
TOWARDS AUTOMATIC DEBUGGING OF COMPUTER PROGRAMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Hiralal Agrawal

In Partial Ful�llment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1991



ii

ACKNOWLEDGMENTS

First of all I would like to thank my advisor, Rich DeMillo, who gave me the

initial impetus to look into the problem of software debugging and helped me develop

many ideas presented in this dissertation. I am also grateful to my co-advisor, Gene

Spa�ord, whose expert advise, particularly on implementation issues, was always

indispensable. I am also thankful to my o�ce mate, Ed Krauser, who collaborated

with me in the early stages of the development of our prototype debugging tool. I

would also like to express my thanks to Ahmed Elmagarmid, Bob Horgan, Aditya

Mathur, Piyush Mehrotra, Hsin Pan, Ryan Stansifer, Guda Venkatesh, Nok Viravan,

Michal Young, and many others with whom I had fruitful discussions from time to

time.

If there is one person I am most indebted to for everything I have been able to

achieve, he is my father Ghanshyam Das Agrawal, who fostered my love for learning

and who, despite adversities, supported me in all my academic endeavors. I would

also like to thank my wife, Sweta, who has always had words of encouragement for

me, and who has patiently tolerated my absence during the many long hours I spent

preparing this dissertation.

Support for this research was provided, in part, by a grant from the Software

Engineering Research Center at Purdue University, a National Science Foundation

Industry/University Cooperative Research Center (NSF Grant ECD{8913133), by

National Science Foundation Grant CCR{8910306, and by a summer internship at

Bellcore in 1989.



DISCARD THIS PAGE



iii

TABLE OF CONTENTS

Page

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vi

ABSTRACT : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : x

1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 A New Paradigm for Debugging : : : : : : : : : : : : : : : : : : : : : 3
1.2 Scope and Goals of this Research : : : : : : : : : : : : : : : : : : : : 7
1.3 Contributions of this Research : : : : : : : : : : : : : : : : : : : : : : 9
1.4 Organization of this Dissertation : : : : : : : : : : : : : : : : : : : : 10

2. DEBUGGING: STATE-OF-THE-ART-AND-PRACTICE : : : : 11

2.1 Traditional Debugging : : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.2 Pictorial Debugging : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.3 Debugging with Speci�cations : : : : : : : : : : : : : : : : : : : : : : 14
2.4 Algorithmic Debugging : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.5 Knowledge-Based Debugging : : : : : : : : : : : : : : : : : : : : : : : 15
2.6 Program Slicing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
2.7 Program Dicing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.8 Anomaly Detection : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.9 Execution Backtracking : : : : : : : : : : : : : : : : : : : : : : : : : 19
2.10 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3. SIMPLE DYNAMIC SLICING : : : : : : : : : : : : : : : : : : : : : 22

3.1 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
3.2 Preliminary De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.2.1 Flow Graph : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
3.2.2 Use and Def Sets : : : : : : : : : : : : : : : : : : : : : : : : : 27
3.2.3 Reaching De�nitions : : : : : : : : : : : : : : : : : : : : : : : 30
3.2.4 Data Dependence : : : : : : : : : : : : : : : : : : : : : : : : : 31
3.2.5 Control Dependence : : : : : : : : : : : : : : : : : : : : : : : 31



iv

Page

3.2.6 Program Dependence Graph : : : : : : : : : : : : : : : : : : : 35
3.2.7 Reachable Nodes : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.3 Static Slicing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37
3.4 Dynamic Slicing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.4.1 Execution History : : : : : : : : : : : : : : : : : : : : : : : : : 40
3.4.2 Dynamic Slicing: Approach 1 : : : : : : : : : : : : : : : : : : 43
3.4.3 Dynamic Slicing: Approach 2 : : : : : : : : : : : : : : : : : : 46
3.4.4 Dynamic Slicing: Approach 3 : : : : : : : : : : : : : : : : : : 52
3.4.5 Dynamic Slicing: Approach 4 : : : : : : : : : : : : : : : : : : 58
3.4.6 E�cient Reduction of Dynamic Dependence Graph : : : : : : 63

3.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

4. COMPLETE DYNAMIC SLICING : : : : : : : : : : : : : : : : : : 75

4.1 Static Slicing with Pointers and Composite Variables : : : : : : : : : 76
4.1.1 Intersection of L-valued Expressions : : : : : : : : : : : : : : : 76
4.1.2 Static Reaching De�nitions Revisited : : : : : : : : : : : : : : 79

