How often does $2 k p+1$ divide $p^{p}-1$ ?

Sangil Nahm
Purdue University Math PhD, 2011
West Lafayette, Indiana
(now with Samsung)

Sam Wagstaff Purdue University CERIAS
West Lafayette, Indiana
February 24, 2020

## Computational Number Theory

In 1962, R. W. Hamming wrote:

The purpose of computing is insight, not numbers.

The ideal piece of work in computational number theory:

Write a program.

Run it.

Look at the output and discover new theorems.

Sangil's thesis dealt with Bell numbers, which arise in combinatorics. Define $B(n)$ to be the number of ways a set of size $n$ can be partitioned into the disjoint union of 1 or more (non-empty) subsets.

Example: The set $\{1,2,3\}$ of size 3 can be partitioned as

- $\{1\} \cup\{2\} \cup\{3\}$,
- $\{1,2\} \cup\{3\}$,
- $\{1,3\} \cup\{2\}$,
- $\{1\} \cup\{2,3\}$, or
- $\{1,2,3\}$,
so $B(3)=5$.

The first few Bell numbers for $n=1,2, \ldots$ are $1,2,5,15,52,203,877,4140,21147, \ldots$. (By convention, $B(0)=1$.)

They are named after E. T. Bell [1934], but were first studied by Ramanujan in his (unpublished) notebook 20 years earlier.

The thesis investigates the minimum period of the Bell numbers $B(n)$ reduced modulo a prime $p$.

## Background

J. Touchard's congruence [1933]

$$
B(n+p) \equiv B(n)+B(n+1) \bmod p,
$$

valid for any prime $p$ and for all $n \geq 0$, shows that any $p$ consecutive values of $B(n) \bmod p$ determine the sequence modulo $p$ after that point.

Example. The sequence $B(n) \bmod 3$ for $n \geq 0$ is
$1,1,2,2,0,1,2,1,0,0,1,0,1$, $1,1,2,2,0, \ldots$, with period length 13.

It follows from this congruence that $B(n)$ mod $p$ must be periodic with period $\leq p^{p}$.

In 1945, G. T. Williams proved that for each prime $p$, the period of the Bell numbers modulo $p$ divides

$$
N_{p}=\left(p^{p}-1\right) /(p-1) .
$$

In fact the minimum period equals $N_{p}$ for every prime $p$ for which this period is known.

Theorem 1. The minimum period of the sequence $\{B(n) \bmod p\}$ is $N_{p}$ when $p$ is a prime $<126$ and also when $p=137,149,157,163$, 167 or 173.

This theorem is proved by showing that the period does not divide $N_{p} / q$ for any prime divisor $q$ of $N_{p}$.

If $q$ divides $N_{p}$ and $N=N_{p} / q$, then one can test whether the period of the Bell numbers modulo $p$ divides $N$ by checking whether $B(N+i) \equiv$ $B(i) \bmod p$ for $0 \leq i \leq p-1$. The period divides $N$ if and only if all $p$ of these congruences hold.

A polynomial time algorithm for computing $B(n) \bmod p$ is known.

The theorem for $p$ can be proved (or disproved) this way if we know the factorization of $N_{p}$.

It is conjectured that the minimum period of the Bell numbers modulo $p$ equals $N_{p}$ for every prime $p$.

The conjecture is known to be true for all primes $<126$ and for a few larger primes.

We give a heuristic argument for the probability that the conjecture holds for a prime $p$.

The most difficult piece of this heuristic argument is determining the probability that a prime $q$ divides $N_{p}$. This probability is studied in this talk.

How often does $2 k p+1$ divide $N_{p}$ as $p$ varies?

It is well known (Euler, 1755) that when $p$ is prime every prime factor of $N_{p}$ has the form $2 k p+1$.

For each $1 \leq k \leq 50$ and for all odd primes $p<100000$, we computed the fraction of the primes $q=2 k p+1$ that divide $N_{p}$.

For example, when $k=5$ there are 1352 primes $p<100000$ for which $q=2 k p+1$ is also prime, and 129 of these $q$ divide $N_{p}$, so the fraction is $129 / 1352=0.095$.

This fraction is called "Prob" in the table because it approximates the probability that $q$ divides $N_{p}$, given that $p$ and $q=2 k p+1$ are prime, for fixed $k$.

