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Computational Number Theory

In 1962, R. W. Hamming wrote:

The purpose of computing is insight, not num-

bers.

The ideal piece of work in computational num-

ber theory:

Write a program.

Run it.

Look at the output and discover new theorems.
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Sangil’s thesis dealt with Bell numbers, which

arise in combinatorics. Define B(n) to be the

number of ways a set of size n can be par-

titioned into the disjoint union of 1 or more

(non-empty) subsets.

Example: The set {1,2,3} of size 3 can be

partitioned as

• {1} ∪ {2} ∪ {3},

• {1,2} ∪ {3},

• {1,3} ∪ {2},

• {1} ∪ {2,3}, or

• {1,2,3},

so B(3) = 5.
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The first few Bell numbers for n = 1, 2, . . . are

1, 2, 5, 15, 52, 203, 877, 4140, 21147, . . . .

(By convention, B(0) = 1.)

They are named after E. T. Bell [1934], but

were first studied by Ramanujan in his (unpub-

lished) notebook 20 years earlier.

The thesis investigates the minimum period of

the Bell numbers B(n) reduced modulo a prime

p.
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Background

J. Touchard’s congruence [1933]

B(n + p) ≡ B(n) + B(n + 1) mod p,

valid for any prime p and for all n ≥ 0, shows

that any p consecutive values of B(n) mod p

determine the sequence modulo p after that

point.

Example. The sequence B(n) mod 3 for n ≥ 0

is

1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1,

1, 1, 2, 2, 0, . . . , with period length 13.

It follows from this congruence that B(n) mod

p must be periodic with period ≤ pp.

In 1945, G. T. Williams proved that for each

prime p, the period of the Bell numbers modulo

p divides

Np = (pp − 1)/(p − 1).
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In fact the minimum period equals Np for every

prime p for which this period is known.

Theorem 1. The minimum period of the

sequence {B(n) mod p} is Np when p is a prime

< 126 and also when p = 137, 149, 157, 163,

167 or 173.

This theorem is proved by showing that the pe-

riod does not divide Np/q for any prime divisor

q of Np.

If q divides Np and N = Np/q, then one can test

whether the period of the Bell numbers modulo

p divides N by checking whether B(N + i) ≡

B(i) mod p for 0 ≤ i ≤ p−1. The period divides

N if and only if all p of these congruences hold.

A polynomial time algorithm for computing

B(n) mod p is known.

The theorem for p can be proved (or disproved)

this way if we know the factorization of Np.
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It is conjectured that the minimum period of

the Bell numbers modulo p equals Np for every

prime p.

The conjecture is known to be true for all

primes < 126 and for a few larger primes.

We give a heuristic argument for the probabil-

ity that the conjecture holds for a prime p.

The most difficult piece of this heuristic

argument is determining the probability that a

prime q divides Np. This probability is studied

in this talk.
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How often does 2kp + 1

divide Np as p varies?

It is well known (Euler, 1755) that when p is

prime every prime factor of Np has the form

2kp + 1.

For each 1 ≤ k ≤ 50 and for all odd primes

p < 100000, we computed the fraction of the

primes q = 2kp + 1 that divide Np.

For example, when k = 5 there are 1352 primes

p < 100000 for which q = 2kp+1 is also prime,

and 129 of these q divide Np, so the fraction

is 129/1352 = 0.095.

This fraction is called “Prob” in the table

because it approximates the probability that q

divides Np, given that p and q = 2kp + 1 are

prime, for fixed k.
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Probability that q = (2kp + 1) | Np

k Prob

1 0.503
2 1.000
3 0.171
4 0.247
5 0.095
6 0.173
7 0.076
8 0.496
9 0.047

10 0.096
11 0.042
12 0.082
13 0.051
14 0.068
15 0.033
16 0.064
17 0.032
18 0.111
19 0.021
20 0.050
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Probability that q = (2kp + 1) | Np

k 1/k Prob

1 1.000 0.503
2 0.500 1.000
3 0.333 0.171
4 0.250 0.247
5 0.200 0.095
6 0.167 0.173
7 0.143 0.076
8 0.125 0.496
9 0.111 0.047