4.2 Dynamic Slicing with Pointers and Composite Variables : : : : : : : : 80
4.2.1 Use and Def Sets Revisited : : : : : : : : : : : : : : : : : : : : 80
4.2.2 Dynamic Reaching De�nitions Revisited : : : : : : : : : : : : 81

4.3 Interprocedural Dynamic Slicing : : : : : : : : : : : : : : : : : : : : : 82
4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

5. LOCAL V/S GLOBAL SLICING : : : : : : : : : : : : : : : : : : : : 91

5.1 Local Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91
5.2 Global Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

5.2.1 Dynamic Data Slice : : : : : : : : : : : : : : : : : : : : : : : : 96
5.2.2 Control Slice : : : : : : : : : : : : : : : : : : : : : : : : : : : 96
5.2.3 Dynamic Program Slice : : : : : : : : : : : : : : : : : : : : : 97
5.2.4 Static Slices : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

5.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

6. FURTHER FAULT LOCALIZATION : : : : : : : : : : : : : : : : : 108

6.1 Combining Dynamic Program Slices : : : : : : : : : : : : : : : : : : : 108
6.1.1 Varying the Testcase Argument : : : : : : : : : : : : : : : : : 109
6.1.2 Varying the Variable Argument : : : : : : : : : : : : : : : : : 122
6.1.3 Varying the Location Argument : : : : : : : : : : : : : : : : : 126
6.1.4 Varying the Program Argument : : : : : : : : : : : : : : : : : 126

6.2 Combining Data Slices : : : : : : : : : : : : : : : : : : : : : : : : : : 130
6.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132



v

Page

7. EXECUTION BACKTRACKING : : : : : : : : : : : : : : : : : : : 140

7.1 Simple Execution Backtracking : : : : : : : : : : : : : : : : : : : : : 140
7.1.1 The Execution History Approach : : : : : : : : : : : : : : : : 141
7.1.2 The Structured Backtracking Approach : : : : : : : : : : : : : 142
7.1.3 Bounds on Space Requirements : : : : : : : : : : : : : : : : : 147

7.2 Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149
7.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 151

8. SPYDER: A PROTOTYPE IMPLEMENTATION : : : : : : : : : 156

8.1 The Tool Screen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156
8.2 Spyder Commands : : : : : : : : : : : : : : : : : : : : : : : : : : : 158

8.2.1 Selection Setting Commands : : : : : : : : : : : : : : : : : : : 158
8.2.2 Slicing Commands : : : : : : : : : : : : : : : : : : : : : : : : 159
8.2.3 Fault Guessing Commands : : : : : : : : : : : : : : : : : : : : 160
8.2.4 Backtracking Commands : : : : : : : : : : : : : : : : : : : : : 161
8.2.5 Traditional Debugging Commands : : : : : : : : : : : : : : : : 161

8.3 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162
8.3.1 Modi�cations to the Compiler : : : : : : : : : : : : : : : : : : 162
8.3.2 Modi�cations to the Debugger : : : : : : : : : : : : : : : : : : 163

8.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164

9. CONCLUSIONS AND FUTURE DIRECTIONS : : : : : : : : : : 165

9.1 Limitations of the Paradigm : : : : : : : : : : : : : : : : : : : : : : : 165
9.2 Limitations of the Current Implementation : : : : : : : : : : : : : : : 166
9.3 Lessons Learned from the Implementation : : : : : : : : : : : : : : : 167
9.4 Future Directions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 169

9.4.1 Fault Prediction Heuristics : : : : : : : : : : : : : : : : : : : : 169
9.4.2 User Interfaces : : : : : : : : : : : : : : : : : : : : : : : : : : 170
9.4.3 Extensions to Other Domains : : : : : : : : : : : : : : : : : : 170
9.4.4 Other Applications : : : : : : : : : : : : : : : : : : : : : : : : 171

BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

VITA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 181



vi

LIST OF FIGURES

Figure Page

1.1 Spyder screen with a sample C source program : : : : : : : : : : : : : 5

1.2 A Debugging Paradigm : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3.1 Example Program 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.2 Flow Graph with use(U), def (D) and StaticReachingDefns(R) sets : : : 29

