positive integer n.

In other words, b(n) is the sum of the bits in

the binary number n.

Problem: Prove that for every integer k > 1

there exist positive integers m and n such that

• b(m) = 3,

• b(n) = k, and

• b(m · n) = 2.

Hint: Since b(2rn) = b(n) for positive integers

n and r, we may assume WNLG that m and n

are odd integers in the problem.
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Many people have searched for Mersenne primes

2p − 1 during the past 400 years. The current

search is organized by GIMPS, the Great In-

ternet Mersenne Prime Search, led by George

Woltman, Scott Kurowski and others.

One can download programs from GIMPS at

http://www.mersenne.org

to search for new large primes.

The program uses the Lucas-Lehmer test to

determine whether the number is prime. Most

of the time is spend multiplying very large in-

tegers.

Each candidate number is tested two or three

times. An online database lists the numbers to

be tested. The GIMPS program contacts the

database and is assigned a candidate to test.

When finished, it gets another one and so on.
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Theorem: If 2n − 1 is prime, then n is prime.

Numbers Mp = 2p − 1 with p prime are called

Mersenne numbers.

Primes Mp = 2p−1 are called Mersenne primes.

Forty-six of them are known. Probably there

are infinitely many.

Theorem: If 2n + 1 is prime, then n = 2k for

some k ≥ 0.

Primes Fk = 22k
+1 are called Fermat primes.

Only five of them are known: 0 ≤ k ≤ 4. Prob-

ably there are no more.

As a teenager, Gauss proved that a regular n-

gon can be constructed with ruler and compass

if and only if the largest odd divisor of n is a

product of distinct Fermat primes.
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Let Mp = 2p − 1.

Theorem (Lucas-Lehmer Test): Define a se-

quence S1 = 4 and Sn+1 = S2
n − 2 for n ≥ 1.

Let p be a prime number. Then Mp is prime if

and only if Mp divides Sp−1.

When using the Lucas-Lehmer Test to decide

whether Mp is prime, one can reduce each Sn

modulo Mp to keep the numbers smaller than

Mp.

LucasLehmerTest(p)

S = 4

for (n=2; n<p; n++)

S = (S*S - 2) modulo M_p

if (S = 0) then M_p is prime

else M_p is composite
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Lucas-Lehmer test for p = 7, M7 = 127:

n Sn Sn mod Mp

1 4 4
2 14 14
3 194 67
4 37634 42
5 1416317954 111
6 2005956546822746114 0

This shows that M7 = 127 is prime.
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Lucas-Lehmer test for p = 11, M11 = 2047:

n Sn mod Mp

1 4
2 14
3 194
4 788
5 701
6 119
7 1877
8 240
9 282
10 1736

This shows that M11 = 2047 is not prime.

In fact, 2047 = 23 · 89.
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At first, it looks like the algorithm runs in time

O(p). But the numbers inside the loop have

length p bits, so it might take time O(p2) to

multiply and divide them. So maybe the algo-

rithm takes O(p3) steps.

A polynomial time primality test was discov-

ered in 2003 by Agrawal, Kayal and Saxena.

The latest improvements of it test n for prime-

ness in roughly O((log n)7) or O((logn)8) steps.

With n = 2p − 1 this would be roughly time

complexity O(p7).

There are probabilistic tests for the primality

of n that run in O((logn)3) steps and almost

always give the correct answer.

The numbers n = Mp are rare among numbers

n in that there is a deterministic test for their

primality with time complexity O((log n)3) or

even O((logn)2 log logn). Few other numbers

can be tested for primality so swiftly.
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First, division by Mp to get a remainder is fast

because of the special form Mp = 2p − 1. Just

shift the bits of higher order than the first p

bits under the first p bits and add, perhaps

twice. This works because 2p ≡ 1 mod Mp.

Example with p = 3: 44 mod 7 = 2.

In binary, 101100 mod 111 = 010.

101 100

+ 101

-----

1 001

+ 1

-----

010

The reduction modulo Mp (of a number < M2
p )

can be done in O(p) steps this way.
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How about the multiplication—actually a

squaring in our algorithm, which is a bit easier?

We will consider general multiplication here.

The multiplication algorithm you learned in

grade school multiplies two D-digit numbers in

O(D2) steps.

Example: multiply 792 × 648 = 513216.