Probability that $q=(2 k p+1) \mid N_{p}$

| $k$ | Prob |
| ---: | ---: |
| 1 | 0.503 |
| 2 | 1.000 |
| 3 | 0.171 |
| 4 | 0.247 |
| 5 | 0.095 |
| 6 | 0.173 |
| 7 | 0.076 |
| 8 | 0.496 |
| 9 | 0.047 |
| 10 | 0.096 |
| 11 | 0.042 |
| 12 | 0.082 |
| 13 | 0.051 |
| 14 | 0.068 |
| 15 | 0.033 |
| 16 | 0.064 |
| 17 | 0.032 |
| 18 | 0.111 |
| 19 | 0.021 |
| 20 | 0.050 |

Probability that $q=(2 k p+1) \mid N_{p}$

| $k$ | $1 / k$ | Prob |
| ---: | :---: | :---: |
| 1 | 1.000 | 0.503 |
| 2 | 0.500 | 1.000 |
| 3 | 0.333 | 0.171 |
| 4 | 0.250 | 0.247 |
| 5 | 0.200 | 0.095 |
| 6 | 0.167 | 0.173 |
| 7 | 0.143 | 0.076 |
| 8 | 0.125 | 0.496 |
| 9 | 0.111 | 0.047 |
| 10 | 0.100 | 0.096 |
| 11 | 0.091 | 0.042 |
| 12 | 0.083 | 0.082 |
| 13 | 0.077 | 0.051 |
| 14 | 0.071 | 0.068 |
| 15 | 0.067 | 0.033 |
| 16 | 0.063 | 0.064 |
| 17 | 0.059 | 0.032 |
| 18 | 0.056 | 0.111 |
| 19 | 0.053 | 0.021 |
| 20 | 0.050 | 0.050 |


| Probability that $q=(2 k p+1) \mid N_{p}$ |  |  |  |  |  |
| ---: | :---: | :---: | ---: | :--- | :---: |
| Odd $k$ |  |  | Even $k$ |  |  |
| $k$ | $1 /(2 k)$ | Prob | $k$ | $1 / k$ |  |
| 1 | 0.500 | 0.503 | 2 | 0.500 |  |
| Prob |  |  |  |  |  |
| 3 | 0.167 | 0.171 | 4 | 0.250 |  |
| 5 | 0.100 | 0.095 | 6 | 0.167 |  |
| 7 | 0.071 | 0.076 | 8 | 0.173 |  |
| 9 | 0.056 | 0.047 | 10 | 0.100 |  |
| 0.496 |  |  |  |  |  |
| 11 | 0.045 | 0.042 | 12 | 0.083 |  |
| 13 | 0.038 | 0.051 | 14 | 0.086 |  |
| 15 | 0.033 | 0.033 | 16 | 0.063 |  |
| 17 | 0.029 | 0.032 | 18 | 0.068 |  |
| 19 | 0.026 | 0.021 | 20 | 0.056 |  |
| 20.111 |  |  |  |  |  |
| 21 | 0.024 | 0.016 | 22 | 0.045 |  |
| 23 | 0.022 | 0.021 | 24 | 0.050 |  |
| 25 | 0.020 | 0.021 | 26 | 0.038 |  |
| 27 | 0.019 | 0.021 | 28 | 0.042 |  |
| 29 | 0.017 | 0.022 | 30 | 0.036 |  |
| 31 | 0.016 | 0.019 | 32 | 0.036 |  |
|  |  |  |  |  |  |
| 49 | 0.010 | 0.014 | 50 | 0.031 |  |

## Obervations about the table

1. Prob is approximately $1 /(2 k)$ when $k$ is odd.
2. Usually Prob is approximately $1 / k$ when $k$ is even.
3. Some anomalies to 2 . are that Prob is about $2 / k$ when $k=2,18,32$ and 50.
4. Also, Prob is about $4 / k$ when $k=8$.
5. The exceptional values of $k$ in 3 . and 4 . have the form $2 m^{2}$ for $1 \leq m \leq 5$. (These numbers also arise as the lengths of the rows in the periodic table of elements in chemistry.)

We will now explain these observations. Suppose $k$ is a positive integer and that both $p$ and $q=2 k p+1$ are odd primes. Let $g$ be a primitive root modulo $q$.