3.3 Data Dependence Graph for the ow-graph in Figure 3.2 : : : : : : : : 32

3.4 Control Dependence Graph of the Program in Figure 3.1 : : : : : : : : 34

3.5 Program Dependence Graph of the Program in Figure 3.1 : : : : : : : : 36

3.6 Static Slice for Variable Y for the Program in Figure 3.1 : : : : : : : : : 39

3.7 Example Program 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3.8 DynamicSlice1 for the program in Figure 3.1 for variable Y : : : : : : : 45

3.9 DynamicSlice1 for the program in Figure 3.7 for variable Z : : : : : : : 46

3.10 DynamicSlice2 for the program in Figure 3.7 for variable Z : : : : : : : 48

3.11 Example Program 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

3.12 DynamicSlice2 for the Program in Figure 3.11 for Variable Z : : : : : : 51

3.13 Example Program 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

3.14 Dynamic Dependence Graph for the Program in Figure 3.11 : : : : : : 56

3.15 Reduced Dynamic Dependence Graph for the Program in Figure 3.11 : 61

3.16 Reduced Dynamic Dependence Graph obtained using DynamicSlice5 : : 67

3.17 A variant of the program in Figure 1.1 : : : : : : : : : : : : : : : : : : : 69



vii

Figure Page

3.18 Static slice with respect to area on line 37. : : : : : : : : : : : : : : : : : 70

3.19 Dynamic slice with respect to area on line 37 during the �rst loop iteration. 71

3.20 Dynamic slice with respect to area on line 37 during the second loop
iteration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

3.21 Approximate dynamic slice on area on line 37 during the �rst loop iteration. 73

3.22 Approximate dynamic slice on area on line 37 during the second loop
iteration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

4.1 Static slice with respect to a[i] on line 29. : : : : : : : : : : : : : : : : : 85

4.2 Dynamic slice with respect to a[i] on line 29. : : : : : : : : : : : : : : : : 86

4.3 Dynamic slice with respect to a[j] on line 29. : : : : : : : : : : : : : : : : 87

4.4 Dynamic slice with respect to k on line 27. : : : : : : : : : : : : : : : : : 88

4.5 Storage layout of the program in Figure 4.4 at the end of the program
execution for the testcase (i = 1; j = 3; k = 3). : : : : : : : : : : : : : : 89

4.6 Interprocedural dynamic program slice with respect to area on line 53
during the second loop iteration. : : : : : : : : : : : : : : : : : : : : : : 90

5.1 Static reaching de�nitions of area on line 43 : : : : : : : : : : : : : : : : 101

5.2 Dynamic reaching de�nition of area on line 43 during the second loop
iteration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

5.3 Dynamic data slice with respect to sum on line 46 for the testcase #1. : 103

5.4 Static data slice with respect to sum on line 46. : : : : : : : : : : : : : : 104

5.5 Control slice with respect to the statement on line 35. : : : : : : : : : : 105

5.6 Dynamic program slice with respect to area on line 43 during the second
loop iteration for the testcase #1. : : : : : : : : : : : : : : : : : : : : : : 106

5.7 Static program slice with respect to variable area on line 43 : : : : : : : 107

6.1 Dynamic program slice of sum on line 40 for testcase #1. : : : : : : : : : 111

6.2 Dynamic program slice of sum on line 40 for testcase #2. : : : : : : : : : 112



viii

Figure Page

6.3 Dynamic program slice for testcase #1 minus that for testcase #2. : : : 113

6.4 Dynamic program slice for testcase #1 minus that for testcase #3. : : : 116

6.5 Dynamic program slice for testcase #4 minus that for testcase #3. : : : 117

6.6 Dynamic program slice for testcase #4 minus those for testcases #2 and
#3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

6.7 Intersection of dynamic program slices of sum on line 40 for testcases #1
and #5. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

6.8 Result of subtracting dynamic program slices of sum on line 40 for test-
cases #2 and #3 from the intersection of the corresponding slices for
testcases #1 and #5. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

6.9 Dynamic program slice of date.day of the week on line 80 for testcase
(month=3, day=1, year=1991) : : : : : : : : : : : : : : : : : : : : : : : 123

6.10 Dynamic program slice of date.day of the year on line 80 for testcase (month=3,
day=1, year=1991) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

6.11 Result of subtracting the dynamic program slice of date.day of the year on
line 80 for testcase (month=3, day=1, year=1991) from the corresponding
slice of date.day of the week. : : : : : : : : : : : : : : : : : : : : : : : : : 125

