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SQUARE FORM FACTORIZATION

JASON E. GOWER AND SAMUEL S. WAGSTAFF, JR.

This paper is dedicated to the memory of Daniel Shanks.

Abstract. We present a detailed analysis of SQUFOF, Daniel Shanks’ Square
Form Factorization algorithm. We give the average time and space require-
ments for SQUFOF. We analyze the effect of multipliers, either used for a
single factorization or when racing the algorithm in parallel.

1. Introduction

SQUFOF, or SQUare FOrm Factorization, is an integer factoring algorithm in-
vented by Daniel Shanks more than thirty years ago.

For each size of integer, there is a fastest general purpose algorithm (among
known methods) to factor a number of that size. At present, the number field sieve
(NFS) is best for integers greater than about 10120 and the quadratic sieve (QS)
is best for numbers between 1050 and 10120, etc. As new algorithms are discov-
ered, these ranges change. On a 32-bit computer, SQUFOF is the clear champion
factoring algorithm for numbers between 1010 and 1018, and will likely remain so.
It can split almost any composite 18-digit integer in less than a millisecond. The
SQUFOF algorithm is extraordinarily simple, beautiful and efficient. Further, it is
used in many implementations of NFS and QS to factor small auxiliary numbers
arising when factoring a large integer.

Although Shanks [16], [18] described other new algorithms for factoring integers,
he published nothing about SQUFOF. He did lecture [12] on SQUFOF and he
explained its operation to a few people. Some works of others, such as [3], [11], [2],
and [19], discuss the algorithm, but none contains a detailed analysis. After Shanks
died in 1996, H. C. Williams discovered some of Shanks’ unpublished hand-written
manuscripts [15], [14], [13], and eventually they appeared on the web [6].

The manuscript [15] is the closest Shanks ever came to a full description and
analysis of SQUFOF. In [15], Shanks described the algorithm and began a heuristic
argument for the following statement. Let N be a product of k distinct odd primes
with N ≡ 3 mod 4. Then the average number of forms that SQUFOF must examine
before finding a proper square form (one leading to a non-trivial factor of N) is

3
(√

2 + 2
)

log 2

2 (2k − 2)
4
√
N .
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The manuscript also contains a discussion of how to decide whether a square form is
proper or not, but there is no proof for why this decision is always correct. Shanks
also discusses the use of multipliers as a way to overcome a failure to factor N ,
and the possibility of racing multipliers. It is clear from [15] and from discussions
Shanks had with the second author and others that Shanks knew a lot of the content
of this paper and much more about SQUFOF.

We give a detailed description and analysis of SQUFOF, and determine its time
and space complexity. In Theorem 4.22, we complete the heuristic argument started
by Shanks in [15], derive the average number shown above, and extend the argument
to the cases N ≡ 1, 2 mod 4. The only variable-length storage SQUFOF uses is a
queue data structure. In Theorem 4.24, we estimate the average number of entries
placed in this queue. Theorems 5.4 and 5.8 give the time and space complexity of
SQUFOF when multipliers are used to factor N . We give a detailed description
of the process for deciding which square forms are proper, show how to modify it
when multipliers are used, and prove that it works in all cases. We study SQUFOF
as if it were a random walk on the principal cycle of binary quadratic forms of
discriminant N or 4N . Our theorems about the complexity of SQUFOF are proved
using reasonable and perhaps provable assumptions about this random walk.

In Section 2 we provide a minimum background for the sequel. We describe the
algorithm in Section 3 and give some examples of it. Then in Section 4 we derive
the average time and space requirements for the basic algorithm. Section 5 presents
the time and space requirements for SQUFOF with multipliers. We give in Section
6 the results of some experiments, which provide evidence that our simplifying
assumptions are reasonable. Finally, we conclude in Section 7 with some questions
for future research.

We thank Arunkumar Navasivasakthivelsamy and Rupak Sanjel for writing some
programs we used in the experiments. We are grateful to an anonymous referee for
improving the clarity of the paper.

2. Background

2.1. Binary Quadratic Forms. We begin with a brief survey of binary quadratic
forms. For a more detailed account of the theory see [2] or [3].

2.1.1. Basic Definitions. Let f(x, y) = ax2 + bxy+ cy2, a binary quadratic form in
the variables x and y. The constants a, b, and c will be taken in Z. The discriminant
of f is defined to be b2 − 4ac. A discriminant ∆ is called fundamental if either ∆
is odd and square-free; or ∆ is even, ∆/4 is square-free, and ∆/4 ≡ 2 or 3 mod 4.
The form f is called primitive if gcd (a, b, c) = 1.

We will frequently write f = (a, b, c), or just (a, b, ∗), where c can be computed
if we know the discriminant of f . We shall also write f = (a, ∗, ∗) whenever b and
c are either unknown or irrelevant. Note that if ∆ is the discriminant of the form
f , then ∆ ≡ 0 or 1 mod 4, and b ≡ ∆ mod 2.

The form f is said to represent m ∈ Z if there exists x0, y0 ∈ Z such that
f(x0, y0) = ax2

0 + bx0y0 + cy2
0 = m. The representation is primitive if gcd (x0, y0) =

1.
We say that two forms f1 and f2 are properly equivalent, or just equivalent, if we

can find α, β, γ, δ ∈ Z such that αδ − βγ = 1 and f1(x, y) = f2(αx + βy, γx+ δy).
We write f1 ∼ f2 when f1 and f2 are equivalent. If αδ − βγ = −1, then we say
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that f1 and f2 are improperly equivalent. Let Γ = SL2(Z) be the classical modular
group and define the action of Γ on the set of binary quadratic forms by

(

α β
γ δ

)

· f(x, y) = f(αx+ βy, γx+ δy) .

Then f1 ∼ f2 if and only if f1 and f2 are equivalent modulo the action of Γ. We
make special note of the equivalence: (a, b+ 2na, a+ nb+ c) ∼ (a, b, c) for any

n ∈ Z, using the matrix

(

1 n
0 1

)

.

The number of classes of forms of discriminant ∆ will be written h+(∆) or just
h+. It can be shown that h+(∆) is finite.

Forms with negative discriminant are called definite, while forms with positive
discriminant are called indefinite. We will be concerned only with indefinite forms.

Any form (k, kn, c) is called ambiguous. There exists an ambiguous form (k, kn, c)
of discriminant ∆ for each divisor k of ∆. We also refer to any form (a, b, a) as
ambiguous since it is equivalent to (b+ 2a, b+ 2a, a).

2.1.2. Indefinite Forms. Let ∆ be any non-square positive integer. Each class of
indefinite forms of discriminant ∆ contains a set of canonical representatives, called

reduced forms. The form f = (a, b, c) is called reduced if
∣

∣

∣

√
∆− 2|a|

∣

∣

∣
< b <

√
∆. It

is not hard to see that f is reduced if and only if
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ < b <
√

∆, and that

the number of reduced forms of a given discriminant is finite. For any indefinite
form f = (a, b, c) with ac 6= 0 we define the standard reduction operator by

(2.1) ρ(a, b, c) =

(

c, r(−b, c), r(−b, c)
2 −∆

4c

)

,

where r(−b, c) is defined to be the unique integer r such that r+ b ≡ 0 mod 2c and

−|c| < r ≤ |c| if
√

∆ < |c| ,
√

∆− 2|c| < r <
√

∆ if |c| <
√

∆ .

ρ(f) is called the reduction of f and the result of n applications of ρ is written
ρn(f). It will be convenient to define the inverse reduction operator by

ρ−1(a, b, c) =

(

r(−b, a)2 −∆

4a
, r(−b, a), a

)

,

where r(−b, a) is defined as in the definition of ρ. Note that if the discriminant of
f is ∆, then the discriminants of both ρ(f) and ρ−1(f) are ∆.

If f is reduced, then both ρ(f) and ρ−1(f) are reduced. If f is not reduced, then
ρn(f) is reduced for some finite n. Similarly f can be reduced after a finite number
of applications of ρ−1. The identities ρ(ρ−1(f)) = ρ−1(ρ(f)) = f hold only when
f is reduced. The unique reduced form (1, b, c) is called the principal form.

We say that (a, b, c) and (c, b′, c′) are adjacent if b + b′ ≡ 0 mod 2c. More
specifically, we say that (a, b, c) is adjacent to the left of (c, b′, c′) and (c, b′, c′) is
adjacent to the right of (a, b, c). It is easy to see that there is a unique reduced form
adjacent to the right and to the left of any given reduced form, these forms being
ρ(a, b, c) and ρ−1(a, b, c), respectively. We now see that within each equivalence
class of forms of discriminant ∆ > 0 there are cycles of reduced forms. The cycle
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that contains the principal form is called the principal cycle. The number of reduced
forms in any cycle is always even.

The two forms (a, b, c) and (c, b, a) are said to be associated. If the form f1 and
its associate f2 are in different cycles, then this will be the case for all forms in either
cycle, and in this case the two cycles are said to be associated cycles. Furthermore,
any cycle which contains an ambiguous form (called an ambiguous cycle) contains
exactly two ambiguous forms and is its own associate. Conversely, a cycle which
is its own associate contains exactly two ambiguous forms. The principal cycle is
ambiguous since it contains the principal form (1, b, c).

The form (a,−b, c) is the opposite of the form (a, b, c). A form (a, b, c) is improp-
erly equivalent to both its associate and its opposite. Hence, (a, b, c) is properly
equivalent to the associate of its opposite: (a, b, c) ∼ (c,−b, a). Likewise, the oppo-
site and the inverse of (a, b, c) are properly equivalent: (a,−b, c) ∼ (c, b, a).

If (a, b, c) is a form of discriminant ∆ which represents the integer r, then s2 ≡
∆ mod 4r has a solution. Conversely, if a solution to s2 ≡ ∆ mod 4r exists, then r
is represented by some form of discriminant ∆.

Let
(

r
s

)

be the Jacobi symbol and define the quadratic characters χ(r) =
(−1

r

)

and ψ(r) =
(

2
r

)

. The generic characters of a discriminant ∆ are
(

r

p

)

for all odd primes p that divide ∆ ,

χ(r) if ∆ is even and ∆/4 ≡ 3, 4, 7 mod 8 ,

ψ(r) if ∆ is even and ∆/4 ≡ 2 mod 8 ,

χ(r) · ψ(r) if ∆ is even and ∆/4 ≡ 6 mod 8 ,

χ(r) and ψ(r) if ∆ is even and ∆/4 ≡ 0 mod 8 .

These characters are multiplicative functions from Z to {±1}. Suppose the dis-
criminant ∆ has n generic characters. Then for some arbitrary ordering we have a
vector-valued function from Z to the n-tuples with ±1 entries. The n-tuple corre-
sponding to an integer r is called the assigned value of r. It can be shown that all
integers r which are representable by forms of a given equivalence class possess the
same assigned values of generic characters. The set of classes of forms possessing the
same assigned values of generic characters is called a genus of forms. The genus for
which the assigned value is (1, 1, . . . , 1) is called the principal genus. The principal
genus contains the principal form. An integer r is representable by some class of
forms of discriminant ∆ if and only if the assigned values of the generic characters
of r match the assigned values of characters of some genus of discriminant ∆. This
is true if and only if the congruence s2 ≡ ∆ mod 4r is solvable.

The number of ambiguous classes (including the principal class) is equal to one-
half the number of possible genera. If ∆ is a fundamental discriminant, then we
know that the product of the assigned values for the characters for any genus is +1
and that exactly half of the possible genera exist.

2.1.3. Composition of Forms. We now define composition of forms. Let f1 =
(a1, b1, c1) and f2 = (a2, b2, c2) be two forms with the same discriminant. Let
β = (b1 + b2) /2, m = gcd (a1, β), and n = gcd (m, a2). Solve a1x + βy = m for x
and y and

mz/n ≡ x
(

b2 − b1
2

)

− c1y mod a2/n for z .
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Then the composition of f1 and f2, written f1 ◦ f2 is
(

a1a2/n
2, b1 + 2a1z/n, ∗

)

,

where the third coefficient may be determined by the discriminant formula. Al-
though the composition is not unique, all compositions of given forms f1 and f2
are equivalent. The class of f1 ◦ f2 depends only on the classes of f1 and f2, and
the classes form a group under composition. We note that even if f1 and f2 are
reduced, their composition need not be reduced.

As a special case, we present the formula for the square f 2 = f ◦ f as follows.
Suppose f = (a, b, c), n = gcd (a, b), and y is a solution for by/n ≡ 1 mod a/n.
Then f2 is equivalent to

(

a2/n2, b− 2acy/n, ∗
)

.

Note that if gcd (a, b) = 1, then

(a, b,−ac)2 ∼
(

a2, b,−c
)

.

Moreover, g is equivalent to an ambiguous form if and only if g ◦ g is equivalent to
the principal form. This implies that the square of g ◦ (a, b,−ac) is equivalent to
(

a2, b,−c
)

.
Also note that if f is a square form on the principal cycle, then f must have

a square root on the principal cycle. To see this, let f 1/2 be any square root of
f . If neither f1/2 nor ρn

(

f1/2
)

for all n > 0 is on the principal cycle, then f 1/2

must be equivalent to some ambiguous form other than the principal form, say g.
Then f1/2 ◦ g is equivalent to the principal form, and its square is equivalent to f .
Finally, we can reduce this form to an equivalent form on the principal cycle.