7 9 2 Multiplicand

6 4 8 Multiplier

------------

6 3 3 6 = 8 * 792

3 1 6 8 = 4 * 792

4 7 5 2 = 6 * 792

------------

5 1 3 2 1 6 Final product
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There are several fast multiplication methods.

We explain one of them for the same multipli-

cation problem (multiply 792×648 = 513216).

First, multiply pairs of one-digit numbers and

write their products in the proper column.

Second, add the columns.

Finally, “release the carry.”

7 9 2

6 4 8

------------------

56 72 16 Products of

28 36 08 two one-digit

42 54 12 numbers

-- -- -- --- -- --

0 42 82 104 80 16 Sum the columns

5 9 11 8 1 Release

-- -- -- --- -- -- the

5 51 93 112 81 6 carry

5 1 3 2 1 6 Final product
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The column sums are a convolution of the dig-

its of the numbers being multiplied.

Prepend 0s to the numbers being multiplied

to make them as long as their product. For

example, 792 and 648 become

0 0 0 7 9 2

0 0 0 6 4 8

After these 0s are prepended, let the numbers

x, y to multiply be written in base B as

x = (xD−1xD−2 . . . x2x1x0)B =
D−1∑

i=0

xiB
i

and likewise for y. The n-th column sum is

zn =
∑

i+j≡n mod D

xiyj.

The sequence z = zD−1, zD−2, . . ., z1, z0 of

these column sums is called the cyclic convo-

lution x × y of x and y. (Electrical engineers

call sequences like x, y and z “signals.”)
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It takes O(D2) operations to compute a con-

volution by the definition.

However, it takes only O(D) operations to

compute the pointwise multiplication x ∗ y =

{xiyi} of two sequences {xi} and {yi}.

There is an invertible operation on sequences

of length D, called a discrete Fourier trans-

form, with the property that

x × y = DFT−1(DFT (x) ∗ DFT (y)).

This means that we can compute all D column

sums by doing three DFTs and D multiplica-

tions.

If you compute DFT (x) from its definition, it

takes O(D2) steps. But there is an algorithm,

called a fast Fourier transform, that computes

DFT (x) in O(D logD) steps.
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Discrete Fourier transform (DFT)

Let x be a sequence of length D of elements

of a number system in which D−1 exists and

there is a primitive D-th root of unity g. This

means that gk = 1 if and only if k is a multiple

of D.

For example, the number system might be the

complex numbers with g = e2πi/D.

Or it might be the integers modulo B, the

number base for the digits of the numbers to

multiply. In this case, g would be a primitive

D-th root of 1.

Then the discrete Fourier transform

X = DFT (x) and its inverse x = DFT−1(X)

are defined by

Xk =
D−1∑

j=0

xjg
−jk, xj =

1

D

D−1∑

k=0

Xkgjk.
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Fast Fourier transform (FFT)

Assume the sequence x has length D = 2d.

The following algorithm computes FFT (x) =

DFT (x) via the Danielson-Lanczos identity.

FFT(x)

n = length(x) // length of current sequence

if (n = 1) return x

m = n/2

X = x[2j], j = 0..m-1 // even subscripts

Y = x[2j+1], j = 0..m-1 // odd subscripts

X = FFT(X)

Y = FFT(Y)

U = X[k mod m], k = 0..n-1

V = g^{-k}Y[k mod m], k=0..n-1 // order g = n

return U + V // butterfly operation

The time complexity is O(D logD).
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Large integer multiplication with FFTs

Input: two integers x, y, each with ≤ k digits

in base B.

Output: the digits of xy in base B.

Prepend 0s to x and y up to length D = 2*k

X = FFT(x)

Y = FFT(y)

for (i=0; i<D; i++)

Z[i] = X[i]*Y[i] // pointwise product

z = FFT_INVERSE(Z)

carry = 0

for (i=0; i<D; i++) // release the carry

v = z[i] + carry

z[n] = v mod B

carry = floor(v/B)

delete any leading 0s in z

return z
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Who Cares?