If $p \equiv 1 \bmod 4$ or $k$ is even (so $q \equiv 1 \bmod 4$ ), then by the Law of Quadratic Reciprocity

$$
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)=\left(\frac{2 k p+1}{p}\right)=\left(\frac{1}{p}\right)=+1,
$$

so $p$ is a quadratic residue modulo $q$. In this case $g^{2 s} \equiv p$ mod $q$ for some $s$. Now by Euler's criterion for power residues, $(2 k p+1) \mid\left(p^{p}-1\right)$ if and only if $p$ is a ( $2 k$ )-ic residue of $2 k p+1$, that is, if and only if $(2 k) \mid(2 s)$. It is natural to assume that $k \mid s$ with probability $1 / k$ because $k$ is fixed and $s$ is a random integer.

If $p \equiv 3 \bmod 4$ and $k$ is odd (so $q \equiv 3 \bmod 4$ ), then

$$
\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)=-\left(\frac{2 k p+1}{p}\right)=-\left(\frac{1}{p}\right)=-1,
$$

so $p$ is a quadratic nonresidue modulo $q$. Now $g^{2 s+1} \equiv p \bmod q$ for some $s$. Reasoning as before, $(2 k p+1) \mid\left(p^{p}-1\right)$ if and only if $(2 k) \mid$ ( $2 s+1$ ), which is impossible. Therefore $q$ does not divide $N_{p}$.

Thus, if we fix $k$ and let $p$ run over all primes, then the probability that $q=2 k p+1$ divides $N_{p}$ is $1 / k$ when $k$ is even and $1 /(2 k)$ when $k$ is odd because, when $k$ is odd only those $p \equiv 1 \bmod 4$ (that is, half of the primes $p$ ) offer a chance for $q$ to divide $N_{p}$.

In fact, when $k=1$ and $p \equiv 1 \bmod 4, q$ always divides $N_{p}$. This theorem must have been known long ago, but we could not find it in the literature.

Theorem 2. If $p$ is odd and $q=2 p+1$ is prime, then $q$ divides $N_{p}$ if and only if $p \equiv 1 \bmod 4$.

Proof. We have just seen that $q$ does not divide $N_{p}$ when $p \equiv 3 \bmod 4$. If $p \equiv 1 \bmod 4$, then $p$ is a quadratic residue modulo $q$, as was mentioned above, so $p^{p}=p^{(q-1) / 2} \equiv+1 \bmod q$ by Euler's criterion. Finally, $q$ is too large to divide $p-1$, so $q$ divides $N_{p}$.

We now explain the anomalies, beginning with $k=2$.

Theorem 3. If $q=4 p+1$ is prime, then $q$ divides $N_{p}$.

This result was an ancient problem posed and solved more than 100 years ago. Here is a modern proof.

Proof. Since $q \equiv 1 \bmod 4$, there exists an integer $i$ with $i^{2} \equiv-1 \bmod q$. Then

$$
(1+i)^{4} \equiv(2 i)^{2} \equiv-4 \equiv \frac{1}{p} \bmod q .
$$

Hence
$p^{p} \equiv\left(\frac{1}{p}\right)^{-p} \equiv(1+i)^{-4 p} \equiv(1+i)^{1-q} \equiv 1 \bmod q$
by Fermat's theorem. Thus, $q$ divides $p^{p}-1$. But $q=4 p+1$ is too large to divide $p-1$, so $q$ divides $N_{p}$.

Theorem 4. Let $p$ be an odd positive integer and $m$ be a positive integer. If $q=4 m^{2} p+1$ is prime, then $q$ divides $p^{m^{2} p}-1$.

Of course, Theorem 3 is the case $m=1$ of Theorem 4.

Fermat's theorem says that $q$ divides $p^{4 m^{2} p}-1$.

In the case $m=2$, that is, $k=8$, we can do even better.

Fermat's theorem says that $q$ divides $p^{16 p}-1$.

Theorem 5 If $q=16 p+1$ is prime, then $q$ divides $p^{2 p}-1$.

Proof. As in the proof of the previous theorem, we have $i$ with $i^{2} \equiv-1 \bmod q$ and $(1+i)^{4} \equiv-4 \bmod q$. Therefore, $(1+i)^{8} \equiv 16 \equiv-1 / p \bmod q$ and so

$$
p^{2 p} \equiv(1+i)^{-16 p} \equiv(1+i)^{1-q} \equiv 1 \bmod q,
$$

which proves the theorem.