6.12 Dynamic program slice of area on line 37 during the �rst loop iteration
for testcase #1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

6.13 Dynamic program slice of area on line 37 during the second loop iteration
for testcase #1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

6.14 Result of subtracting the dynamic program slice of area on line 37 during
the �rst loop iteration for testcase #1 from the corresponding slice during
the second loop iteration. : : : : : : : : : : : : : : : : : : : : : : : : : : 129

6.15 Dynamic data slice of sum on line 40 for testcase #1. : : : : : : : : : : : 133

6.16 Dynamic data slice of sum on line 40 for testcase #2. : : : : : : : : : : : 134

6.17 Result of subtracting the dynamic data slice of sum on line 40 for testcase
#2 from the corresponding slice for testcase #1. : : : : : : : : : : : : : 135

6.18 Control slice of line 30 for testcase #1. : : : : : : : : : : : : : : : : : : : 136



ix

Figure Page

6.19 Dynamic data slice of class on line 29 for testcase #1. : : : : : : : : : : 137

6.20 Control slice of line 26 for testcase #1. : : : : : : : : : : : : : : : : : : : 138

6.21 Dynamic data slice of b sqr on line 25 for testcase #1. : : : : : : : : : : 139

7.1 Program to divide two integers. : : : : : : : : : : : : : : : : : : : : : : : 143

7.2 Execution history of the program in Figure 7.1 for the testcase X = 7, Y
= 3, along with the saved def set values. : : : : : : : : : : : : : : : : : : 144

7.3 Tool screen after backtracking from line 46 to line 43 : : : : : : : : : : : 154

7.4 Execution backtracking from line 16 to line 12 to line 7 : : : : : : : : : : 155

8.1 A snapshot of the Spyder screen during a debugging session. : : : : : : 157



x

ABSTRACT

Agrawal, Hiralal. Ph.D., Purdue University, August 1991. Towards Automatic De-
bugging of Computer Programs. Major Professors: Richard A. DeMillo and Eugene
H. Spa�ord.

Programmers spend considerable time debugging code. Symbolic debuggers pro-

vide some help but the task still remains complex and di�cult. Other than break-

points and tracing, these tools provide little high level help. Programmers must

perform many tasks manually that the tools could perform automatically, such as

�nding which statements in the program a�ect the value of an output variable under

a given testcase, what was the value of a given variable when the control last reached a

given program location, and what does the program do di�erently under one testcase

that it does not do under another. If the debugging tools provided explicit support

for such tasks, the whole debugging process would be automated to a large extent.

In this dissertation, we propose a new debugging paradigm that easily lends itself

to automation. Two tasks in this paradigm translate into techniques called dynamic

program slicing and execution backtracking. We discuss what these techniques are

and how they can be automated. We present ways to obtain accurate dynamic slices of

programs that may involve unconstrained pointers and composite variables. Dynamic

slicing algorithms spanning a range of time-space-accuracy trade-o�s are presented.

We also propose ways in which multiple dynamic slices may be combined to provide

further fault localization information. A new space-e�cient approach to execution

backtracking called \structured backtracking" is also proposed. Our experiment with

the above techniques has also resulted in development of a prototype tool, Spyder,

that explicitly supports them.
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1. INTRODUCTION

The presence of bugs in programs can be regarded as a fundamental

phenomenon; the bug-free program is an abstract theoretical concept like

the absolute zero of thermodynamics, which can be envisaged but never

attained.

Jacob Schwartz, in [Sch71].

Such pessimism is not unfounded. A computer program is a complex automaton.

As the size of the program grows, the complexity of the underlying automaton soon

starts exploding. It becomes increasingly more and more di�cult for the human

mind to perceive, and keep track of, all possible state transitions of this complex

state machine. Slight inattention on the programmer's part may result in serious

faults. The di�culty is further compounded when programmers work with insu�cient

understanding of the problem and its solutions (which is unfortunately often the case).

Because of the presence of faults, the automaton may fail on certain inputs. The

incorrect output produced by a faulty automaton is referred to as a failure, and

faults in the automaton that cause the failure are referred to as bugs [ANS83]. In

other words, a fault is a cause and a failure is a symptom. Faults get introduced in a

program because of errors committed by programmers while translating speci�cations

into implementations or because of errors in speci�cations themselves. Testing is the

problem of �nding inputs to the automaton that cause it to fail, and debugging is the

problem of �nding the faults once the failure has been detected.