Taken from Chris Caldwell’s Prime FAQ page

http://primes.utm.edu/notes/faq/why.html

1. Tradition: Euclid, Fermat, Mersenne, Cun-

ningham, Lucas, Lehmer, Gillies, Tuckerman

2. For the by-products: FFT, large integer

arithmetic, fast multiplication

3. Rare and beautiful objects: < 50 known

4. Glory: like climbing Mount Everest

5. Test hardware: Slowinski tested Crays

6. Study the distribution of Mersenne primes

7. For money: EFF offers $150,000 for 108-

digit prime, $200,000 for 109-digit prime
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Euclid was interested in Mersenne primes be-

cause of perfect numbers.

A positive integer n is perfect if it equals the

sum of all of its divisors < n.

Examples: 6 = 3 + 2 + 1 is perfect.

4 > 2 + 1 is deficient, not perfect.

12 < 6+4+3+2+1 is abundant, not perfect.

28 = 14 + 7 + 4 + 2 + 1 is perfect.

Theorem (Euclid) If p and 2p − 1 are both

prime, then 2p−1(2p − 1) is perfect.

Theorem (Euler) If n is perfect and even, then

n = 2p−1(2p − 1) for some prime number p.

Each new Mersenne prime gives a new (even)

perfect number.

No odd perfect number is known.
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Table of known Mersenne primes

p digits year discoverer
2 1 − −
3 1 − −
5 2 − −
7 3 − −

13 4 1456 anonymous
17 6 1588 Cataldi
19 6 1588 Cataldi
31 10 1772 Euler
61 19 1883 Pervushin
89 27 1911 Powers

107 33 1914 Powers
127 39 1876 Edward Lucas
521 157 1952 Raphael Robinson
607 183 1952 Robinson

1279 386 1952 Robinson
2203 664 1952 Robinson
2281 687 1952 Robinson SWAC
3217 969 1957 Hans Riesel BESK
4253 1281 1961 Alex Hurwitz
4423 1332 1961 Hurwitz 7090
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Table of known Mersenne primes

p digits year discoverer
9689 2917 1963 Don Gillies
9941 2993 1963 Gillies ILLIAC II
11213 3376 1963 Gillies
19937 6002 1971 Bryant Tuckerman
21701 6533 1978 L C Noll & L Nickel
23209 6987 1979 Noll
44497 13395 1979 Nelson & Slowinski
86243 25962 1982 David Slowinski
110503 33265 1988 Colquitt & Welsh
132049 39751 1983 Slowinski
216091 65050 1985 Slowinski
756839 227832 1992 Slowinski & Gage
859433 258716 1994 Slowinski & Gage
1257787 378632 1996 Slowinski & Gage
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Table of known Mersenne primes

p digits year discoverer
1398269 420921 1996 GIMPS (Armengaud)
2976221 895932 1997 GIMPS (Spence)
3021377 909526 1998 GIMPS (Clarkson)
6972593 2098960 1999 GIMPS (Hajratwala)
13466917 4053946 2001 GIMPS (Cameron)
20996011 6320430 2003 GIMPS (Shafer)
24036583 7235733 2004 GIMPS (Findley)
25964951 7816230 2005 GIMPS (Nowak)
30402457 9152052 2005 GIMPS (Cooper)
32582657 9808358 2006 GIMPS (Cooper)
37156667 11185272 2008 GIMPS (Elvenich)
43112609 12978189 2008 GIMPS (Smith)

Note: p = 13466917 is known to be the 39-

th Mersenne prime in order of size. Seven

larger Mersenne primes are known, but not all

p between 13466917 and 43112609 have been

checked yet. Thus, p = 43112609 is the 45-th

Mersenne prime discovered, but not necessarily

the 46-th Mersenne prime in order of size.
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Conjectures about Mersenne primes

Conjecture: There are infinitely many Mersenne

primes.

Conjecture: There are about (eγ/ ln 2) ln lnx

Mersenne primes ≤ x. Note (eγ/ ln 2) ≈ 2.5695.

Conjecture (Mersenne, 1644): 2p−1 is prime

for p =

2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257

and for no other p ≤ 257.

Mersenne was wrong. The list should be

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127

This led to the “New Mersenne Conjecture:”
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Conjecture (Bateman, Selfridge, Wagstaff,

1989): If any two of the following statements

about an odd positive integer p are true, then

the third one is also true.

• p = 2k ± 1 or p = 4k ± 3.

• 2p − 1 is prime.

• (2p + 1)/3 is prime.

The numbers Wp = (2p + 1)/3 are now called

Wagstaff numbers. They seem to be prime

about as often as Mersenne numbers are prime.