10 0.100 0.096
11 0.091 0.042
12 0.083 0.082
13 0.077 0.051
14 0.071 0.068
15 0.067 0.033
16 0.063 0.064
17 0.059 0.032
18 0.056 0.111
19 0.053 0.021
20 0.050 0.050
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Probability that q = (2kp + 1) | Np

Odd k Even k
k 1/(2k) Prob k 1/k Prob

1 0.500 0.503 2 0.500 1.000
3 0.167 0.171 4 0.250 0.247
5 0.100 0.095 6 0.167 0.173
7 0.071 0.076 8 0.125 0.496
9 0.056 0.047 10 0.100 0.096

11 0.045 0.042 12 0.083 0.082
13 0.038 0.051 14 0.071 0.068
15 0.033 0.033 16 0.063 0.064
17 0.029 0.032 18 0.056 0.111
19 0.026 0.021 20 0.050 0.050
21 0.024 0.016 22 0.045 0.054
23 0.022 0.021 24 0.042 0.042
25 0.020 0.021 26 0.038 0.052
27 0.019 0.021 28 0.036 0.036
29 0.017 0.022 30 0.033 0.031
31 0.016 0.019 32 0.031 0.055

49 0.010 0.014 50 0.020 0.043
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Obervations about the table

1. Prob is approximately 1/(2k) when k is odd.

2. Usually Prob is approximately 1/k when k

is even.

3. Some anomalies to 2. are that Prob is about

2/k when k = 2, 18, 32 and 50.

4. Also, Prob is about 4/k when k = 8.

5. The exceptional values of k in 3. and 4. have

the form 2m2 for 1 ≤ m ≤ 5. (These numbers

also arise as the lengths of the rows in the

periodic table of elements in chemistry.)

We will now explain these observations. Sup-

pose k is a positive integer and that both p

and q = 2kp + 1 are odd primes. Let g be a

primitive root modulo q.
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If p ≡ 1 mod 4 or k is even (so q ≡ 1 mod 4),

then by the Law of Quadratic Reciprocity
(

p

q

)

=

(

q

p

)

=

(

2kp + 1

p

)

=

(

1

p

)

= +1,

so p is a quadratic residue modulo q. In this

case g2s ≡ p mod q for some s. Now by Euler’s

criterion for power residues, (2kp+1) | (pp−1)

if and only if p is a (2k)-ic residue of 2kp + 1,

that is, if and only if (2k) | (2s). It is natural to

assume that k | s with probability 1/k because

k is fixed and s is a random integer.

If p ≡ 3 mod 4 and k is odd (so q ≡ 3 mod 4),

then
(

p

q

)

= −

(

q

p

)

= −

(

2kp + 1

p

)

= −

(

1

p

)

= −1,

so p is a quadratic nonresidue modulo q. Now

g2s+1 ≡ p mod q for some s. Reasoning as

before, (2kp + 1) | (pp − 1) if and only if (2k) |

(2s+1), which is impossible. Therefore q does

not divide Np.
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Thus, if we fix k and let p run over all primes,

then the probability that q = 2kp+1 divides Np

is 1/k when k is even and 1/(2k) when k is odd

because, when k is odd only those p ≡ 1 mod 4

(that is, half of the primes p) offer a chance

for q to divide Np.

In fact, when k = 1 and p ≡ 1 mod 4, q al-

ways divides Np. This theorem must have been

known long ago, but we could not find it in the

literature.

Theorem 2. If p is odd and q = 2p+1 is prime,

then q divides Np if and only if p ≡ 1 mod 4.

Proof. We have just seen that q does not di-

vide Np when p ≡ 3 mod 4. If p ≡ 1 mod 4,

then p is a quadratic residue modulo q, as was

mentioned above, so pp = p(q−1)/2 ≡ +1 mod q

by Euler’s criterion. Finally, q is too large to

divide p − 1, so q divides Np.
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We now explain the anomalies, beginning with

k = 2.

Theorem 3. If q = 4p + 1 is prime, then q

divides Np.

This result was an ancient problem posed and

solved more than 100 years ago. Here is a

modern proof.

Proof. Since q ≡ 1 mod 4, there exists an in-

teger i with i2 ≡ −1 mod q. Then

(1 + i)4 ≡ (2i)2 ≡ −4 ≡
1

p
mod q.

Hence

pp ≡

(

1

p

)−p

≡ (1+i)−4p ≡ (1+i)1−q ≡ 1 mod q

by Fermat’s theorem. Thus, q divides pp − 1.