Observe that

(1, b1, c1) ◦ (a2, b2, c2) ∼ (a2, b2, c2) ,

and that

(a, b, c) ◦ (a,−b, c) ∼ (a, b, c) ◦ (c, b, a) ∼ (ac, b, 1) .

In other words, under composition, the principal class is the identity and the as-
sociate is the inverse. Also composition is commutative and associative. Thus the
set of equivalence classes of forms of a given discriminant is an abelian group under
composition.

2.2. Periodic Continued Fractions. Let N > 0 be a positive integer, not a
square. The simple continued fraction expansion of

√
N is given by

√
N = q0 +

1

q1 +
1

q2 + · · ·
.

We will always abbreviate the expansion as [q0, q1, . . . ]. The expansion is periodic
beginning with q1, meaning that for some j > 0 we will have ai = ai+j for all
i > 0, where j is the period of the continued fraction. In this case, we will write√
N = [q0, q1, . . . , qj ].
The qi are called the partial quotients of the continued fraction. The rational

number [q0, q1, . . . , qn] is called the nth convergent of the continued fraction. Define

An =











1 if n = 0 ,

q0 if n = 1 ,

qnAn−1 +An−2 if n ≥ 2 ,
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and

Bn =











0 if n = 0 ,

1 if n = 1 ,

qnBn−1 +Bn−2 if n ≥ 2 .

Then [q0, q1, . . . , qn] = An+1/Bn+1 for n ≥ 0.
We define the nth complete quotient by

xn =

{√
N if n = 0 ,

1/ (xn−1 − qn−1) if n ≥ 1 .

It can be shown that xn = (Pn +
√
N)/Qn for n ≥ 0, where

(2.2) Pn =











0 if n = 0 ,

q0 if n = 1 ,

qn−1Qn−1 − Pn−1 if n ≥ 2 ,

and

(2.3) Qn =











1 if n = 0 ,

N − q20 if n = 1 ,

Qn−2 + (Pn−1 − Pn)qn−1 if n ≥ 1 .

The qn can be computed using

(2.4) qn =



















⌊√
N
⌋

if n = 0 ,

⌊

q0 + Pn

Qn

⌋

if n > 0 .

Some important facts that we shall need are as follows.

(−1)nQn = A2
n −B2

nN ,

An +Bn

√
N√

Qn
=
An−1 +Bn−1

√
N

√

Qn−1

·
√
N + Pn

√

Qn−1Qn

,

N = P 2
n +QnQn−1 ,

0 ≤ Pn, Qn < 2
√
N .

See [11] for a proof of these facts. The first integer factoring algorithm with subex-
ponential time complexity was based on continued fractions. See [1] for details.
Shanks discovered SQUFOF [12], [15] while investigating the “failures” of the con-
tinued fraction factoring algorithm.

2.3. Real Quadratic Number Fields. Let N 6= 1 be a square-free integer, and
define

∆ =

{

4N if N ≡ 2, 3 mod 4 ,

N if N ≡ 1 mod 4 .

Any finite extension of Q is called a number field. The extension Q(
√
N)/Q is called

the quadratic number field of radicand N and discriminant ∆. We note in passing
that Q(

√
N) = Q(

√
∆).
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Let K be any number field. The ring of integers OK of K is the integral closure
of Z in K. When K = Q(

√
N) we have OK = Z[ω], where

ω =







√
N if N ≡ 2, 3 mod 4 ,

1 +
√
N

2
if N ≡ 1 mod 4 .

The odd rational primes p fall into three categories according to the value of the
Legendre symbol

(

∆

p

)

=











0 if p is a ramified prime ,

1 if p is a split prime ,

−1 if p is a inert prime .

When N ≡ 1 mod 4, the rational prime 2 is split whenever N ≡ 1 mod 8, and
inert whenever N ≡ 5 mod 8. The ramified primes are precisely those that divide
∆. A consequence of the Chebotarev density theorem (see [9]) is that the density

of primes that split in Q(
√

∆) is 1/2. Since there are only finitely many ramified
primes, it follows that the density of inert primes is also 1/2.

A fractional ideal is a subset a of Q(
√

∆) such that

(1) for any α, β ∈ a and any λ, µ ∈ Z[ω] we have λα+ µβ ∈ a.
(2) there exist a fixed ν ∈ Z[ω] such that for every α ∈ a we have να ∈ Z[ω].

Two fractional ideals a, b are equivalent if there is some α ∈ Z[ω] such that a = (α)b,
and narrowly equivalent if there is some α ∈ Z[ω] with positive norm such that
a = (α)b. Both types of equivalences are indeed equivalence relations. The first
equivalence leads to the class group I/P , where I is the set of fractional ideals and
P is the set of principal ideals. Narrow equivalence leads to the narrow class group
I/P+, where P+ is the set of principal ideals with positive norm. The class number

of Q(
√

∆) is the order of I/P , while the narrow class number is the order of I/P+,
written h(∆) and h+(∆), respectively. It is no coincidence that we use the same
symbol to denote both the number of classes of forms of discriminant ∆ and the
narrow class number of Q(

√
∆), as it can be shown (see [3]) that they are equal.

2.4. The Infrastructure of the Class Group. The theories of binary quadratic
forms, continued fractions, and real quadratic number fields are closely related (see
[4] or [3].) First, there is a correspondence between binary quadratic forms of

discriminant N > 0 and the fractional ideals of Q(
√
N) defined by

(a, b, c)←→
(

aZ +

(

−b+
√
N

2

)

Z

)

α ,

where α is any element of Q(
√
N)× such that N (α) = sign(a). Under this corre-

spondence, composition of forms corresponds with ideal multiplication.
There is also a correspondence between binary quadratic forms and continued

fractions. The definitions for Pn and Qn in Section 2.2 satisfy

N = P 2
n +Qn−1Qn for all n ,

and so the binary quadratic form

Fn =
(

(−1)n−1Qn−1, 2Pn, (−1)nQn

)
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has discriminant 4N . In fact, the sequence of forms F0, F1, . . . constitutes the
principal cycle of forms of discriminant 4N , where F0 =

(

1, 2q0, q
2
0 −N

)

.
Shanks defined the infrastructure of the class group [17] collectively as the inner

structure within each cycle of reduced forms determined by ρ, the standard reduc-
tion operator. Originally, Shanks defined the infrastructure distance between the
form Fn and the principal form by the equation

dn = log
(

An +Bn

√
N
)

,

but this metric did not have all the desirable properties that one would like it to
have, so he later [15] changed it to

dn = log

(

An +Bn

√
N√

Qn

)

.

In [8], Lenstra independently proposed this same metric in a slightly different form
as follows. Let f = (a, b, c) be a form of discriminant ∆. Then

d (f, ρ(f)) =
1

2
log

∣

∣

∣

∣

∣

b+
√

∆

b−
√

∆

∣

∣

∣

∣

∣

.

That these two definitions agree follows from the facts at the end of Section 2.2.
Now by the laws of Khinchin, Gauss-Kuzmin, and Lévy [7], we can approximate

dn by

(2.5) log

(

An +Bn

√
N√

Qn

)

≈ π2

12 log 2
n ,

where the constant π2/ (12 log 2) is approximately 1.19.
More generally, one can define the infrastructure distance d(f, g) between two

reduced quadratic forms by the following. Let a, b be the ideals corresponding
to f, g respectively. If f and g are narrowly equivalent, then we can find γ with
N(γ) > 0 such that a = γb. Define the infrastructure distance between f and g by

d(f, g) =
1

2
log

∣

∣

∣

∣

γ

σ(γ)

∣

∣

∣

∣

,

where σ is the automorphism of Q(
√
N) taking

√
N to −

√
N . With this definition,

if f is reduced, one can show that the distance between the reduction of f 2 and the
principal form is twice the distance between f and the principal form. To see this,
let a be the fractional ideal corresponding to f and let 1 denote the principal form.
Writing a = γ · 1, we have a

2 = γ2 · 1, and

d(f2, 1) =
1

2
log

∣

∣

∣

∣

γ2

σ(γ2)

∣

∣

∣

∣

=
1

2
log

∣

∣

∣

∣

γ

σ(γ)

∣

∣

∣

∣

2

= 2 d(f, 1) .

More generally, let b1 = γ1a1 and b2 = γ2a2, so that b1b2 = γ1γ2a1a2. If reduced
forms fi, gi correspond to ai, bi, respectively, then we have

(2.6) d (g1 ◦ g2, f1 ◦ f2) = d (g1, f1) + d (g2, f2) .

Note that the forms g1 ◦ g2 and f1 ◦ f2 need not be reduced. See Proposition 5.8.4
in Cohen [3] for the correction needed when they are not reduced.

Now suppose Fn is a square form on the principal cycle. Then we know that a
square root of Fn must also lie on the principal cycle at a distance dn/2 from the
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principal form. But using the approximation (2.5), this form will be very close to
Fn/2. Likewise, the square roots of Fn in other cycles are a distance dn/2, all in
the same direction, from an ambiguous form. Also note that Equation (2.6) can be
used to show that an inverse square root of Fn is at a distance dn/2 in the reverse
direction.

3. The Description of the Algorithm

We now describe the algorithm in detail. We begin with a description of the
fastest and most practical version. A more general version follows.

3.1. Continued Fractions Description. In the analysis that follows, we will
assume that N is a square-free positive integer. Our experience in factoring millions
of integers with SQUFOF suggests that the algorithm works equally well when N
is not square-free, but we don’t know how to extend our analysis to that case.

In most implementations of SQUFOF, we work with binary quadratic forms of
discriminant ∆ = 4N . Unfortunately, if we do this when N ≡ 1 mod 4, then
∆ is not a fundamental discriminant. Although the algorithm works for non-
fundamental discriminants, the analysis of SQUFOF presented below will assume
that ∆ is fundamental. Therefore, if N ≡ 1 mod 4 then we replace N with 2N .
We may now assume that N ≡ 2 or 3 mod 4 for the remainder of this subsection.
Finally, take ∆ = 4N which is then always a fundamental discriminant.

The principal form is F0 = (1, 2q0, q
2
0 − N). We compute the forms on the

principal cycle by

Fn = ρn(F0) =
(

(−1)n−1Qn−1, 2Pn, (−1)nQn

)

,

where Pn and Qn are calculated according to (2.2), (2.3), and (2.4). We seek a
square form (∗, ∗, c2), which can only occur when n is even. Suppose we have found
a square form Fn = (−Q, 2P, S2), where Q > 0. Define F−1/2 = (−S, 2P, SQ),
an inverse square root of Fn under composition of forms. This form may not be
reduced so let G0 = (−S−1, 2R0, S0) be its reduction, where

R0 = P + S

⌊

q0 − P
S

⌋

, S−1 = S, S0 =
N −R2

0

S
.

Using Rm = tm−1Sm−1 − Rm−1, Sm = Sm−2 + tm−1(Rm−1 − Rm), and tm =
⌊

q0+Rm

Sm

⌋

, for m ≥ 1, which are completely analogous to (2.2), (2.3), and (2.4), we

generate a (hopefully) new sequence of forms

Gm =
(

(−1)m−1Sm−1, 2Rm, (−1)mSm

)

.

Now suppose we find m such that Rm = Rm+1. We expect this to happen at
approximately m ≈ n/2 for reasons explained at the end of Section 2.4. At this m
we will have Rm = tmSm/2 and N = R2

m + Sm−1Sm, which gives

N = Sm

(

Sm−1 + Sm
t2m
4

)

,

a possible factorization of N . We call the square form Fn improper if this factor-
ization is trivial. If a non-trivial factor of N is found, then Fn is a proper square
form.

One should note that all computations other than those of F0 and G0 are with
numbers less than 2

√
N in magnitude. So if N is taken to be no larger than double
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the word size of the computer, then all computations (except F0 and G0) will be
with single precision integers.

Three main issues arise at this point. First, we will need to test every other
form for squareness. This is not a major obstacle since there are fast algorithms
to test for squareness. A more serious issue is the possibility of finding only a
trivial factorization. We could return to the last square form Fn, but this is time
consuming. Instead, we will keep track of certain forms and use them in a test for
proper square forms. Finally, there may be no proper square forms at all on the
principal cycle. If this is so, then we can try SQUFOF on mN , for some small m.
We shall see later that this is reasonable.

3.2. Identifying Proper Square Forms. We begin with a few facts about square
roots of square forms.

Proposition 3.1. Suppose that a is a positive odd integer, b is a positive integer,
gcd (a, b) = 1, and that

(

a2, 2b,−c
)

is a square form on the principal cycle of

discriminant 4N with c > 0. Then (−a, 2b, ac)2 ∼
(

a2, 2b,−c
)

.

Proof. This follows directly from the definition of composition of forms, noting that
(

a2, 2b,−c
)

is equivalent to any form
(

a2, 2β, ∗
)

, where β ≡ b mod a2. �

Let b =
⌊√

N
⌋

and 1 = (1, 2b, c) denote the principal form. Let b′ =
⌊√

N
⌋

or
⌊√

N
⌋

−1, whichever is odd, and let 2 denote the reduced ambiguous form (2, 2b′, c′).

By −1, −2 we mean the forms (−1, 2b,−c), (−2, 2b′,−c′), respectively. It is easy
to see that ±1 ◦ (α, 2β, γ) ∼ (±α, 2β,±γ) and that ±2 ◦ (α, 2β, ∗) ∼ (±2α, 2β, ∗),
when α is odd and ±2 ◦ (α, 2β, ∗) ∼ (±α/2, 2β, ∗), when α is even.

