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Abstract

Cryptographic algorithms often prescribe the use of primes whose length
in bits is a power of 2. Recently, we proved that for m > 1, there is no
prime number with 2m significant bits, exactly two of which are 0 bits. Here
we generalize this theorem to impose many more restrictions on primes whose
length in bits is a power of 2. No similar restrictions apply to primes of other
lengths. We consider whether the restrictions on primes with length 2m bits
are so great that one should choose other lengths for primes to be used in
cryptography.
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1 The Problem

Many cryptographic algorithms need to choose secret random large primes. Quite
often, they specify that the length in bits of the primes be a power of 2. For example,
the following table, adapted from Figure 1.18 on page 38 of [3], gives the menu of
cryptographic algorithms used by the Secure Socket Layer. When you send your
credit card number over the Internet to buy something at a business web site, the
number is encrypted and signed using one or two of these algorithms. Your computer
and the company’s computer negotiate which algorithms from the menu are most
suitable. Note that the key lengths, meaning the number of bits in a prime number
(or the product of two primes, each of half the key length), in Table 1 are either
512 or 1024 bits, both powers of 2. Key lengths of 2048 bits are proposed for future
ciphers. So far as I know, the only reason for choosing a power of 2 for the length
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of a cryptographic key is that a key of this size just fits into one or more standard
hardware registers.

Table 1. Cryptographic algorithms used by the Secure Socket Layer.

Algorithm Key Length in Bits Algorithm Key Length in Bits

RSA encryption 512 RSA verification 512
RSA encryption 1024 RSA verification 1024
DH agreement 512 DSS signature 512
DH agreement 1024 DSS signature 1024
RSA signature 512 DSS verification 512
RSA signature 1024 DSS verification 1024

The primes chosen for most of these algorithms must be secret. Are there enough
primes available for this purpose? If there were too few primes, then an enemy might
be able to guess your prime. The prime number theorem says that the number π(x)
of primes ≤ x is approximately x/ ln x. Accepting this approximation naively, we
would conclude that the number of 512-bit primes is about

π(2512) − π(2511) ≈
2512

ln 2512
−

2511

ln 2511
≈ 18.85 × 10150 (1)

so there would be plenty of 512-bit primes to go around. But the prime number
theorem really says that limx→∞

π(x)/(x/ lnx) = 1. This means that the percentage
error in the approximation π(x) ≈ x/ lnx goes to zero as x goes to ∞. But how fast
does the percentage error go to zero? Just how accurate is the estimate in (1)?

About 150 years ago, Chebyshev proved Bertrand’s postulate, which says that
there is at least one prime number between x and 2x for every positive integer x. In
particular, there must be at least one prime between every two consecutive positive
integer powers of 2. But one is not enough. For cryptographic security, we need to
have so many primes available that no one could perform an exhaustive search for
the one we used.

Consider another factor which may restrict the number of available primes even
more than the length in bits. Some cryptographic algorithms, including many in Table
1, use a prime as an exponent or a modulus. There are special techniques (see Chapter
9 of [1]) for performing exponentiation and remaindering modulo a large prime which
run faster when the binary representation of the exponent or the modulus either has
few 1 bits or has few 0 bits. These techniques should be used when possible to make
the cryptographic algorithm run as fast as possible. This question prompted us [5] to
study primes with either few 1 bits or few 0 bits. Are there enough of these restricted
primes?
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2 Two Theorems That Cause the Shortage

In [5] we computed the number of primes p whose binary representation has n sig-
nificant bits in each of these four categories: (a) p has exactly three 1 bits, (b) p
has exactly four 1 bits, (c) p has exactly one 0 bit, and (d) p has exactly two 0 bits,
for n ≤ 100. A simple heuristic argument given in [5] predicts that, for each n, the
average number of primes in categories (a) and (c) each should be about 2 or 3. The
same heuristic argument predicts linear growth on average as a function of n for the
number of primes in categories (b) and (d). The following table summarizes the re-
sults reported in [5]. Table 2 corrects errors in the count of 30-bit primes in categories
(c) and (d) in that paper. The author thanks Jason Gower for finding these errors.