Anyone who has ever engaged in serious programming knows that software test-

ing and debugging are hard problems. As much as twenty-�ve to �fty percent of

the total system development cost and time may be spent on these activities alone

[Zel78, Boe81]. It has been suggested that the best solution to the problem of bugs
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is to ensure that they never get into the program in the �rst place. To this e�ect,

it has been argued that program veri�cation or \proving programs correct" would

eliminate the need for testing and debugging [Dij76, Hoa69, NR69]. Program veri�-

cation requires that the program behavior be expressed as assertions on its input and

output. Then one has to prove that the output assertion holds whenever the program

is executed on an input that satis�es the input assertion. While this approach works

well in theory, several problems arise in practice [DLP79]: Firstly, for many real-life

programs, characterizing their behavior mathematically may not always be feasible,

thus precluding the use of any mathematical reasoning on them. Further, construct-

ing program-proofs can be an arduous task. Proofs are generally much more di�cult

to construct and understand than the programs themselves. Thus, proofs themselves

can be bug-prone! Also, proofs are constructed with respect to program speci�cations.

But speci�cations themselves can be \buggy." As Shapiro explains in [Sha83]:

No matter what language we use to convey [the speci�cations], we are

bound to make mistakes. Not because we are sloppy and undisciplined, as

advocates of some program methodologies may say, but because of a much

more fundamental reason: we cannot know, at any �nite point in time, all

the consequences of our current assumptions. A program is a collection

of assumptions, which can be arbitrarily complex; its behavior is a conse-

quence of these assumptions; therefore we cannot, in general, anticipate

all possible behaviors of a given program. This principle manifests itself

in numerous undecidability results, that cover most interesting aspects of

program behavior for any non-trivial programming system [HR67].

More recently, in [Fet88], Fetzer goes as far as suggesting that \the success of

program veri�cation as a generally applicable and completely reliable method for

guaranteeing program performance is not even a theoretical possibility."

Structured programming is another solution often cited to be the cure for bugs.

While structured-programming certainly helps improve program comprehensibility

(and thus, reliability), it would be naive to think that it reduces the need for software
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testing and debugging. As Parnas points out in [Par85]: \Even in highly structured

systems, surprise and unreliability occur because the human mind is not able to fully

comprehend the many conditions that can arise because of the interactions of the

components."

Thus one thing is evident: there is no escape from testing and debugging of

programs if we are to have any con�dence in them. That is precisely what these

activities achieve | increase our con�dence in a program by furnishing evidence

that the program works correctly on testcases we supplied, and by extrapolation, on

many other \similar" cases, if the testcases are selected judiciously. Much research

has gone into answering the question of how to select testcases judiciously (see e.g.

[DMMP87, How87, AB82]). But, surprisingly, much less work has been done on the

equally important topic of how to localize bugs revealed by these testcases. Few tools

or techniques are available to help programmers debug their programs. The tools that

are available all basically provide breakpoints and traces as their main debugging aids

[Kat79, MB79, Dun86, Wei82]. Unfortunately, these traditional mechanisms are often

inadequate for the task of quickly isolating program faults.

In this dissertation, we present a new paradigm for debugging based on dynamic

program slicing, fault guessing, and execution backtracking techniques. The impor-

tance of this paradigm lies in that each step in the paradigm can be automated

individually thus automating the whole process and thus taking a lot of tedium out

of the debugging process. It also provides a systematic approach to debugging, and

thus attempts to introduce an element of science into it, which otherwise has largely

been viewed as an art. Our experiment with these techniques has also resulted in

development of a prototype tool that explicitly supports this paradigm.

1.1 A New Paradigm for Debugging

Given that a program has failed to produce the desired output, how does one

go about �nding where it went wrong? Other than the program itself, the only

important information usually available to the programmer is the input data and the
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erroneous output produced by the program. If the program is su�ciently simple, it

can be analyzed manually on the given input. However, for many programs, especially

lengthy ones, such analysis is much too di�cult to perform. One logical way to

proceed in such situations would be to think backwards|deduce the conditions under

which the program produces the incorrect output [Sch71, Gou75, Luk80].

Consider, for example, the program in the main window panel of Figure 1.1.1

This program computes the sum of the areas of N triangles. It reads the value of

N , followed by the lengths of the three sides of each of these N triangles. From

these values, it classi�es each triangle as an equilateral, isosceles, right, or a scalene

triangle. Then it computes the area of the triangle using an appropriate formula.