Proposition 3.2. Suppose that a is a positive odd integer, b is a positive integer,
gcd (a, b) = 1, and that Fn =

(

a2, 2b,−c
)

is a square form on the principal cycle of
discriminant 4N , with c > 0. Some form (α, 2β, ∗) appears on the principal cycle
at position m < n with α ∈ {±a,±2a} and β ≡ b mod a if and only if (−a, 2b, ac)
is equivalent to one of the ambiguous forms ±1, ±2.

Proof. First suppose that the form (a, 2β, ∗) appears as form Fm on the principal
cycle with m < n. This form is equivalent to (a, 2b,−ac), and −1 ∼ (a, 2b,−ac) ◦
−1 ∼ (−a, 2b, ac), so we are done. Similarly, if Fm = (−a, 2β, ∗) ∼ (−a, 2b, ac),
then (−a, 2b, ac) ∼ 1.

Now suppose that the form (2a, 2β, ∗) appears as Fm. Then −2 ∼ (2a, 2β, ∗) ◦
−2 ∼ (−a, 2β, ∗) ∼ (−a, 2b, ac). Finally, if Fm = (−2a, 2β, ∗), then 2 ∼ (−2a, 2β, ∗)◦
2 ∼ (−a, 2β, ∗) ∼ (−a, 2b, ac).

Finally, suppose that there is no form (α, 2β, ∗) with α ∈ {±a,±2a} with β ≡
b mod a which appears on the principal cycle as a form Fm with m < n. The square
root f = (−a, 2b, ac) cannot be equivalent to 1, since if it is then we can find a
multiple of 2a that we can add to 2b to get an equivalent reduced form (a, 2β, ∗) on
the principal cycle with β ≡ b mod a. But then this form is a square root of Fn and
hence must appear on the principal cycle before Fn, since d (f,1) = d (Fn,1) /2.
Therefore f cannot be equivalent to 1.

In fact, if f ∼ g with g ∈ {±1,±2}, then f ◦ g ∼ 1, and f ◦ g = (α, 2β ′, ∗)
for α ∈ {±a,±2a} and β′ ≡ b mod a. But then f ◦ g is a square root of Fn,
and f ◦ g is equivalent to some reduced form (α, 2β, ∗) on the principal cycle with
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β ≡ β′ ≡ b mod a. As before this form must appear on the principal cycle before
Fn, a contradiction. So it must be that f is not equivalent to any of the forms
±1,±2. �

We now describe Shanks’ method for determining when a square form is proper.
For each form Fm that is examined, we perform the following test. Define L =

2
√

2
√
N . If Qm is even and less than L, then put the pair

(

Qm/2, Pm

)

into a

queue, where Pm is the least positive residue of Pm modulo Qm/2. If Qm is odd
and less than L/2, then put the pair

(

Qm, Pm

)

into the queue, where Pm is the
least positive residue of Pm modulo Qm. If we come to the square form Fn =
(

−a, 2b, c2
)

∼
(

c2,−2b,−a
)−1 ∼ (−c,−2b, ac)

−2 ∼ (ac, 2b,−c)2, then we search
the queue in the order that items are put into the queue for the pair (c, 2b mod c),
taking c > 0. Proposition 3.2 says that if this pair is in the queue, then the
form (ac, 2b,−c) is equivalent to one of the forms ±1,±2; hence the square form
is improper. If on the other hand the pair (c, 2b mod c) is not in the queue, then
Proposition 3.2 says that (ac, 2b,−c) is not equivalent to one of the forms ±1,±2;
hence the square form is proper.

Note that the quantities placed in the queue will have one-quarter the precision
of N . Hence, the queue entries will be relatively small and easy to work with.
Also note that if we have found a square form Fn =

(

−a, 2b, c2
)

and also the pair
(c, 2b mod c) in the queue, then we may delete this pair along with all other pairs
that precede it in the queue. This is possible since if we find another square form
Fm with n < m, then any of its square roots appearing on the principal cycle
must appear after the discovered square root for Fn because of the infrastructure
explained in Section 2.4.

3.3. The Algorithm. In the following description of the algorithm, the variable
N is the integer to factor, S remembers q0, q holds the current qi, P and P ′ hold
two consecutive values of Pi, Q̂ and Q hold two consecutive values of Qi, and t is
a temporary variable used in updating Q. The formulas (2.2), (2.3), and (2.4) are
used to advance from one form to the next. Finally, B is an upper bound on the
number of forms tested for being square forms before the algorithm gives up.

1. Initialize:
Read the odd positive integer N to be factored. If N is the square of

an integer, output the square root and stop. If N ≡ 1 mod 4, then set

D ← 2N ; otherwise, set D ← N . In any case, set S ←
⌊√

D
⌋

, Q̂ ← 1,

P ← S, Q← D − P · P , L←
⌊

2
√

2
√
D
⌋

, B ← 2 · L, and i← 0.

At this point the principal form is (1, 2P,−Q) = (1, 2q0,−(D − q20)).
2. Cycle forward to find a proper square form:

Steps 2a through 2e are repeated for i = 1, 2, 3, . . ..
2a: Set q ← b(S + P )/Qc and P ′ ← q ·Q− P .
2b: If Q ≤ L, then:

If Q is even, put the pair (Q/2, P mod (Q/2)) onto the QUEUE; oth-
erwise, if Q ≤ L/2, then put the pair (Q,P mod Q) onto the QUEUE.

2c: Set t← Q̂+ q · (P − P ′), Q̂← Q, Q← t, and P ← P ′.

Here the current form is (−Q̂, 2P,Q) if i is even, and it is (Q̂, 2P,−Q)
if i is odd.
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2d: If i is odd, go to Step 2e. If Q is not the square of an integer, go
to Step 2e. Otherwise, set r ← √Q, a positive integer. If there is no
pair (r, t) in the QUEUE for which r divides P − t, then go to Step 3.
If r > 1 and there is a pair (r, t) in the QUEUE for which r divides
P − t, then remove all pairs from the beginning of the QUEUE up
to and including this pair and go to Step 2e. If r = 1 and there is
a pair (1, t) in the QUEUE, then the algorithm fails because we have
traversed the entire principal period of quadratic forms of discriminant
4N without finding a proper square form.

2e: Let i← i+ 1. If i > B, give up. Otherwise, go to Step 2a.
3. Compute an inverse square root of the square form:

Here we have found a square form F = (−Q̂, 2P, r2). Its inverse square

root is F−1/2 = (−r, 2P, rQ̂).

Set Q̂ ← r, P ← P + r · b(S − P ) /rc, and Q ← (D − P · P ) /Q̂. (This
last division is exact.)

Now the reduced inverse square root is the form (−Q̂, 2P,Q).
4. Cycle in the reverse direction to find a factor of N :

4a: Set q ← b(S + P ) /Qc and P ′ ← q ·Q− P .
4b: If P = P ′, then go to Step 5.
4c: Set t ← Q̂ + q · (P − P ′), Q̂ ← Q, Q ← t, and P ← P ′ and go to

Step 4a.
5. Print the factor of N :

If Q is even, set Q← Q/2. Output the factor Q of N .

The algorithm fails if the QUEUE overflows. For virtually all successful fac-
torizations, a QUEUE size of 50 is adequate. In Theorem 4.24, we show that the
average maximum queue size is about 1 or 2.

Step 4 is executed approximately half as many times as Step 2.
In Step 2b, Q almost always exceeds L. Also, Q is almost never a square in Step

2c. Thus, the time spent inserting pairs into the QUEUE and searching for them
in it is negligible compared to the total time for Step 2.

3.4. Examples. We give one complete example of the SQUFOF algorithm. We

will factor N = 22117019 = D. Note that
√
D ≈ 4702.873483 and 2

√

2
√
D ≈

193.948447. Thus P = S = 4702, Q = D − P 2 = 8215, and L = 193 in Step 1.
Table 1 shows the forms computed in Step 2 of SQUFOF and their infrastructure

distances for N = 22117019. (The algorithm begins with form F1, but F0 is shown
here because it is Shanks’ origin for infrastructure distance. Of course, the SQUFOF
algorithm computes no infrastructure distances.) In the algorithm descriptions, the

form is represented by Q̂, P , Q. Note that Q̂ andQ in the algorithm are the absolute
values of the numbers shown in Table 1, and that the factors of 2 in the middle
coefficients of the forms do not appear in P of the algorithm.

At the end of Table 1 we have found the square form F18 = (−6314, 2 ·1737, 552).
Since nothing has been placed into the queue, this is a proper square form. We
compute its inverse square root as (−55, 2 · 1737, 347270) and reduce it to get
G0 = (−55, 2 · 4652, 8653).

Table 2 shows the forms computed in Step 4 of SQUFOF and their infrastructure
distances for N = 22117019. In the algorithm descriptions, the form is represented
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Fi

i (−1)i−1Qi−1 2 · Pn (−1)iQi di

0 −8215 2 · 4702 1 0.000000
1 1 2 · 4702 −8215 4.642125
2 −8215 2 · 3513 1190 5.608235
3 1190 2 · 3627 −7531 6.631593
4 −7531 2 · 3904 913 7.820150
5 913 2 · 4313 −3850 9.390610
6 −3850 2 · 3387 2765 10.298666
7 2765 2 · 2143 −6338 10.790510
8 −6338 2 · 4195 713 12.222178
9 713 2 · 4361 −4346 13.860983

10 −4346 2 · 4331 773 15.456075
11 773 2 · 4172 −6095 16.864302
12 −6095 2 · 1923 3022 17.298591
13 3022 2 · 4121 −1699 18.658072
14 −1699 2 · 4374 1757 20.316978
15 1757 2 · 4411 −1514 22.037595
16 −1514 2 · 4673 185 24.912057
17 185 2 · 4577 −6314 27.062220
18 −6314 2 · 1737 3025 27.449888

Table 1. Step 2 (Cycle forward) for N = 22117019.

Gi

i (−1)i−1Si−1 2 · Rn (−1)iSi di

0 −55 2 · 4652 8653 2.607155
1 8653 2 · 4001 −706 3.866041
2 −706 2 · 4471 3013 5.705002
3 3013 2 · 4568 −415 7.820150
4 −415 2 · 4562 3145 9.913212
5 3145 2 · 1728 −6083 10.298666
6 −6083 2 · 4355 518 11.928441
7 518 2 · 4451 −4451 13.724944
8 −4451 2 · 4451 518

Table 2. Step 4 (Cycle in reverse) for N = 22117019.

again by Q̂, P , Q. Once more Q̂ and Q in the algorithm are the absolute values of
the numbers shown in Table 2.

Notice that the infrastructure distance covered in Step 4 (13.724944) is exactly
half that covered in Step 2 (27.449888).

The algorithm does not actually compute the entire last form. As soon as it
finds the middle coefficient P ′ of that form and notices that P ′ = P , the factor of
N is at hand. Since Q = 4451 (the absolute value of (−1)iSi = −4451 in line 7 of
Table 2) is odd, it is a factor of N and we find that N = 4451 · 4969.
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3.5. Sufficient List. Some implementations of SQUFOF do not use the previously
described queue structure. Instead, when a form (∗, ∗, c) is discovered with |c| < L
when c is even, or with |c| < L/2 when c is odd, then |c| is put into a list. Then
any square form

(

∗, ∗, c2
)

is ignored if |c| is found to be in the list. This “sufficient
list” is simpler, though potentially slower because some proper square forms may
be skipped. For the running time analysis we will assume that the queue, and not
the list, is used.

3.6. Binary Quadratic Forms Description. In [3], Cohen presents a different
version of SQUFOF entirely in the language of binary quadratic forms. It reduces to
the continued fraction version of SQUFOF whenever N ≡ 2 or 3 mod 4. (However,
the middle coefficients have their factors of 2 and the end coefficients have their
proper signs.) Whenever N ≡ 1 mod 4 the algorithm defines ∆ = N and works
with this fundamental discriminant of binary quadratic forms. Although it is slower
than the previous algorithm, because each iteration of ρ requires several divisions,
the methods we use to analyze the complexity apply to it as well.

The binary quadratic forms version of SQUFOF follows. For simplicity we use
the sufficient list instead of the queue. The description is shorter than that of the
continued fraction version given above because we use the ρ function defined earlier.

1. Initialize:
Read the odd positive integer N to be factored. If N is the square of

an integer, output the square root and stop. If N ≡ 1 mod 4, then set

D ← N , m← 1, d←
⌊√

D
⌋

, and b← 2b(d− 1)/2c+ 1. Otherwise (N ≡ 2

or 3 mod 4), set D ← 4 · N , m ← 2, d ←
⌊√

D
⌋

, and b ← 2bd/2c. Let

F ← (1, b, (b2 −D)/4), i ← 2, L ←
⌊√

d
⌋

, and Bound ← 4 · L. Create an

empty list. Let g ← |(b2 −D)/4|/ gcd(|(b2 −D)/4|,m). If g ≤ L, add g to
the list.

2. Cycle forward to find a proper square form:
2a: Set F = (A,B,C)← ρ(F ), where ρ was defined in 2.1.2.
2b: If i is even, go to Step 2d. If C is the square of an integer, let c > 0

be a square root. If c is not in the list, go to Step 3. If c = 1, stop
because the algorithm has gone through the entire principal period
without finding a proper square form.