Thus, a prime $q=2 k p+1=16 p+1$ divides $\left(p^{p}-1\right)\left(p^{p}+1\right)$ when $k=8$. Assuming that $q$ has equal chance to divide either factor, the probability that $q$ divides $p^{p}-1$ is $1 / 2$.

So far, we have explained all the behavior seen in the table. Further experiments with $q=$ $2 m^{2} p+1$ lead us to the following result, which generalizes Theorems 4 and 5 .

The theorem lets us remove arbitrarily large powers of 2 from the exponent in certain cases.

Theorem 6. [Nahm and Montgomery] Suppose $p, m, t$ are positive integers, with $t$ a power of 2 and $t>1$. Let $k=(2 m)^{t} / 2$ and $q=2 k p+1=(2 m)^{t} p+1$. If $q$ is prime, then $t$ divides $k$ and $p^{k p / t} \equiv 1 \bmod q$.

When $t=2$, the theorem is just Theorem 4.

When $t=4$, Theorem 6 says that if $q=$ $(2 m)^{4}+1=16 m^{4}+1$ is prime, then $q$ divides $p^{2 m^{4} p}-1$. Theorem 5 is the case $m=1$ of this statement.

When $t=8$, Theorem 6 says that if $q=$ $(2 m)^{8}+1=256 m^{8}+1$ is prime, then $q$ divides $p^{16 m^{8} p}-1$. The first case, $m=1$, of this statement is for $k=128$, which is beyond the end of the table.

We now apply Theorem 6. As above, let $g$ be a primitive root modulo $q$ and let $a=g^{(q-1) t / k} \bmod q$. Then $a^{j}, 0 \leq j<k / t$, are all the solutions to $x^{k / t} \equiv 1 \bmod q$. Let $b=p^{p} \bmod q$. By the theorem, $b^{k / t} \equiv 1 \bmod q$, so $b \equiv a^{j} \bmod q$ for some $0 \leq j<k / t$. It is natural to assume that $j=0$, that is, $q \mid N_{p}$, happens with probability $1 /(k / t)=t / k$.

## Summary

We have given heuristic arguments which conclude that, for fixed $k$, when $p$ and $q=2 k p+1$ are both prime, the probability that $q$ divides $N_{p}$ is $c(k) / k$, where $c(k)$ is defined as follows:

When $k$ is an odd positive integer, $c(k)=1 / 2$.

When $k$ is an even positive integer, let $t$ be the largest power of 2 for which there exists an integer $m$ so that $2 k=(2 m)^{t}$. Then $c(k)=t$.

We have

$$
c(k)= \begin{cases}1 / 2 & \text { if } k \text { is odd }, \\ 1 & \text { if } k \text { is even and } k \neq 2 m^{2} \\ O(\log k) & \text { if } k=2 m^{2} \text { for some } m .\end{cases}
$$

The average value of $c(k)$ is $3 / 4$ because the numbers $2 m^{2}$ are rare.

Is the conjecture about the Bell numbers' period true? Does it always equal $N_{p}$ ?

Applying the Bateman-Horn conjecture, the Prime Number Theorem, the Binomial Theorem and the divisibility results for $N_{p}$, one can show that the heuristic probability that the minimum period of the Bell numbers modulo $p$ is $N_{p}$ is

$$
\left(1-p^{-p}\right)^{3(\log p) / 2} \approx 1-\frac{3 \log p}{2 p^{p}}
$$

exceedingly close to 1 when $p$ is large.

Finally, we compute the expected number of primes $p>x$ for which the conjecture fails. When $x>2$, this number is

$$
\sum_{p>x} \frac{3 \log p}{2 p^{p}}<\sum_{p>x} p^{1-x} \leq \int_{x}^{\infty} t^{1-x} d t=\frac{x^{2-x}}{x-2}
$$

By Theorem 1, the conjecture holds for all primes $p<126$. Taking $x=126$, the expected number of primes for which the conjecture fails is $<126^{-124} / 124<10^{-262}$. Thus, the heuristic argument predicts that the conjecture is almost certainly true.

Math. Comp. 79 (2010) pp. 1793-1800.