Finally, the program prints the sum of the areas. There is a bug in the displayed

program: the assignment on line 24 mistakenly computes b sqr as sides[i].b � sides[i].c

instead of sides[i].b � sides[i].b.

Suppose this program is executed for the testcase2 when N = 2 and the sides

of the two triangles are (3, 3, 3) and (6, 5, 4), respectively.3 The sum of the areas

of the two triangles for this testcase is incorrectly printed as 13:90 instead of 13:82.

How should we go about locating the bug? Looking backwards from the printf

statement on line 46, we �nd that there are several possibilities: sum is not being

updated properly; one or more of the formulas for computing the area of a triangle

are incorrect; the triangle is being classi�ed incorrectly; or the lengths of the three

sides of the triangle are not being read correctly.

The statement on line 43 adds area to sum, so the �rst thing we may want to

do is to examine the state of the program at that point. We can set a breakpoint

at that line and reexecute the program up to that statement to examine the values

of variables sum and area at that point. Suppose we �nd that the area is computed

correctly during the �rst loop iteration, but is computed incorrectly during the second.

1The �gures are X Window System window dumps of our prototype debugging tool, Spyder, in
operation.

2A testcase consists of a speci�c set of runtime input values.
3We will refer to this testcase as testcase #1 in later chapters.
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Figure 1.1 Spyder screen with a sample C source program
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To discover why, we may decide to examine the value of class for the second triangle

to determine which formula for computing its area was used. If we �nd class to be

incorrect, we can examine the values of the three sides of the triangle to check if they

are being read correctly. If so, we should examine the statements on lines 23{32 that

determine the class of the triangle.

There are three distinct tasks we repeatedly performed in this analysis:

1. Determine which statements in the code had an inuence on the value of a given

variable observed at a given location.

2. Select one of these statements at which to examine the program state.

3. Recreate the program state at the selected statement to examine speci�c vari-

ables.

In this example, we performed the �rst two tasks ourselves by examining the

code, without any assistance from the debugger. For the third task we had to set a

breakpoint and reexecute the code until the control stopped at that breakpoint. Our

debugging job would become much easier if the debugger provided direct assistance

in performing all three of these tasks. With explicit support for these activities, we

will be able to pursue software debugging in a systematic fashion. Our prototype

debugger, Spyder, provides the user with exactly this assistance. The �rst task|

given a variable and a program location, determining which statements in the program

a�ect the value of that variable at that location when the program is executed for a

given testcase|is referred to as Dynamic Program Slicing. Spyder can �nd dynamic

slices for us automatically. It also provides mechanisms to help programmers select

appropriate statements for further examination. It can also restore the program state

at any desired location by backtracking the program execution without having to

reexecute the program from the beginning.

Figure 1.2 depicts the proposed systematic debugging paradigm. The �rst step

upon detection of a program failure is to translate the external symptoms of the

program failure into the corresponding internal symptoms in terms of data or control
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problems in the program. Then one of the internal symptoms is selected as the slicing

criterion and the corresponding dynamic slice is obtained. After examining the slice,

a statement is selected at which to examine the program state, and the program state

is restored to that when control last reached that statement. Examining values of

some variables in the restored state may reveal the fault, otherwise the user may

choose to further examine the restored state, or guess a new fault, or select a new

slicing criterion, and repeat the cycle until the fault is localized.

1.2 Scope and Goals of this Research

In this dissertation we are primarily concerned with how to automate each step in

the debugging paradigm outlined above for programs written in sequential and pro-

cedural programming languages such as Pascal and C. Issues concerning debugging of

parallel or distributed programs, programs written in functional or logic programming

languages, or debugging optimized programs, are not addressed.

An underlying goal of this research has been not only to enhance the state-of-

the-art in software debugging but also to enhance its state-of-the-practice. Thus

an important focus of this research has also been to develop techniques that are

practicable|techniques that are not only sound in theory but also practical to imple-

ment. An equally important goal has been to develop techniques that can be applied

to programs written in realistic procedural languages such as Pascal and C. For this

reason, we focussed on techniques that would work for programs that involved arrays,

pointers, records, unions, procedures, etc., for it is hard to imagine real programs writ-

ten in a procedural language that do not use these language features. To show that

the techniques we proposed are indeed useful as well as practical, we also wanted to

implemented a prototype tool that explicitly supported them. Our goal was not to

build a production quality tool but to demonstrate the usefulness and feasibility of

automating signi�cant steps in the debugging paradigm proposed.
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Failure DetectedFailure Detected
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Figure 1.2 A Debugging Paradigm
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1.3 Contributions of this Research

Following are the main contributions of this research:

� Slicing{Guessing{Backtracking Paradigm: We observed that the think{hypothesize{

verify cycle that programmers follow during debugging can be translated into

a dynamic slicing{fault guessing{execution backtracking paradigm. The signif-

icance of this observation, as mentioned earlier, lies in the fact that each step

in the paradigm can be automated, thus making it possible to largely automate

the whole debugging process.