2c: Let g ← |C|/ gcd(|C|,m). If g ≤ L, add g to the list.
2d: Let i← i+ 1. If i > Bound, give up. Otherwise, go to Step 2a.

3. Compute an inverse square root of the square form:
Set G = (a, b, c)← ρ((cA,−B,−C)).

4. Cycle in the reverse direction to find a factor of N :
4a: Set b′ ← b and G = (a, b, c)← ρ(G).
4b: If b = b′, then go to Step 5, else go to Step 4a.

5. Print the factor of N :
If c is even, let c← c/2. Output |c| as a non-trivial factor of N .

We give an example to illustrate the binary quadratic forms version of SQUFOF
and factor an N ≡ 1 mod 4. We factor N = 633003781, with D = N ,

√
D ≈

25159.566391, d = 25159, b = 25159, (b2 −D)/4 = −7125, and L = 158.
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The first two square forms we find in the forward cycle, F154 = (−11923, 1509, 1152)
and F184 = (−4009, 21359, 1052), had square roots c already in the list, so we contin-
ued cycling forward. We eventually find the square form F242 = (−18765, 23479, 332),
which is proper because 33 is not in the list. The inverse square root of F242 is the
form (−33,−23479, 619245), which reduces to G0 = (−33, 25129, 11645). The form
G124 = (−15735, 8821, 8821) is ambiguous and gives the factor 8821 of N . The
infrastructure distance covered in Step 4 (152.770486) is exactly half that traversed
in Step 2 (305.540972).

4. SQUFOF Time and Space Complexity

To preserve the continuity of the complexity analysis of SQUFOF we collect in
the next subsection some general lemmas we will need later.

4.1. Helpful Lemmas. The following lemmas will aid in computing the average
numbers of reduced and square forms on the principal cycle. We will find the
asymptotic behavior of many quantities, all of which depend on N , the number we
are trying to factor, or on ∆, which is either N or 4N . We will write f (N) ∼ g (N)
if g(N) 6= 0 for N > 0 and limN→∞ f(N)/g(N) = 1.

Lemmas 4.2 to 4.4 below are easily proved by mathematical induction, beginning
with an identity of the form

∑

c<x,a-c

h(c) =
∑

c<x

h(c)−
∑

c<x/a

h(ac) ,

and estimating the difference with the following simple lemma.

Lemma 4.1. Let a > b > 0. Suppose f(∆) ∼ ah(∆) and g(∆) ∼ bh(∆), as
∆→∞, where h(∆) 6= 0 for all ∆. Then f(∆)− g(∆) ∼ (a− b)h(∆), as ∆→∞.

Lemma 4.2. Let ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0, are
distinct small primes. Then, as ∆→∞,

√
∆
∑

c=
√

∆/2

p2
i -c, i=1,...,n

1

c
∼ log 2

n
∏

i=1

p2
i − 1

p2
i

.

Lemma 4.3. Let ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0, are
distinct small primes. Then, as ∆→∞,

4
√

∆
∑

c= 4
√

∆/
√

2
pi-c, i=1,...,n

1

c2
∼

√
2− 1
4
√

∆

n
∏

i=1

pi − 1

pi
.

Lemma 4.4. Let ∆ be a positive integer and suppose p1, . . . , pn, for n ≥ 0, are
distinct small primes. Then, as ∆→∞,

4
√

∆/
√

2
∑

c=1
pi-c, i=1,...,n

1 −
4
√

∆
∑

c=
4
√

∆/
√

2
pi-c, i=1,...,n

1 ∼ 4
√

∆
(√

2− 1
)

n
∏

i=1

pi − 1

pi
.
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4.2. Outline of the Complexity Analysis. As we have seen, once SQUFOF
finds a proper square form Fn, it will find an ambiguous form (and factor N) at

a distance of about n/2 forms away from F
−1/2
n . So we take the number of forms

examined before finding a proper square form to be a fair measure of the running
time. We omit from our analysis those N for which there is no proper square form
in the principal cycle. SQUFOF cannot factor such N .

We have seen in Section 3 that SQUFOF generates several sequences depending
on N . It looks for numbers with certain properties (proper squares). The complex-
ity analysis is a heuristic argument based on several assumptions. Most of these
assumptions say that these sequences of integers behave like random sequences of
numbers of the same approximate size. Our first assumption, however, is not of this
type. It simplifies the analysis by permitting the use of theorems about fundamental
discriminants. It almost certainly holds in the most common uses of SQUFOF.

Assumption 4.5. We assume that N is a square-free positive integer with k large
odd prime divisors.

Assuming that N is square-free (that is, using Assumption 4.5) implies that

(4.1) ∆ =

{

N if N ≡ 1 mod 4,

4N if N ≡ 2 or 3 mod 4,

is a fundamental discriminant. This allows us to use many results from the theory
of binary quadratic forms. Recall that if we use the continued fraction version
of SQUFOF described in Sections 3.1 and 3.3, then any N ≡ 1 mod 4 will be
multiplied by 2 at once. The N ≡ 1 mod 4 case here implies that we are using the
binary quadratic forms version of Section 3.6.

In any case, SQUFOF is used mainly as an auxiliary algorithm in larger factor-
ization algorithms and hence SQUFOF will typically be used to factor integers of
modest size with no small prime factors. Such integers are typically the product of
a small number of distinct primes.

4.3. Counting Reduced Forms. There is an obvious correspondence between
forms of discriminant ∆ and solutions to the congruence

(4.2) b2 ≡ ∆ mod 4c .

When 0 < y − x < 4c, we will use the notation

N∆,c(x, y) = |{b mod 4c : (4.2) holds and x < b < y}|
later. Given an integer c, we will need to know the average number of reduced
forms (∗, ∗, c). It is clear that there will be no such forms if c is divisible by any
inert prime, or if c is divisible by the square of a ramified prime. So we may assume
that c is divisible by no inert primes and by ramified primes to at most the first
power. Under these restrictions, the following three lemmas calculate the number
of solutions to (4.2) from which the number of reduced forms will follow.

Lemma 4.6. Let 0 < c <
√

∆/2 and suppose c is divisible by no inert primes, by
ramified primes to at most the first power, and by exactly l distinct split primes.
Then there are 2l reduced forms (∗, ∗, c) of discriminant ∆.

Proof. Suppose c = qe1

1 · · · qel

l r1 · · · rt, where the ri are ramified primes and the qj

are split primes. For each odd ri, the congruence b2 ≡ ∆ mod ri has only the trivial
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solution. For each odd qj , the congruence b2 ≡ ∆ mod qj has exactly two solutions.
Since these two solutions are both nonsingular, they each lift to a unique solution
of b2 ≡ ∆ mod q

ej

j .

If c is odd, then we must count the number of solutions to b2 ≡ ∆ mod 4. Since
∆ ≡ 0 or 1 mod 4, in either case we have two solutions. Finally, the Chinese
Remainder Theorem gives 2l+1 solutions to (4.2).

Now suppose c is even. Either 2 is ramified (so that 2 exactly divides c) or 2 is
split. If 2 is ramified, then we must count the number of solutions to b2 ≡ ∆ mod 8.
Since N ≡ 2 or 3 mod 4, we see that ∆ ≡ 0 or 4 mod 8. There are two solutions
to b2 ≡ 0 mod 8 and two solutions to b2 ≡ 4 mod 8, so once again the Chinese
Remainder Theorem gives 2l+1 solutions to (4.2).

Finally, suppose 2 is a split prime and 2e exactly divides c, where e ≥ 1. We
must count the number of solutions to b2 ≡ ∆ mod 2e+2. In this case N ≡ 1 mod 8.
The congruence b2 ≡ 1 mod 8 has four solutions. It is not hard to show that these
four solutions lift to exactly four solutions of b2 ≡ ∆ mod 2e+2 for any e ≥ 1 (c.f
Theorem 2.24 of [10].) For any of the other l− 1 odd split primes, we will have two
solutions to b2 ≡ ∆ mod q

ej

j as before. Again, the Chinese Remainder Theorem

gives 4 · 2l−1 = 2l+1 solutions to (4.2).

Recall that a form (a, b, c) is reduced if and only if
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ < b <
√

∆. By

hypothesis 0 < c <
√

∆/2; hence
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ =
√

∆−2c. The condition
√

∆−2c <

b <
√

∆ defines an interval of length 2c. Now suppose 0 < b1, b2, . . . , b2l+1 < 4c are
the 2l+1 solutions of (4.2) in the interval (0, 4c). Note that half of these solutions
must be in (0, 2c) and half must be in (2c, 4c). By translating these solutions to

the interval (
√

∆− 4c,
√

∆), we see that the 2l solutions in (
√

∆− 2c,
√

∆) lead to
2l reduced forms (∗, ∗, c) of discriminant ∆. Finally, if (a, b, c) is a reduced form of
discriminant ∆, then clearly b must be one of the translated bi. This finishes the
proof of the lemma. �

Lemma 4.7. Let
√

∆ < c. There are no reduced forms (∗, ∗, c) of discriminant ∆.

Proof. A form (a, b, c) is reduced if and only if
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ < b <
√

∆. No b can

satisfy this condition since
√

∆ < c implies that
√

∆ < 2c−
√

∆ =
∣

∣

∣

√
∆− 2|c|

∣

∣

∣. �

The previous two lemmas give us the exact number of reduced forms (∗, ∗, c)
of discriminant ∆ whenever 0 < c <

√
∆/2 or

√
∆ < c. We must settle for an

“average number” whenever
√

∆/2 < c <
√

∆. We make this notion precise as
follows. Let ∆ be a fundamental discriminant in the interval (c2,∞) and let f(∆)
denote a function of ∆. We say f(∆) has average value e(∆) if, as c→∞,

∑

c2<∆′≤∆

f(∆′) ∼
∑

c2<∆′≤∆

e(∆′) .

We will write A[f ] for an average value e of f . Note that A[·] is asymptotically
linear: If k is constant and f and g are two functions of ∆, then A[kf + g] ∼
kA[f ] +A[g].

We make the following assumption regarding the distribution of quadratic residues
in a complete system of residues modulo 4c.
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Assumption 4.8. Let ∆ be a fundamental discriminant in the interval (c2, 4c2).
Then the average value of N∆,c(x, y), as c→∞, is asymptotically

y − x
2c

N∆,c(0, 2c) when 0 < x < y < 2c

and
y − x

2c
N∆,c(2c, 4c) when 2c < x < y < 4c.

In the following, when we write “∆ → ∞” we mean that ∆ → ∞ through
fundamental discriminants. Often there will be other restrictions on ∆, such as
that it lie in a certain residue class modulo 4. Remember that ∆ and N are always
related by (4.1), so that we may write N →∞ instead of ∆→∞.

Lemma 4.9. Let
√

∆/2 < c <
√

∆ and suppose c is divisible by no inert primes,
by ramified primes to at most the first power, and by exactly l distinct split primes.
Then, as ∆→∞, the average number of reduced forms (∗, ∗, c) of discriminant ∆
is asymptotically

2l
(√

∆− c
)

c
.

Proof. Since
√

∆/2 < c <
√

∆, the condition
∣

∣

∣

√
∆− 2|c|

∣

∣

∣ < b <
√

∆ is equivalent to

2c−
√

∆ < b <
√

∆. This defines the interval (2c−
√

∆,
√

∆) of length 2
(√

∆− c
)

.

We translate the 2l+1 solutions of the congruence (4.2) in (0, 4c) to the interval

(2c−
√

∆, 6c−
√

∆). Half of these solutions will be in the interval (2c−
√

∆, 4c−
√

∆).

We apply Assumption 4.8 with x = 2c −
√

∆ > 0 and y =
√

∆ < 2c. Then
(y − x)/2c = (

√
∆ − c)/c and N∆,c(0, 2c) = 2l. The number of reduced forms we

are counting equals the number of solutions to (4.2) with 2c−
√

∆ < b <
√

∆, that

is, N∆,c(2c−
√

∆,
√

∆). By Assumption 4.8,

∑

c2<∆′≤∆

N∆′,c(2c−
√

∆′,
√

∆′) ∼
∑

c2<∆′≤∆

(√
∆′ − c

)

c
2l

as ∆ → ∞. This shows that the average number of reduced forms (∗, ∗, c) of

discriminant ∆ is asymptotically 2l(
√

∆− c)/c, as ∆→∞, as claimed. �

Note that if (a, b, c) is a reduced form of discriminant ∆, then so is (−a, b,−c),
so the previous three lemmas tell us the average number of forms (∗, ∗,−c) for
c > 0. For c > 0 we let Yc = Yc(∆) be the number of reduced forms (a′, b′, c′) of
discriminant ∆ with |c′| = c. We will not compute this quantity for every possible
value of c. Instead we compute the average value A[Yc] of Yc. The previous three
lemmas can be used to compute this quantity.

The fraction of non-ramified primes p <
√

∆ that split is asymptotically 1/2, as
∆→∞, by the Chebotarev density theorem.

Proposition 4.10. Suppose c > 0 is an integer divisible by ramified primes to
at most the first power, and let Yc be the number of reduced forms (∗, ∗, c′) of



SQUARE FORM FACTORIZATION 19

discriminant ∆ with |c′| = c. Then, as ∆→∞,

A[Yc] ∼











2 if 0 < c <
√

∆/2 ,
2(

√
∆−c)
c if

√
∆/2 < c <

√
∆ ,

0 if
√

∆ < c .