Wp is prime for p = 3, 5, 7, 11, 13, 17, 19, 23,

31, 43, 61, 79, 101, 127, 167, 191, 199, 313,

347, 701, 1709, 2617, 3539, 5807, 10501,

10691, 11279, 12391, 14479, 42737, . . ..

23



In a 2008 posting to MersenneForum, Anton

Vrba claimed a fast test for primality of Wag-

staff numbers. If correct, his test would be as

fast as the Lucas-Lehmer test for the primality

of Mersenne numbers.

Theorem? (Vrba): Define a sequence S0 = 6

and Sn+1 = S2
n − 2 for n ≥ 1. Let p be an odd

prime number. Then Wp is prime if and only if

Wp divides Sp − S2 = Sp − 1154.

People objected to his “proof” of this state-

ment and he withdrew it. However, the test

works correctly for all p < 42738 and the state-

ment may be true. A program for this test

would compute the Sn modulo 2p +1 until the

end of the loop, at which time the remainder

would be reduced modulo Wp = (2p + 1)/3.

All the tricks used in programming the Lucas-

Lehmer test would work here, too.
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More Applications

Many 2p−1 have small prime factors. A search

for new Mersenne primes begins by eliminating

those 2p − 1 having a small prime factor. The

factors themselves have uses.

There are many tables of factorizations of

2n − 1, as well as factors of bn ± 1 for small b.

See the Cunningham table by Brillhart, Lehmer,

Selfridge, Tuckerman and Wagstaff at

http://www.ams.org/online bks/conm22

The factors of bn ± 1 have many uses. For ex-

ample, they are used in proofs of unlikely prop-

erties that an odd perfect number must have,

such as > 10300 and has ≥ 8 distinct prime

factors. If p > 5, then the length of the period

of the repeating decimal fraction for 1/p is the

smallest n for which p divides 10n − 1. The

factors of pn − 1 are important in constructing

elliptic curves with small embedding degree to

do Weil pairings efficiently for cryptography.
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A linear feedback shift register is a device that

generates a pseudorandom bit stream some-

times used in cryptography. It consists of an n-

bit shift register and an exclusive-or gate whose

inputs come from two or three selected bit po-

sitions in the register (called taps). At each

clock cycle, the bits in the register move one

position to the right. The right-most bit is

the next output bit to the stream. The out-

put of the exclusive-or gate is shifted into the

left-most bit position of the register.

The bit stream is periodic. The period can be

as long as 2n − 1, depending on the taps sent

to the exclusive-or gate. To choose these tap

positions to maximize the period, one must

know the complete prime factorization of 2n −

1. This construction is especially easy when

2n−1 is a Mersenne prime. The new Mersenne

prime, M43112609, would give a linear feedback

shift register of length 43112609 bits and pe-

riod length M43112609.
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Still More Applications

Sometimes one can discover new identities by

examining tables of factored numbers.

For example, here is an excerpt from a table

of factors of numbers 2n + 1:

n 2n + 1 factored again 2n/2 + 1

2 5 5 1 · 5 3
6 65 5 · 13 5 · 13 9

10 1025 52 · 41 25 · 41 33
14 16385 5 · 29 · 113 113 · 145 129

It is easy to observe that the average of the

two factors shown in the penultimate column

equals the number in the last column. This

leads to the identity

24k−2 + 1 = (22k−1 − 2k + 1)(22k−1 + 2k + 1),

which is easy to prove once it is noticed.
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There is a similar identity for each b that is not

a power. It algebraically factors either bn − 1

or bn +1, depending on b, for all n in a certain

arithmetic progression. These identities are

named after Aurifeuille, who discovered some

of them.

In terms of the binary representation of inte-

gers, the formula

24k−2 + 1 = (22k−1 − 2k + 1)(22k−1 + 2k + 1)

shows that there exist an integer with any num-

ber of 1 bits which can be multiplied times

a number with exactly three 1 bits to give a

product with exactly two 1 bits.
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This identity solves the

Problem: Prove that for every integer k > 1

there exist positive integers m and n such that

• b(m) = 3,

• b(n) = k, and

• b(m · n) = 2.

Solution: Let m = 22k−1 + 2k + 1 and

n = 22k−1 − 2k + 1.

24k−2 + 1 = (22k−1 + 2k + 1)(22k−1 − 2k + 1)
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