Table 2. Number of n-bit primes in each of four categories.

n (a) (b) (c) (d) n (a) (b) (c) (d)

3 1 0 1 0 15 2 16 0 18
4 2 0 2 0 16 4 18 3 0
5 1 2 2 1 17 1 25 2 21
6 2 2 3 2 18 3 15 8 21
7 3 5 0 4 30 2 31 4 45
8 3 4 4 0 31 8 51 0 47
9 0 10 4 9 32 6 39 7 0

10 4 6 3 5 33 0 37 5 69
11 2 13 1 14 62 2 81 3 50
12 3 11 5 4 63 1 106 0 110
13 2 9 1 16 64 2 56 3 0
14 2 16 4 9 65 0 102 1 108

The results generally follow the heuristic predictions except for some surprising
0’s in the population of primes in category (d). These occur when n is a power of 2.
Most cases of this phenomenon are explained in [5] by the following theorem.

Theorem 1 For all m ≥ 1, there is no prime number whose binary representation

has precisely 2m significant bits, exactly two of which are zero bits. In other words,

there is no prime number of the form 22m

− 2i − 2j − 1, where 1 ≤ i < j ≤ 2m − 2.

Proof. Write N = 22m

− 1 − (2i + 2j) with 1 ≤ i < j ≤ 2m − 2. Let j − i = 2ke,
where e is odd. We show that d = 22k

+ 1 is a proper divisor of N . First note that
2k ≤ j − i ≤ 2m − 3, so k < m and

1 < d = 22k

+ 1 < 22m
−2 − 2 < N

when m ≥ 3. (Check the cases m = 1 and m = 2 separately.) Clearly, 22k

≡
−1 mod d. Since k < m, we have 22m

≡ 1 mod d, and so d divides 22m

− 1. Write

2i + 2j = 2i(2j−i + 1) = 2i(2e2k

+ 1).
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Since 22k

≡ −1 mod d, and e is odd, we have 2e2k

≡ −1 mod d, and d divides 2e2k

+1.
Therefore, d divides 2i + 2j and hence also N . It follows that N is not prime.

Of course, one would not choose a 512-bit or 1024-bit prime in any of the four
categories for cryptographic use, because it would be too easy to guess. It would be
better to choose a secret random prime having at least several 1 bits and at least
several 0 bits. However, that might not solve the shortage because one can extend
Theorem 1 as follows.

Theorem 2 Suppose N =
∑2m

−1
i=0 bi2

i, where each bi ∈ {0, 1} and b0 = b2m
−1 = 1.

Suppose the number of zero bits bi is a positive even number 2z. Suppose there is

a nonnegative integer k and a pairing of the zero bits of N into z pairs so that the

difference between the subscripts in each pair is exactly divisible by 2k. Then N is

composite.

Proof. We can write
N = 22m

− 1 −
∑

the pairs (i,j)

(2i + 2j).

Let (i, j) be one of the pairs of subscripts of 0 bits (bi and bj). Say i < j. Then

j − i = 2ke for some odd e. As in the proof of Theorem 1, d = 22k

+ 1 divides 2i + 2j.
But d = 22k

+ 1 also divides 22m

− 1, and therefore d is a proper divisor of N , so N
is composite.

If the pairing mentioned in the theorem is possible with k = 0, then d = 3 divides
N . Likewise, if k = 1, then d = 5 divides N . It is possible for N to be divisible by
3 or 5 even if no pairing of 0 bits is possible, as the 8-bit examples 171 = 101010112

and 145 = 100100012 show.

3 Computing π(2m)

How often does Theorem 2 apply? Does the theorem noticeably change the popu-
lation count for the primes of these special lengths? It is not possible, with current
knowledge, to determine the exact number of 512- or 1024-bit primes. Table 3 shows
most of the known values of π(2m). Marc Deléglise, who with J. Rivat has computed
π(x) exactly [2] for certain large x, kindly computed the large numbers in this table.
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Table 3. Values of π(2m) for 4 ≤ m ≤ 45.

m π(2m) m π(2m) m π(2m)

4 6 18 23000 32 203280221
5 11 19 43390 33 393615806
6 18 20 82025 34 762939111
7 31 21 155611 35 1480206279
8 54 22 295947 36 2874398515
9 97 23 564163 37 5586502348