Proof. First suppose 0 < c <
√

∆/2 and that c is divisible by l non-ramified primes.
By the remark above, the fraction of c divisible by no inert prime is 2−l. Lemma
4.6 says that if c is divisible by no inert primes, by ramified primes to at most
the first power, and by exactly l split primes, then there will be 2l reduced forms
(∗, ∗, c) of discriminant ∆. So we have, as ∆→∞,

A[Yc] ∼ 2
(

2−l · 2l + (1− 2−l) · 0
)

= 2 ,

where we multiply by two since (a, b, c) is a reduced form of discriminant ∆ if and
only if (−a, b,−c) is a reduced form of discriminant ∆.

Now suppose that
√

∆/2 < c <
√

∆, and that c is divisible by l non-ramified
primes. Again, the fraction of c divisible by no inert prime is 2−l. Lemma 4.9
implies that if c is divisible by no inert primes, by ramified primes to at most the
first power, and by exactly l split primes, then we expect 2l(

√
∆ − c)/c reduced

forms (∗, ∗, c) of discriminant ∆. So we have, as ∆→∞,

A[Yc] ∼ 2



2−l ·
2l
(√

∆− c
)

c
+ (1− 2−l) · 0



 =
2
(√

∆− c
)

c
.

Finally, suppose
√

∆ < c. Lemma 4.7 implies that there are no reduced forms
(∗, ∗, c) of discriminant ∆; hence A[Yc] = 0. �

4.4. Successive Square Forms. We now use the results of the previous subsection
to compute the average index-difference between successive square forms. Using
similar techniques, we will count both the average number of reduced forms and
the average number of reduced square forms on the principal cycle. Then the
average number of steps between successive square forms will be the ratio of these
two average numbers.

Let C be the group of equivalence classes of binary quadratic forms of discrimi-
nant ∆. Recall that this group is isomorphic to the narrow class group of Q(

√
∆);

hence |C| = h+, the narrow class number of Q(
√

∆). Let G be the group of genera
of forms of discriminant ∆. There is a surjective group homomorphism φ : C → G
taking an equivalence class to its genus, which we identify with its corresponding
assigned value. The kernel of this homomorphism is the set of classes in the princi-
pal genus. The first group isomorphism theorem implies that C/ kerφ ∼= G; hence
| kerφ| = h+/|G|. It remains to compute the value of |G|.

Let κ = k when N ≡ 1 mod 4, ∆ = N and κ = k + 1 when N ≡ 2 or 3 mod 4,
∆ = 4N . Then κ is the number of generic characters of ∆, as defined in Section
2.1.2. Since the number of genera is equal to one half the possible assigned values,
we see that |G| = 2κ−1. Finally we see that the number of classes in the principal
genus is h+/2κ−1.

4.4.1. Number of Reduced Forms on the Principal Cycle. Let c > 0, Xc = Xc(∆) be
the number of reduced forms (∗, ∗, c′) of discriminant ∆ with |c′| = c on the principal
cycle, and X = X(∆) be the total number of reduced forms with discriminant ∆
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on the principal cycle. Then X =
∑

0<cXc. We have seen (Lemma 4.7) that if

(∗, ∗, c) is a reduced form, then 0 < |c| <
√

∆, so

X =

√
∆
∑

c=1

Xc .

We will compute A[X ], the average number of reduced forms on the principal cycle,
and we have, as ∆→∞,

A[X ] ∼
√

∆
∑

c=1

A[Xc] .

We now make a few observations about the distribution of forms among the
the h+ cycles. First observe that since the principal cycle is ambiguous, a non-
ambiguous reduced form (a, b, c) will be on the principal cycle if and only if its
associate (c, b, a) is on the principal cycle. But this means that (a, b, c) is on the
principal cycle if and only if ρ−1(c, b, a) = (a′, b′, c) is on the principal cycle. Ex-
istence of the reduced forms (a, b, c), (a′, b′, c) implies the existence of the reduced
forms (−a, b,−c), (−a′, b′,−c). These four forms will be collectively referred to as
the quartet of forms associated with the form (a, b, c).

Suppose that one of the κ generic characters ξ associated to ∆ satisfies ξ(−1) =
−1. Then the forms (a, b, c), (a′, b′, c) are on the principal cycle if and only if the
forms (−a, b,−c), (−a′, b′,−c) are not on the principal cycle. (Here we are using
Assumption 4.5.) Therefore, for a given c > 0, at most two forms from each quartet
can be on the principal cycle. This leads us to make the following assumption.

Assumption 4.11. Assume that, as ∆ → ∞ through values for which there is
some generic character ξ associated with ∆ such that ξ(−1) = −1, we have

(4.3) A[Xc] ∼ A[Yc]/2h
+ .

Assumption 4.11 is reasonable because for each quartet of forms (∗, ∗, c′) with
|c′| = c, at most two forms (that is, half of the forms in the quartet) may be on the
principal cycle, and the principal cycle is one of the h+ cycles. Since Proposition
4.10 gives us an expression for A[Yc] when 0 < c <

√
∆, Assumption 4.11 enables

us to compute A[X ].
Now suppose that ξ(−1) = 1 for all generic characters ξ associated to ∆. Then

(a, b, c) is on the principal cycle if and only if its entire quartet is on the principal
cycle. (Here we are using Assumption 4.5 again.) We now make the following
assumption.

Assumption 4.12. Assume that, as ∆ → ∞ through values for which ξ(−1) = 1
for all generic characters ξ associated with ∆, we have

A[Xc] ∼ A[Yc]/h
+ .

Assumption 4.12 is reasonable because either the entire quartet associated with
(a, b, c) is on the principal cycle or not, and the principal cycle is one of the h+

cycles. In summary, we have assumed that A[Xc] ∼ νA[Yc]/h
+, as ∆→∞, where

ν = ν(∆) =

{

1
2 if ξ(−1) = −1 for some generic character ξ of ∆ ,

1 if ξ(−1) = 1 for all generic characters ξ of ∆ .

If N ≡ 3 mod 4, then some prime dividing N must be congruent to 3 modulo 4.
In this case ν must equal 1/2 and so (4.3) holds. If N ≡ 1 or 2 mod 4, then we
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cannot know which value to use for ν, so we make the following assumption about
the average value of ν.

Assumption 4.13. Assume that when N ≡ 1 or 2 mod 4 we have, as ∆→∞,

A[ν] ∼
(

1− 2−κ
)

· 1
2

+ 2−κ · 1 =
2κ + 1

2κ+1
,

Assumption 4.13 is reasonable because the κ generic characters associated with
∆ should independently each take the value 1 at −1 about half of the time, so that
all take the value 1 at −1 in about one case out of 2κ. Assumptions 4.11, 4.12 and
4.13 together imply that when N ≡ 1 or 2 mod 4,

(4.4) A[Xc] ∼ A[ν]A[Yc]/h
+ ∼ (2κ + 1)A[Yc]

2κ+1h+
.

In any case, we can now calculate A[X ].

Proposition 4.14. As ∆ → ∞, the asymptotic average number of reduced forms
of discriminant ∆ on the principal cycle is

A[X ] ∼















































(

2k + 1
)√

N log 2

2kh+
if N ≡ 1 mod 4 ,

3
(

2k+1 + 1
)√

N log 2

2k+2h+
if N ≡ 2 mod 4 ,

3
√
N log 2

2h+
if N ≡ 3 mod 4 .

Proof. We assume that the odd prime divisors pi of N (all of which are ramified)
are so large that the chance that c is divisible by p2

i is negligibly small. This means
that we shall use the results of Proposition 4.10 for all values of c, except when 2
is ramified (N ≡ 2 or 3 mod 4.) When 2 is ramified, we will use A[Xc] = 0 for any
c divisible by 4.

Note that to get the result in the case of N ≡ 2 mod 4, we may multiply the
result in the case of N ≡ 3 mod 4 by (2κ + 1) /2κ =

(

2k+1 + 1
)

/2k+1, since the
only difference is that we replace 1/2 with A[ν].

Case 1: (N ≡ 1 mod 4) In this case ∆ = N . We have

A[X ] ∼
√

∆
∑

c=1

A[Xc] ∼
√

N
∑

c=1

(

2k + 1
)

A[Yc]

2k+1h+
(using Equation (4.4))

∼ 2k + 1

2k+1h+

√
N
∑

c=1

A[Yc]

∼ 2k + 1

2k+1h+





√
N/2
∑

c=1

2 +

√
N
∑

c=
√

N/2

2
(√

N − c
)

c



 (by Proposition 4.10)

∼
(

2k + 1
)√

N

2kh+

√
N
∑

c=
√

N/2

1

c
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∼
(

2k + 1
)√

N log 2

2kh+
(using Lemma 4.2).

Case 2: (N ≡ 3 mod 4) In this case ∆ = 4N , and 2 is a ramified prime. We
have

A[X ] ∼
√

∆
∑

c=1

A[Xc] ∼
2
√

N
∑

c=1

A[Yc]/2h
+ −

√
N/2
∑

c=1

A[Y4c]/2h
+

(using Equation (4.3))

∼ 1

2h+





2
√

N
∑

c=1

A[Yc] −
√

N/2
∑

c=1

A[Y4c]





∼ 1

2h+





√
N
∑

c=1

2 +

2
√

N
∑

c=
√

N

2
(

2
√
N − c

)

c

−
√

N/4
∑

c=1

2 −
√

N/2
∑

c=
√

N/4

2
(

2
√
N − 4c

)

4c



 (by Proposition 4.10)

∼ 1

2h+



4
√
N

2
√

N
∑

c=
√

N

1

c
−
√
N

√
N/2
∑

c=
√

N/4

1

c





∼ 3
√
N log 2

2h+
(using Lemma 4.2).

�

4.4.2. Number of Square Forms on the Principal Cycle. We can use the same meth-
ods used in the previous subsection to count Xsq = Xsq(∆), the number of reduced
square forms (∗, ∗, c2) on the principal cycle. As before, we will actually compute
A[Xsq ], the average number of reduced square forms on the principal cycle. Here
we begin with Xsq =

∑

Xc2/2, where we divide by two since square forms must
have a positive right-end coefficient and exactly half of the Xc2 forms will satisfy
this condition. Lemma 4.7 implies that

Xsq =

4
√

∆
∑

c=1

Xc2/2 .

Hence

A[Xsq ] ∼
4
√

∆
∑

c=1

A[Xc2 ]/2 .

As before, for a given c > 0 there are Yc2 reduced forms (a, b, c′) of discriminant
∆ with |c′| = c2. Also, for each non-ambiguous form (a, b, c2) we have the associated
quartet of forms: (a, b, c2), ρ−1(c2, b, a) = (a′, b′, c2), (−a, b,−c2), and (−a′, b′,−c2).
We make the following assumption.
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Assumption 4.15.

(4.5) A[Xc2 ] ∼



















2κ + 1

4h+
A[Yc2 ] if N ≡ 1 or 2 mod 4,

2κ−2

h+
A[Yc2 ] if N ≡ 3 mod 4.

We justify Assumption 4.15 as follows. When N ≡ 3 mod 4, reason as for As-
sumption 4.11, noting that a square form has to lie on a cycle in the principal genus,
and the principal cycle is one of the h+/2κ−1 cycles in the principal genus. When
N ≡ 1 or 2 mod 4, reason as for (4.4), with the same change noted.

Since Proposition 4.10 gives us an expression for A[Yc2 ] when 0 < c < 4
√

∆, we
can now compute A[Xsq ].

Proposition 4.16. As ∆→∞, the asymptotic average number of reduced square
forms of discriminant ∆ on the principal cycle is

A[Xsq ] ∼















































(

2k + 1
) (√

2− 1
)

4
√
N

2h+
if N ≡ 1 mod 4 ,

(

2k+1 + 1
) (

2−
√

2
)

4
√
N

4h+
if N ≡ 2 mod 4 ,

2k
(

2−
√

2
)

4
√
N

2h+
if N ≡ 3 mod 4 .

Proof. As in the proof of Proposition 4.14, we assume that the odd prime divisors
pi of N are so large that the fraction of c2 that are divisible by p2

i is negligibly
small. So we shall once again use the results of Proposition 4.10 for all values of
c2, except when 2 is ramified. When 2 is ramified, 2|c2 implies that 4|c2, and hence
A[Xc2 ] = 0. Also we can easily obtain the result for N ≡ 2 mod 4 once we have the
result for N ≡ 3 mod 4 as in Proposition 4.14.

Case 1: (N ≡ 1 mod 4) In this case ∆ = N . We have

A[Xsq ] ∼
4
√

∆
∑

c=1

A[Xc2 ]/2 ∼
4
√

N
∑

c=1

(2κ + 1)A[Yc2 ]

8h+
(by Equation (4.5))

∼ 2κ + 1

8h+

4
√

N
∑

c=1

A[Yc2 ]

∼ 2κ + 1

8h+





4
√

N/
√

2
∑

c=1

2 +

4
√

N
∑

c= 4
√

N/
√

2

2
(√

N − c2
)

c2



 (by Proposition 4.10)

∼ 2κ + 1

4h+





(√
2− 1

)

4
√
N +

√
N

4
√

N
∑

c= 4
√

N/
√

2

1

c2





∼ (2κ + 1)
(√

2− 1
)

4
√
N

2h+
(by Lemma 4.3).
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When N ≡ 1 mod 4, we have κ = k generic characters, one for each prime
divisor of N . Thus

A[Xsq ] ∼
(

2k + 1
) (√

2− 1
)

4
√
N

2h+
.