But q = 4p + 1 is too large to divide p − 1, so

q divides Np.
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Theorem 4. Let p be an odd positive integer

and m be a positive integer. If q = 4m2p + 1

is prime, then q divides pm2p − 1.

Of course, Theorem 3 is the case m = 1 of

Theorem 4.

Fermat’s theorem says that q divides p4m2p−1.
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In the case m = 2, that is, k = 8, we can do

even better.

Fermat’s theorem says that q divides p16p − 1.

Theorem 5 If q = 16p + 1 is prime, then q

divides p2p − 1.

Proof. As in the proof of the previous

theorem, we have i with i2 ≡ −1 mod q and

(1 + i)4 ≡ −4 mod q. Therefore,

(1 + i)8 ≡ 16 ≡ −1/p mod q and so

p2p ≡ (1 + i)−16p ≡ (1 + i)1−q ≡ 1 mod q,

which proves the theorem.
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Thus, a prime q = 2kp + 1 = 16p + 1 divides

(pp − 1)(pp + 1) when k = 8. Assuming that

q has equal chance to divide either factor, the

probability that q divides pp − 1 is 1/2.

So far, we have explained all the behavior seen

in the table. Further experiments with q =

2m2p+1 lead us to the following result, which

generalizes Theorems 4 and 5.

The theorem lets us remove arbitrarily large

powers of 2 from the exponent in certain cases.

Theorem 6. [Nahm and Montgomery] Sup-

pose p, m, t are positive integers, with t a

power of 2 and t > 1. Let k = (2m)t/2 and

q = 2kp + 1 = (2m)tp + 1. If q is prime, then t

divides k and pkp/t ≡ 1 mod q.
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When t = 2, the theorem is just Theorem 4.

When t = 4, Theorem 6 says that if q =

(2m)4 + 1 = 16m4 + 1 is prime, then q di-

vides p2m4p − 1. Theorem 5 is the case m = 1

of this statement.

When t = 8, Theorem 6 says that if q =

(2m)8 + 1 = 256m8 + 1 is prime, then q di-

vides p16m8p−1. The first case, m = 1, of this

statement is for k = 128, which is beyond the

end of the table.

We now apply Theorem 6. As above, let g be

a primitive root modulo q and let

a = g(q−1)t/k mod q. Then aj, 0 ≤ j < k/t,

are all the solutions to xk/t ≡ 1 mod q. Let

b = pp mod q. By the theorem, bk/t ≡ 1 mod q,

so b ≡ aj mod q for some 0 ≤ j < k/t. It is

natural to assume that j = 0, that is, q | Np,

happens with probability 1/(k/t) = t/k.
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Summary

We have given heuristic arguments which con-

clude that, for fixed k, when p and q = 2kp+1

are both prime, the probability that q divides

Np is c(k)/k, where c(k) is defined as follows:

When k is an odd positive integer, c(k) = 1/2.

When k is an even positive integer, let t be the

largest power of 2 for which there exists an

integer m so that 2k = (2m)t. Then c(k) = t.

We have

c(k) =











1/2 if k is odd,

1 if k is even and k 6= 2m2,

O(log k) if k = 2m2 for some m.

The average value of c(k) is 3/4 because the

numbers 2m2 are rare.
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Is the conjecture about the Bell numbers’

period true? Does it always equal Np?

Applying the Bateman-Horn conjecture,

the Prime Number Theorem, the Binomial

Theorem and the divisibility results for Np, one

can show that the heuristic probability that the

minimum period of the Bell numbers modulo

p is Np is

(1 − p−p)3(log p)/2 ≈ 1 −
3 log p

2pp
,

exceedingly close to 1 when p is large.
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Finally, we compute the expected number of

primes p > x for which the conjecture fails.

When x > 2, this number is

∑

p>x

3 log p

2pp
<
∑

p>x

p1−x ≤
∫ ∞

x
t1−x dt =

x2−x

x − 2
.

By Theorem 1, the conjecture holds for all

primes p < 126. Taking x = 126, the expected

number of primes for which the conjecture fails

is < 126−124/124 < 10−262. Thus, the

heuristic argument predicts that the

conjecture is almost certainly true.

Math. Comp. 79 (2010) pp. 1793-1800.
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