10 172 24 1077871 38 10866266172
11 309 25 2063689 39 21151907950
12 564 26 3957809 40 41203088796
13 1028 27 7603553 41 80316571436
14 1900 28 14630843 42 156661034233
15 3512 29 28192750 43 305761713237
16 6542 30 54400028 44 597116381732
17 12251 31 105097565 45 1166746786182

Using this data, we tabulated the ratios r(m) = π(2m)/π(2m−1) and s(m) =
(π(2m) − π(2m−1))/(π(2m−1) − π(2m−2)). By the prime number theorem, both r(m)
and s(m) converge to 2 as m → ∞. We hoped to discover some variation in these
numbers when m passes through a power of 2. As you can see from Table 4, these
ratios vary smoothly, with no saltatory behavior near a power of 2.

Table 4. Values of the ratios r(m) and s(m) for 7 ≤ m ≤ 36.

m r(m) s(m) m r(m) s(m)

7 1.722222 1.857143 22 1.901839 1.907102
8 1.741935 1.769231 23 1.906297 1.911242
9 1.796296 1.869565 24 1.910567 1.915277

10 1.773196 1.744186 25 1.914597 1.919024
11 1.796512 1.826667 26 1.917832 1.921369
12 1.825243 1.861314 27 1.921152 1.924769
13 1.822695 1.819608 28 1.924211 1.927532
14 1.848249 1.879310 29 1.926940 1.929891
15 1.848421 1.848624 30 1.929575 1.932418
16 1.862756 1.879653 31 1.931940 1.934483
17 1.872669 1.884158 32 1.934205 1.936635
18 1.877398 1.882817 33 1.936321 1.938587
19 1.886522 1.896921 34 1.938284 1.940380
20 1.890413 1.894801 35 1.940137 1.942112
21 1.897117 1.904646 36 1.941890 1.943756
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It would be possible to compute π(2m) exactly for m up to about 64 or 65 (or
even 70), but this calculation would be close to the limit of modern algorithms and
computers. Thus, with much effort, we could find r(m) and s(m) for m near 64,
the first power of 2 beyond Table 4. However, there is no way we could extend the
calculations to 128, the next power of 2. How can we possibly settle the question of
whether there are enough 512-bit and 1024-bit primes to provide safe cryptography?

4 The Answer

Rosser and Schoenfeld [4] proved explicit inequalities for π(x) and other functions
related to prime numbers. For example, they proved that x/ lnx < π(x) < 1.25x/ ln x
for all x ≥ 114. Corollary 3 of Theorem 2 of [4] has just the inequality we need. It
says that

0.6x/ lnx < π(2x) − π(x) < 1.4x/ lnx

for all x ≥ 20.5. If we take x = 2m−1, we find that

π(2m) − π(2m−1) > 0.3 · 2m/((m − 1) ln 2) ≈ 0.43 · 2m/(m − 1)

for m ≥ 6. This shows that the number of 512-bit primes is

π(2512) − π(2511) > 0.3 · 2512/(511 ln 2) ≈ 11.36 × 10150,

which is smaller than our first approximation (1) of 18.85 × 10150, but still large
enough so that there will be plenty of them for safe cryptography. Just don’t try to
choose a 512-bit prime with exactly two 0 bits.

This answer ignores the number of 0 bits or 1 bits in the 512-bit primes. What
if we wish to speed our cryptographic algorithm by choosing 512-bit primes having
only a few 0 bits (but more that two of them) or only a few 1 bits? For example,

there are
(

510
10

)

odd numbers with 512 significant bits and exactly ten 0 bits. How
many of them are prime? Theorem 2 forces many of these numbers to be composite.
I don’t know how many primes there are of this type. But one can thwart the action
of Theorem 2 simply by specifying that a candidate prime have an odd number of 0
bits. There should be plenty of 512-bit primes having exactly nine or exactly eleven 0
bits. These are the ones to use for secure and efficient cryptography. An alternative
simple solution to the possible prime shortage would be to change the requirements
of cryptographic algorithms to prescribe that the length in bits of secret primes not
be a power of 2. Then Theorems 1 and 2 would not apply.
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