Case 2: (N ≡ 3 mod 4) In this case ∆ = 4N .

A[Xsq ] ∼
4
√

∆
∑

c=1

A[Xc2 ]/2

∼
√

2
4
√

N
∑

c=1

2κ−2A[Yc2 ]

2h+
−

4
√

N/
√

2
∑

c=1

2κ−2A[Y4c2 ]

2h+

(by Equation (4.5))

∼ 2κ

8h+





√
2 4
√

N
∑

c=1

A[Yc2 ] −
4
√

N/
√

2
∑

c=1

A[Y4c2 ]





∼ 2κ

8h+





4
√

N
∑

c=1

2 +

√
2

4
√

N
∑

c= 4
√

N

2
(

2
√
N − c2

)

c2

−
4
√

N/2
∑

c=1

2 −
4
√

N/
√

2
∑

c= 4
√

N/2

2
(

2
√
N − 4c2

)

4c2





(by Proposition 4.10)

∼ 2κ

4h+





(

2−
√

2
)

4
√
N + 2

√
N

√
2 4
√

N
∑

c= 4
√

N

1

c2

− 2−
√

2

2
4
√
N −

√
N

2

4
√

N/
√

2
∑

c=
4
√

N/2

1

c2





∼ 2κ
(

2−
√

2
)

4
√
N

4h+
(by Lemma 4.3).

In this case κ = k + 1, thus

A[Xsq ] ∼
2k
(

2−
√

2
)

4
√
N

2h+
.

�

The Brauer-Siegel theorem (see pages 216 and 297 of [3]) says that log(R(∆)h(∆))

∼ log(
√

∆) as ∆ → ∞, where R(∆) is the regulator of Q(
√
N). It is conjectured

that R(∆) usually has size about
√

∆, so that h and therefore h+ are typically very

small. In this “usual” case, we have X ≈ constant ·
√
N/h+ ≈ constant ·

√
N and

Xsq ≈ constant · 4
√
N/h+ ≈ constant · 4

√
N .

4.4.3. Average Index-Difference between Successive Square Forms. SQUFOF be-
gins with the first reduced form (1, 2P,−Q) following a (trivial) reduced square
form (−Q, 2P, 12) in the principal cycle (using the continued fraction description).
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It steps through the principal cycle until it finds the next reduced square form.
Our measure of the time complexity of SQUFOF to factor N is the number of
reduced forms it examines in the principal cycle. In our heuristic analysis we will
approximate this number by the average number of reduced forms between succes-
sive square forms in the principal cycle. Let D = D(∆) = X/Xsq = X(∆)/Xsq(∆)
be this average number. The following assumption allows us to use Propositions
4.14 and 4.16 to find the average index-difference A[D] between successive square
forms.

Assumption 4.17. Assume that, as ∆→∞, we have A[D] ∼ A[X ]/A[Xsq],

Assumption 4.17 is plausible because we are using averages, A[X ] is roughly of

size
√

∆ and A[Xsq ] is roughly of size 4
√

∆, so that A[D] is roughly of size 4
√

∆.
The following corollary allows us to compute A[D].

Corollary 4.18. As N →∞, we have

(4.6) A[D] ∼























(√
2 + 1

)

4
√
N log 2

2k−1
if N ≡ 1 mod 4 ,

3
(√

2 + 2
)

4
√
N log 2

2k+1
if N ≡ 2 or 3 mod 4 .

Proof. We prove the case N ≡ 1 mod 4. The cases N ≡ 2 and 3 mod 4 are proved
in the same way.

Case 1: (N ≡ 1 mod 4) Proposition 4.14 implies that

A[X ] ∼
(

2k + 1
)√

N log 2

2kh+
,

and Proposition 4.16 implies that

A[Xsq ] ∼
(

2k + 1
) (√

2− 1
)

4
√
N

2h+
.

Thus, by Assumption 4.17,

A[D] ∼

(

(

2k + 1
)√

N log 2
)/

2kh+

(

(2k + 1)
(√

2− 1
)

4
√
N
)/

2h+
=

(√
2 + 1

)

4
√
N log 2

2k−1
.

�

4.5. Proper Square Forms. In this subsection we will derive the average num-
ber of square forms we must examine to successfully factor N . Recall that when
SQUFOF finds a square form, it forms an inverse square root and follows its cycle
to an ambiguous form, where there is a factor of N . Also, a proper square form is
one that leads to an ambiguous form with a nontrivial divisor of N . As before, κ
is the number of generic characters for ∆. We assume that any square form in the
principal cycle is equally likely to lead to any ambiguous form.

Assumption 4.19. Let f be one of the 2κ reduced ambiguous forms of discriminant
∆. If one begins with a square form (∗, ∗, c2) on the principal cycle of reduced
forms of discriminant ∆, computes its inverse square root as SQUFOF does, and
follows its cycle to the first ambiguous form, then there is one chance in 2κ that
this ambiguous form will be f .
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Assumption 4.19 is reasonable because the square root of a square form on the
principal cycle must lie in an ambiguous cycle, so we will reach one of the 2κ

ambiguous forms, and f is one of them. Recall that we are modeling SQUFOF as
a random walk. We are assuming that when we compute the inverse square root,
we jump to a random ambiguous cycle.

We always assume that N is the product of k distinct primes. To prepare for
multipliers in Section 5 we prove the next proposition in the case when ∆ contains
not only the prime factors of N , but also those of an odd multiplier. The latter
primes are small and known before SQUFOF begins. Furthermore, we will show
later how to tell whether a square form on the principal cycle will lead to a divisor
of twice the multiplier, so that SQUFOF with a multiplier can avoid finding a trivial
factor of N .

Proposition 4.20. The average asymptotic fraction of square forms that are proper
is

(4.7)
2k − 2

2k
.

Proof. As we have seen, a square form leads to an ambiguous form f , hence to a
factor of ∆. There are as many ambiguous classes as there are genera, and this latter
quantity is known to be 2κ−1. There are two ambiguous forms per ambiguous class;
hence there are 2κ ambiguous forms. These forms are in bijective correspondence
with the square-free divisors d of ∆ with |d| <

√
∆.

Now suppose ∆ has n small ramified primes (known prime factors of a multiplier,
or 2 when N ≡ 2 or 3 mod 4) and k large ramified primes (the factors of N). Then
κ = k + n and there will be 2n+1 improper squares (one for each of the possible

2n+1 square-free divisors d of ∆ with |d| <
√

∆ and divisible only by the small
ramified primes). Thus, by Assumption 4.19, the fraction of square forms that are
proper is

2κ − 2n+1

2κ
=

2n+k − 2n+1

2n+k
=

2k − 2

2k
.

�

Corollary 4.21. The asymptotic average number of square forms that SQUFOF
must examine before finding a proper square form is

(4.8)
2k

2k − 2
.

4.6. The Time Complexity of SQUFOF. We now have everything we need to
compute the asymptotic behavior of the average number of forms SQUFOF must
examine to find a proper square form.

Theorem 4.22. Let W = W (N) be the number of quadratic forms that SQUFOF,
when factoring a square-free integer N having k prime factors, must examine before
finding a proper square form. Then, as N → ∞, the asymptotic average value of
W is

A[W ] ∼























2
(√

2 + 1
)

4
√
N log 2

2k − 2
if N ≡ 1 mod 4 ,

3
(√

2 + 2
)

4
√
N log 2

2 (2k − 2)
if N ≡ 2 or 3 mod 4 .
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k A[W ]/ 4
√
N, N ≡ 1 mod 4 A[W ]/ 4

√
N, N ≡ 2 or 3 mod 4

2 1.6734 1.7749
3 0.5578 0.5916
4 0.2391 0.2536

Table 3. Estimates of A[W ]/ 4
√
N for k = 2, 3, 4.

Proof. This is simply the product of (4.6) and (4.8). �

Table 3 lists the predicted values for A[W ]/ 4
√
N when N is a product of two,

three, and four primes.

4.7. Average Queue Size. Now that we have the average number of forms that
SQUFOF will examine before finding a proper square form, it is a simple matter
to calculate the average queue size. If N ≡ 1 mod 4, then (∗, ∗, c) will be enqueued

if |c| < 4
√

∆. There are 2 4
√

∆ integers c such that |c| < 4
√

∆, of which only 3 4
√

∆/2

satisfy 4 - c. There are 3
√

∆/2 integers c such that |c| <
√

∆ and 4 - c. If we chose
random integers c not divisible by 4 with uniform distribution from the interval
(−
√

∆,
√

∆), about one in every 4
√

∆ integers c would satisfy |c| < 4
√

∆. We will

assume that the same fraction 1/ 4
√

∆ of actual numbers c that arise when SQUFOF

is used to factor N satisfy |c| < 4
√

∆.

Now consider the case N ≡ 2 or 3 mod 4. If a form (∗, ∗, c) is such that |c| < 4
√

∆

when c is odd, or |c/2| < 4
√

∆ when c is even, then SQUFOF will enqueue this

form. There are 2 4
√

∆ integers c such that |c| < 4
√

∆, and only 3 4
√

∆/2 such that

4 - c as well. Of this latter quantity, 4
√

∆ of these c are odd, and so 2c satisfies

|c| = |2c/2| < 4
√

∆. So there are 5 4
√

∆/2 integers c such that |c| < 4
√

∆ when c

is odd, and |c/2| < 4
√

∆ when c is even. Finally, there are 3
√

∆/2 integers c with

|c| <
√

∆ and 4 - c. If we chose random integers c not divisible by 4 with uniform

distribution from the interval (−
√

∆,
√

∆), then the fraction of them such that c

or c/2 is in (− 4
√

∆, 4
√

∆) is (5 4
√

∆/2)/(3
√

∆/2) = 5/(3 4
√

∆). We will assume that
the same fraction of actual numbers c that arise when SQUFOF is used to factor
N satisfy this inequality. We summarize our assumptions this way.

Assumption 4.23. Let W be the number of forms examined and Q = Q(N) be
the number of forms enqueued during the factorization of N . Then A[Q]/A[W ],

the average fraction of the examined forms that are enqueued, is either 1/ 4
√

∆ or

5/(3 4
√

∆), according as N ≡ 1 mod 4 or N ≡ 2 or 3 mod 4.

Theorem 4.24. As N →∞, the asymptotic average value of Q is

A[Q] ∼























2
(√

2 + 1
)

log 2

2k − 2
if N ≡ 1 mod 4 ,

5
(√

2 + 1
)

log 2

2 (2k − 2)
if N ≡ 2 or 3 mod 4 .

Proof. Case 1: (N ≡ 1 mod 4.) Since ∆ = N , we have by Assumption 4.23,

A[Q] = A[W ]/
4
√
N =

(

2
(√

2 + 1
)

4
√
N log 2

2k − 2

)

/

4
√
N =

2
(√

2 + 1
)

log 2

2k − 2
.
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k A[Q], N ≡ 1 mod 4 A[Q], N ≡ 2 or 3 mod 4
2 1.6734 2.0918
3 0.5578 0.6973
4 0.2391 0.2988

Table 4. Estimates of A[Q] for k = 2, 3, 4.

Case 2: (N ≡ 2 or 3 mod 4.) Since ∆ = 4N , we have by Assumption 4.23,

A[Q] = (5A[W ]) / (3
4
√

4N) =

(

5 · 3
(√

2 + 2
)

4
√
N log 2

2 (2k − 2)

)

/(

3
4
√

4N
)

=
5
(√

2 + 1
)

log 2

2 (2k − 2)
.

�

Table 4 lists the predicted values for A[Q] when N is a product of two, three,
and four primes.

5. The Effect of Multipliers

We now consider how multiplying N by small odd primes changes the running
time of SQUFOF and the queue length. Our strategy will be similar to that of
Section 4 in that we will compute A[X ] and A[Xsq ] for p1p2 · · · pnN for distinct
small odd primes pi.

5.1. The Time Complexity with Multipliers.

Proposition 5.1. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ by

∆ =

{

p1 · · · pnN if p1 · · · pnN ≡ 1 mod 4 ,

4p1 · · · pnN if p1 · · · pnN ≡ 2 or 3 mod 4 .

If X is the number of reduced forms on the principal cycle of discriminant ∆ then,
as N →∞, the asymptotic average value of X is

A[X ] ∼























































































(

2k+n + 1
)√

N log 2

2k+nh+

n
∏

i=1

p2
i − 1

p
3/2
i

if ∆ ≡ 1 mod 4 and

pi ≡ 1 mod 4 ∀i ,√
N log 2

h+

n
∏

i=1

p2
i − 1

p
3/2
i

if ∆ ≡ 1 mod 4 and

∃ pi ≡ 3 mod 4 ,

3
(

2k+n+1 + 1
)√

N log 2

2k+n+2h+

n
∏

i=1

p2
i − 1

p
3/2
i

if N ≡ 2 mod 4 and

pi ≡ 1 mod 4 ∀i ,
3
√
N log 2

2h+

n
∏

i=1

p2
i − 1

p
3/2
i

otherwise.
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Proof. The proof of each case is similar to the corresponding proof in Proposition
4.14. The main difference is that we will need Lemma 4.2 to handle several small
ramified primes. �

Proposition 5.2. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1. If Xsq is the number of reduced square
forms on the principal cycle of discriminant ∆ then, as N → ∞, the asymptotic
average value of Xsq is

A[Xsq ] ∼



























































































(

2k+n + 1
) (√

2− 1
)

4
√
N

2h+

n
∏

i=1

pi − 1

p
3/4
i

if ∆ ≡ 1 mod 4 and

pi ≡ 1 mod 4 ∀i ,
2k+n

(√
2− 1

)

4
√
N

2h+

n
∏

i=1

pi − 1

p
3/4
i

if ∆ ≡ 1 mod 4 and

∃pi ≡ 3 mod 4 ,
(

2k+n+1 + 1
) (

2−
√

2
)

4
√
N

4h+

n
∏

i=1

pi − 1

p
3/4
i

if N ≡ 2 mod 4 and

pi ≡ 1 mod 4 ∀i ,
2k+n

(

2−
√

2
)

4
√
N

2h+

n
∏

i=1

pi − 1

p
3/4
i

otherwise.

Proof. The proof of each case is similar to the corresponding proof in Proposition
4.16. The main difference is that we will need Lemmas 4.3 and 4.4 to handle several
small ramified primes. �

Corollary 5.3. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1. If D is the index-difference between
successive square forms on the principal cycle, then, as N → ∞, the asymptotic
average value of D is

A[D] ∼































(√
2 + 1

)

4
√
N log 2

2k−1

n
∏

i=1

pi + 1

2p
3/4
i

if ∆ ≡ 1 mod 4 ,

3
(√

2 + 2
)

4
√
N log 2

2k+1

n
∏

i=1

pi + 1

2p
3/4
i

if ∆ ≡ 0 mod 4 .

Proof. Just as in Corollary 4.18, we obtain the result by computing A[X ]/A[Xsq].
�

Theorem 5.4. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1. If W is the number of forms that SQUFOF
must examine before finding a proper square form, then, as N →∞, the asymptotic
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average value of W is

A[W ] ∼































2
(√

2 + 1
)

4
√
N log 2

2k − 2

n
∏

i=1

pi + 1

2p
3/4
i

if ∆ ≡ 1 mod 4 ,

3
(√

2 + 2
)

4
√
N log 2

2 (2k − 2)

n
∏

i=1

pi + 1

2p
3/4
i

if ∆ ≡ 0 mod 4 .

Proof. As in Theorem 4.22, this is the product of the results from Corollaries 4.21
(which allows multipliers) and 5.3. �

5.2. Using the Queue with Multipliers. We begin with propositions analogous
to Propositions 3.1 and 3.2.

Proposition 5.5. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1. Suppose that a is a positive odd integer,
b is a positive integer, gcd (a, b) = 1, and that

(

a2, b,−c
)

is a square form on the

principal cycle of discriminant ∆ with c > 0. Then (−a, b, ac)2 ∼
(

a2, b,−c
)

.

Proof. This follows directly from the definition of composition. �

There are 2κ reduced ambiguous forms of discriminant ∆. The forms (±d, ∗, ∗),
where d is a square-free divisor of ∆ relatively prime to N with |d| <

√
∆, lead to

trivial factorizations of N . Let ±d denote the reduced ambiguous form (±d, ∗, ∗).
Proposition 5.6. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1, and define µ = p1 · · · pn if ∆ ≡ 1 mod 4
and µ = 2p1 · · · pn if ∆ ≡ 0 mod 4. Assume that the pi are chosen so that µ3/4 <
4
√
N when ∆ ≡ 1 mod 4, or

√
2µ3/4 < 4

√
N when ∆ ≡ 0 mod 4. Suppose that a is a

positive odd integer, b is a positive integer, gcd (a, b) = 1, and that Fn =
(

a2, b,−c
)

is a square form on the principal cycle of discriminant ∆, with c > 0. Some form
(α, β, ∗) appears on the principal cycle at position m < n with α ∈ {±da}, where

d is a square-free divisor of ∆ that is relatively prime to N with |d| <
√

∆, and
β ≡ b mod a if and only if (−a, b, ac) is equivalent to one of the ambiguous forms
±d.

Proof. The largest element in the set {±da} is µa. The inequality on µ in the
hypothesis insures that each element of {±da} actually appears as an end coefficient

for some reduced form. To see this, suppose that a2 <
√

∆ and we want µa <
√

∆,
too, so that the square root can appear as a reduced form in some ambiguous
cycle. Since a < 4

√
∆, we can insure that µa <

√
∆ by taking µ < 4

√
∆. Using the

definitions of µ and ∆, we obtain the inequalities on µ in the hypotheses.
Suppose now that some form (α, β, ∗) appears on the principal cycle at position

m < n with α = da, where d is a square-free divisor of ∆ that is relatively prime
to N with |d| <

√
∆, and β ≡ b mod a. Then we can write the form as (α, β, ∗) ∼

(da, β, ∗). It is easy to see that −d ∼ (da, β, ∗) ◦ −d ∼ (−a, β, ∗) ∼ (−a, b, ac).
Conversely, suppose there is no form (α, β, ∗) appearing on the principal cycle

before Fn with α ∈ {±da} and β ≡ b mod a. Let f = (−a, b, ac). If f is equivalent
to some g ∈ {±d}, then f ◦ g ∼ 1 and f ◦ g is equivalent to some form (α, β ′, ∗)
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with α ∈ {±da} and β′ ≡ b mod a. But this square root is equivalent to a reduced
square root (α, β, ∗), with α ∈ {±da} and β ≡ β′ ≡ b mod a, that must be on the
principal cycle. But then this reduced square root must appear before the form
Fn, a contradiction. Therefore, f is not equivalent to any of the ambiguous forms
±d. �

Proposition 5.6 says that when we have several small ramified primes, the test
for whether a form is enqueued or not is the following. First suppose N ≡ 1 mod 4.
If a form (∗, b, c) is found such that |c′| < 4

√
∆, where c′ = c/ gcd (c, p1 · · · pn),

then SQUFOF will enqueue the pair (c′, b mod c′). If N ≡ 2 or 3 mod 4, then the
additional ramified prime 2 means that we should take c′ = c/ gcd (c, 2p1 · · · pn).

We now describe the changes in the algorithm descriptions in Subsections 3.3 and
3.6 needed if a multiplier is used. First, the multiplier m should be a square-free
product of small odd primes, certainly smaller than any prime factor of N . The
multiplier should also be small enough to imply the inequalities on µ in Proposition
5.6.

Change Step 1 of the binary quadratic forms version to this:
Read the odd positive integer N to be factored. If N is the square of an integer,

output the square root and stop. If mN ≡ 1 mod 4, then set D ← mN , m′ ← m,

d ←
⌊√

D
⌋

, and b ← 2b(d − 1)/2c + 1. Otherwise (N ≡ 2 or 3 mod 4), set

D ← 4mN , m′ ← 2m, d ←
⌊√

D
⌋

, and b ← 2bd/2c. Let F ← (1, b, (b2 − D)/4),

i ← 2, L ←
⌊√

d
⌋

, and Bound ← 4 · L. Create an empty list. Let g ← |(b2 −
D)/4|/ gcd(|(b2 − D)/4|,m′). If g ≤ L, add g to the list. (To use a queue, put
(g, b mod g) onto the QUEUE here.)

In Step 2c, change m to m′. (For a queue, put (g,B mod g) onto the QUEUE
instead.)

Change Step 1 of the continued fraction version to this:
Read the odd positive integer N to be factored. If N is the square of an integer,

output the square root and stop. If mN ≡ 1 mod 4, then set D ← 2mN ; otherwise,

set D ← mN . In any case, set S ←
⌊√

D
⌋

, Q̂ ← 1, P ← S, Q ← D − P · P ,

L←
⌊
√

2
√
D
⌋

, B ← 2 · L, and i← 0.

In the continued fraction version of SQUFOF, change Step 2b to:
Let g ← Q/ gcd(Q, 2m). If g ≤ L, put (g,B mod g) onto the QUEUE.
In Step 5 of the continued fraction version, replace Q by Q/ gcd(Q, 2m) before

the factor Q is output. Likewise, any common factor of |c| and m′ is divided out
from |c| before the factor |c| is written in the binary quadratic forms version.

We now turn to the task of computing the average number of forms enqueued in
terms of N and the pi. The numbers |c′| in the next proposition are the numbers
g enqueued in Step 2b of the continued fraction version of SQUFOF.

Proposition 5.7. Let N , ∆, p1, . . . , pn, and µ as in Proposition 5.6. Suppose that
µ3/4 < 4

√
N when ∆ ≡ 1 mod 4, or

√
2µ3/4 < 4

√
N when ∆ ≡ 0 mod 4. Let S be the

set of integers c with

(1) p2
i - c for i = 1, 2, . . . , n, and either

(2) |c| < 4
√

∆, or
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(3) if |c| > 4
√

∆, then |c′| < 4
√

∆, where c′ = c/ gcd (p1 · · · pn, c) when ∆ ≡
1 mod 4, and c′ = c/ gcd (2p1 · · · pn, c) when ∆ ≡ 0 mod 4.

Define KS = KT = 1 when ∆ ≡ 1 mod 4, and KS = 5/3 and KT = 3/4 when
∆ ≡ 0 mod 4. Then, as N →∞,

|S| ∼ |T| KS

n
∏

i=1

2pi + 1

pi + 1
,

where

(5.1) |T| ∼ 2
4
√

∆ KT

n
∏

i=1

p2
i − 1

p2
i

,

and T is the set of integers satisfying only the first two conditions above.

Proof. We prove the theorem just for the case ∆ ≡ 1 mod 4. The only difference
in the other case, when ∆ ≡ 0 mod 4, is that the prime 2 is ramified and behaves
like the odd primes pi.

The asymptotic behavior of the cardinality of the set T is clear, as is the behavior
of the cardinality of the set S when n = 0. We prove the asymptotic behavior of
the cardinality of the set S for n > 0 by induction on n.

Suppose n = 1. Of the integers in T, the subset of integers c divisible by p1

(given that c is not divisible by p2
1) has size |T|/ (p1 + 1). None of these numbers

can also appear as a c′ for some c > 4
√

∆. The rest of the integers in the set T

are not divisible by p1, so if we multiply each of these by p1, we get a new set of
integers that must satisfy Conditions (1) and (3). Thus

|S| ∼ |T| 1

p1 + 1
+ 2 |T| p1

p1 + 1
= |T| 2p1 + 1

p1 + 1
.

Now suppose that the claim holds for any choice of n − 1 primes and consider
the case of n primes p1, . . . , pn. Again, it is easy to see that |T| is given by Formula
(5.1). The subset of these numbers divisible by pn has cardinality |T|/ (pn + 1).
Each of these can be multiplied by some square-free product (perhaps trivial) of
only the p1, . . . , pn−1. By the induction hypothesis, this subset leads to

|T| 1

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1

integers that satisfy either (1) and (2), or (1) and (3). The rest of the integers in T

are not divisible by pn. Again, by the induction hypothesis, this subset leads to

2 |T| pn

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1
,

where we first count those numbers that we get by multiplying by some square-free
product (perhaps trivial) of the p1, . . . , pn−1, then we double our count since for
each of these we may multiply by either 1 or pn. Finally, |S|, the total number of
integers that satisfy either (1) and (2), or (1) and (3) is

|S| ∼ |T| 1

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1
+ 2 |T| pn

pn + 1

n−1
∏

i=1

2pi + 1

pi + 1
= |T|

n
∏

i=1

2pi + 1

pi + 1
.

Thus the claim holds for all n ≥ 0. �
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Theorem 5.8. Let N be a square-free positive integer with k distinct large odd
prime divisors and let p1, . . . , pn be n distinct small odd primes (n ≥ 0) with pi - N
for all i. Define ∆ as in Proposition 5.1 and µ as in Proposition 5.6. Assume that
the pi are chosen so that µ3/4 < 4

√
N when ∆ ≡ 1 mod 4, or

√
2µ3/4 < 4

√
N when

∆ ≡ 0 mod 4. If Q is the number of forms that SQUFOF enqueues before finding
a proper square form, then, as N →∞, the asymptotic average value of Q is

A[Q] ∼































2
(√

2 + 1
)

log 2

2k − 2

n
∏

i=1

2pi + 1

2pi
if ∆ ≡ 1 mod 4 ,

5
(√

2 + 1
)

log 2

2 (2k − 2)

n
∏

i=1

2pi + 1

2pi
if ∆ ≡ 0 mod 4 .

Proof. The size |S| in Proposition 5.7 is the number of end coefficients that will lead
to a form being enqueued. Let Condition (2)′ denote Condition (2) of Proposition

5.7 with 4
√

∆ replaced with
√

∆, and let T′ be the set of integers c satisfying
Conditions (1) and (2)′. Then, as in the proof of Proposition 5.7,

|T′| ∼ 2
√

∆ KT

n
∏

i=1

p2
i − 1

p2
i

.

The number of end coefficients c with |c| <
√

∆ and c not divisible by the square
of any ramified prime is given by |T′|. We take the ratio |S|/|T′| to be the fraction
of forms enqueued. Finally, we take the product of this number with A[W ] to get
A[Q], as in the proof of Theorem 4.24. �

5.3. Optimal Multipliers for SQUFOF. Recall that the continued fraction ver-
sion of SQUFOF always works withN ≡ 2 or 3 mod 4, multiplyingN by 2 whenever
mN ≡ 1 mod 4, where m is the odd multiplier. Notice then that if the multiplier m
is the product of the odd primes p1, . . ., pn, the integer p1 · · · pnN ≡ 2 or 3 mod 4,
where N has a factor of 2 if and only if p1 · · · pnN ≡ 1 mod 4 before the factor of
2 was put in. In this situation the asymptotic average number of forms examined
to find a proper square form, as N →∞, is

A[W ] =
3
(√

2 + 2
)

4
√
N log 2

2 (2k − 2)

n
∏

i=1

pi + 1

2p
3/4
i

.

We seek pi that minimize this quantity, the last product being the factor by which
SQUFOF factorization of p1 · · · pnN is faster or slower than that of N .

Theorem 5.9. Let Ω be the set of all finite sets of distinct odd primes and define
the mapping F : Ω→ Z by F (∅) = 1 and

F ({p1, . . . , pn}) =

n
∏

i=1

pi + 1

2p
3/4
i

.

Then F is minimized at the set {3, 5, 7, 11} and

F ({3, 5, 7, 11}) ≈ 0.7268 .

Proof. It is easy to check that F ({3, 5, 7, 11}) ≈ 0.7268. We will show that for any
other finite set of odd primes {p1, . . . , pn}, we will have

F ({p1, . . . , pn}) > F ({3, 5, 7, 11}) ,
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p1 · · · pn F ({p1, . . . , pn}) G ({p1, . . . , pn})
3 0.8774 1.1667
5 0.8972 1.1000
7 0.9295 1.0714
11 0.9934 1.0455

3 · 5 0.7872 1.2833
3 · 7 0.8155 1.2500
3 · 11 0.8716 1.2197
5 · 7 0.8339 1.1786
5 · 11 0.8913 1.1500
7 · 11 0.9233 1.1201

3 · 5 · 7 0.7317 1.3750
3 · 5 · 11 0.7820 1.3417
3 · 7 · 11 0.8101 1.3068
5 · 7 · 11 0.8284 1.2321

3 · 5 · 7 · 11 0.7268 1.4375
Table 5. Good candidate multipliers for N ≡ 2 or 3 mod 4.

which will prove the claim. So suppose by way of contradiction that there exists a
finite set of odd primes {p1, . . . , pn} such that F ({p1, . . . , pn}) < F ({3, 5, 7, 11}).
Since F (∅) = 1, F is not minimized at ∅ and so n > 0.

It is easy to check that the function f(x) = (x+ 1) /2x3/4 is strictly increasing
on [3,∞) and so for a given n, among all sets of n primes, F is minimized at
{3, 5, 7, . . . , pn}, where pn is the nth odd prime. Straightforward computation shows
that for sets of n primes with n = 1, 2, 3, 4, F is minimized at {3, 5, 7, 11}. Finally,
one easily sees that (x+ 1) /2x3/4 > 1 for x ≥ 13. This means that adding any
additional primes to the set {3, 5, 7, 11} will increase the value of F at this new set.
Therefore, F is minimized at the set {3, 5, 7, 11}. �

Theorem 5.9 shows that the optimal multiplier is 3 · 5 · 7 · 11 = 1155, and that
in fact we can expect SQUFOF to find a non-trivial factor of N using 1155N in
about 73% of the time that it would take using N . However, for practical reasons
associated with the size of single precision integers, SQUFOF may actually run
faster for smaller multipliers.

Let F be defined as in Theorem 5.9 and let G ({p1, . . . , pn}) =
∏n

i=1
2pi+1
2pi

be the

factor by which the number of forms enqueued is larger when factoring p1 · · · pnN
than when factoring N . Table 5 lists some good candidate multipliers, along with
the associated values of F and G. Note that for the values of p1 · · · pn considered
in Table 5, the value of G is no larger than 1.5. In other words, at worst we can
expect a 50% increase in the number of forms enqueued when using one of these
multipliers. However, the number of forms enqueued without using a multiplier
is very small—about 2.1 forms. So even though the rules for enqueuing a form
are more complicated (hence more time consuming) when using multipliers, this
average time cost is negligible compared with the average time savings.

5.4. Racing SQUFOF with Multipliers. The original reason for using multi-
pliers was to exploit the great variation in W/ 4

√
N , where W is the actual number
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of forms that SQUFOF must examine before finding a proper square form. Racing
several multipliers succeeds when the first proper square form is found, which may
appear early for at least one of the multiples of N . The results of the previous sub-
section suggest that if we choose the multipliers wisely, we can expect the proper
square form to come quickly for one multiplier, so that the total work is less.

Our experiments suggest that A[W ]/ 4
√
N behaves like a random variable with an

exponential distribution, since we find its mean and variance to be approximately
the same, and the exponential distribution is the only common one with this prop-
erty. Furthermore, the chance that any form in the principal period is a proper
square form seems to be independent of whether any forms seen earlier in the pe-
riod are proper square forms. This lack of memory is another characteristic of the
exponential distribution. We conjecture that A[W ]/ 4

√
N does have an exponential

distribution.
To illustrate an implication of this conjecture, let N be a product of two primes.

Let m1, . . . ,ms be distinct multipliers. Let A[Wi] be the average number of forms
that SQUFOF on miN must examine to find the first proper square form. Let
A[W1, . . . ,Ws] = s · A[min(W1, . . . ,Ws)] be the average total number of forms
that SQUFOF must examine to find the first proper square form when racing the
multipliers m1N, . . . ,msN . Let

H(x1, . . . , xs) =

(

1

s

s
∑

i=1

1

xi

)−1

be the harmonic mean of x1, . . . , xs. Then an exponential distribution forA[W ]/ 4
√
N

would imply that

A[W1, . . . ,Ws]/
4
√
N = H(A[W1]/

4
√
N, . . . , A[Ws]/

4
√
N).

Our experimental data supports this formula. The minimum of several exponential
random variables is again an exponential random variable, which is probably why
we see this behavior when racing multipliers.

For example, our experiments for racing the multipliers m1 = 11 and m2 = 3·5·7
give the value 1.4687 for A[W1,W2]/

4
√
N averaged over thousands of different N .

The theory predicts that A[W1]/
4
√
N = 0.9934 · A[W ]/ 4

√
N and A[W2]/

4
√
N =

0.7317 ·A[W ]/ 4
√
N . Hence, the conjecture would predict that

A[W1,W2]/
4
√
N = H(0.9934 · A[W ]/

4
√
N, 0.7317 ·A[W ]/

4
√
N)

= H(0.9934, 0.7317) · A[W ]/
4
√
N

= 0.8427 · A[W ]/
4
√
N.

The theory predicts that A[W ]/ 4
√
N = 1.7749, so we multiply 0.8427 by 1.7749 to

get 1.4957, which is close to the observed value 1.4687 from the experiment. Many
other examples from [5] give similar approximate confirmation of the conjecture.

6. Experimental Results

To test the conclusions of the heuristic arguments in the preceding two sections,
we factored hundreds of thousands of integers N with SQUFOF. These numbers
were all square-free with two, three or four prime factors. About one-third of the
numbers had each number of prime factors. The size of N in our experiments
ranged from about 109 to about 1015, with a few larger N .
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We used both the continued fraction and the binary quadratic forms versions
of SQUFOF. Half of the numbers were ≡ 1 mod 4 and half were ≡ 3 mod 4. We
used each one of the 16 divisors of 1155 = 3 · 5 · 7 · 11 as a multiplier m. Whenever
mN ≡ 1 mod 4 and we were using the continued fraction version of SQUFOF, we
factored 2mN , as specified in the heuristic argument. But we also tried to factor
mN directly in these cases, even though the results of this paper do not apply
there.

For each pair of multipliers m1 6= m2, we raced SQUFOF on m1N and m2N
until the first proper square form was found.

The queue in these experiments had space for 50 entries. It never overflowed.
In a small number of cases, SQUFOF could not factor N because the principal

period contained no proper square forms. This happened less than 1% of the time
for N near 109 or 1010 and even less frequently for N near 1015.

For each number N successfully factored, we noted the number W of forms
examined before finding the first proper square form and the total number Q of
entries into the queue. For each case (number of prime factors of N , whether
N ≡ 1 or 3 mod 4, version of SQUFOF used, multiplier m or pair m1, m2 or racing
multipliers), we computed the mean and standard deviation of W/ 4

√
N and Q.

In every case the mean of W/ 4
√
N was close to the value predicted by Theorems

4.22 and 5.4. Also, the mean ofQ was close to the prediction given in Theorems 4.24
and 5.8. In general, the experimental average values were closer to the theoretical
predictions for larger N than for smaller N .

In all of our experiments, the standard deviation ofW/ 4
√
N was close to the mean

for that statistic, which supports the hypothesis of an exponential distribution for
the random variable.

Table 6 gives a tiny sample of the extensive tables we generated. Each line in
it gives the results of factoring 40,000 values of N , each the product of two primes
near 1,000,000. Each N was factored using each multiplier in Table 5.

Let FWRD be the number of forms of discriminant ∆ that SQUFOF examines
before finding a proper square form, divided by the fourth root of N . Let QUEUE
be the total number of forms that SQUFOF enqueues during the search for a proper
square form. We computed FWRD and QUEUE for each successful factorization.
We then computed the average values FWRD and QUEUE, along with the standard
deviations σ (FWRD) and σ (QUEUE). We also the computed the maximum and
minimum value for FWRD and QUEUE, which gives the inequalities: 0.0008 ≤
FWRD ≤ 34.4793 and 0 ≤ QUEUE ≤ 49. Table 6 compares the predicted and
calculated values for FWRD and QUEUE.

7. Future Work

We conclude with some questions for further study.

1.) Non-fundamental discriminants: SQUFOF appears to work for non-
fundamental discriminants ∆. We have factored millions of N ≡ 1 mod 4
without multiplying by 2. The success rate was more than 99%, just as for
N ≡ 3 mod 4. In addition, we have factored tens of thousands of N having
an odd square factor > 8 with a similar success rate. We believe that an
analysis similar to that in this paper will yield the same time and average
number of forms enqueued for such ∆. In future work we will re-examine
the points where we assume ∆ to be a fundamental discriminant.
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m A[W ]
4
√

N
FWRD σ (FWRD) A[Q] QUEUE σ (QUEUE) failures

1 1.7749 1.7587 1.7570 2.0918 2.4009 2.9398 111
3 1.5573 1.5294 1.5144 2.4404 2.3750 2.8554 103
5 1.5925 1.5822 1.5799 2.3009 2.3970 2.9107 74
7 1.6497 1.6193 1.6254 2.2412 2.3850 2.9285 102
11 1.7631 1.7460 1.7536 2.1868 2.3848 2.9158 49
15 1.3972 1.3744 1.3829 2.6844 2.3602 2.8420 68
21 1.4474 1.4273 1.4186 2.6147 2.3733 2.8655 78
33 1.5469 1.5421 1.5326 2.5513 2.3996 2.8646 84
35 1.4802 1.4664 1.4652 2.4653 2.4034 2.8916 51
55 1.5819 1.5616 1.5556 2.4055 2.3789 2.8545 52
77 1.6388 1.6304 1.6282 2.3430 2.4089 2.9155 55
105 1.2987 1.2714 1.2747 2.8762 2.3666 2.8318 43
165 1.3879 1.3773 1.3791 2.8064 2.3800 2.8723 55
231 1.4378 1.4243 1.4332 2.7335 2.3767 2.8659 47
385 1.4703 1.4565 1.4542 2.5773 2.4006 2.8811 50
1155 1.2900 1.2770 1.2766 3.0069 2.3897 2.8553 55

Table 6. Two-prime statistics for FWRD and QUEUE.

2.) Distributions of A[W ] and A[Q]: Our experiments suggest thatA[W ]/ 4
√
N

may be a random variable with an exponential distribution, since we ob-
serve its mean and variance to be approximately the same. In future work,
we would like to prove this, and investigate the implications it holds for the
distribution of A[Q] and for racing several multipliers.

3.) Racing Multipliers: First, we would like to prove our experimental re-
sults for A[W ] for the case of racing multipliers. If we can do this, then we
will be able to give a good estimate for A[Wr], the average number of forms
examined during a race between several multiples of N . We also hope to
discover the distribution of A[Qr], the average number of forms enqueued
during a race between several multiples of N . Also, given that there are
several multipliers m such that we can expect to factor mN faster than we
can expect to factor N , it may be worthwhile to race several multiples of
N .

4.) Fast Return: Once we have found a proper square form and switched to
the cycle of its inverse square root, we know approximately how many forms
we must traverse to reach an ambiguous form with the factor of N . Namely,
it is close to half the number of forms considered before we found the proper
square form. Using a fast exponentiation algorithm with composition of
forms, we can swiftly compute a reduced form in this neighborhood. If it
is not ambiguous, then we can cycle through forms adjacent to this one
in both directions until we find an ambiguous form. This device greatly
reduces the time for Step 4 of the algorithm.

5.) 64-bit Architecture: Modern workstations which perform arithmetic
on 64-bit integers allow SQUFOF to factor integers as large as about 36
digits using only single precision operations. SQUFOF would take a few
seconds to a minute to factor a typical 36-digit integer on such a machine.
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The elliptic curve algorithm would be a strong competitor to SQUFOF for a
number of that size, and faster for factoring larger integers. The cross-over
point should be investigated.
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