� Dynamic Program Slicing: We developed techniques to perform dynamic pro-

gram slicing of programs that may involve unconstrained pointers, arrays, records,

unions, and procedures. We designed a number of algorithms spanning a range

of time{space{accuracy trade-o�s. We also proposed a new space-e�cient data-

structure called the reduced-dynamic-dependence-graph used in obtaining dy-

namic program slices.

� Data and Control Slices: Oftentimes observing complete program slices may be

overwhelming, so we introduced the notions of data- and control-slices that are

smaller than program slices and much easier to follow.

� Combining Dynamic Slices: A dynamic slice is obtained with respect to four

arguments: a program, a variable, a location, and a testcase. We described

several ways in which we can �x any three of these arguments and vary the

remaining argument to generate multiple related dynamic slices, which may then

be combined in several ways to provide further fault localization information.

� Structured Backtracking: We also proposed a new approach to execution back-

tracking called structured-backtracking that is both space- and time-e�cient

compared to the execution history approach.
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� Spyder: A Prototype Implementation: We also implemented a prototype de-

bugging tool, Spyder, that explicitly supports the slice-guess-backtrack paradigm.

The tool works for the C programming language including pointers, arrays,

structures, and procedures. It is interactive, easy to use, and has an X Window

System based user interface.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows: In the next chapter we present

a brief survey of the state-of-the-art-and-practice in software debugging and describe

how our work relates to that of others. The three steps in the debugging paradigm

mentioned above are discussed in Chapters 3{7. Chapter 3 discusses several ap-

proaches to obtaining dynamic slices for the simple case when the program involves

only scalar variables. Chapter 4 extends this discussion to handling composite and

pointer variables. In Chapter 5, we introduce the notions of data and control slices.

Chapter 6 examines how multiple dynamic slices may be usefully combined to provide

further fault localization information. In Chapter 7, we discuss two approaches to

implementing execution backtracking. Then in Chapter 8, we describe our prototype

debugging tool, Spyder, that explicitly supports the debugging paradigm outlined

above. Finally, Chapter 9 concludes the dissertation with a discussion of lessons

learned from this research and outlining some ideas on future research.
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2. DEBUGGING: STATE-OF-THE-ART-AND-PRACTICE

If the progress made in a �eld is measured by the rate at which new ideas are

developed, perfected, and absorbed in the society for wide spread use, then, quite

disappointingly, the area of software debugging has not made much progress. Essen-

tially the same techniques developed thirty years ago for debugging assembly lan-

guage programs are being used today. That is quite surprising given the very high

cost (in terms of programmer time) associated with debugging. The basic notion of

user-controlled breakpoints, upon which almost all commonly used debuggers today

are based, was introduced by assembly language debuggers FLIT [SD60] and DDT

[SW65] developed in the late 50's. We have not come much farther from there. In

this section we present a brief survey of the state-of-the-art-and-practice in software

debugging and outline how our work relates to it.

2.1 Traditional Debugging

Though the use of core-images to analyze faulty program behavior has somewhat

faded away, use of print statements still seems to be the most prevalent debugging

technique. Print statements are placed at \strategic" locations in the program, to

display intermediate values of important variables and to indicate the ow of control.

In this way users get visual feedback about the internal workings of the program

that helps them localize the fault. This technique is simple and e�ective in most

cases. Besides, it comes free with the language. It becomes tedious to use, however,

as the program has to be recompiled every time new print statements are included.

Further, these print statements usually need to be deleted (or commented out) from

the program once the bug has been detected and �xed.
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Interactive symbolic debuggers allow runtime control over display of debugging

information without requiring the user to modify the source code [Bea83, Dun86,

Kat79]. They provide the capability of setting breakpoints in the program as their

basic debugging facility. The user can specify one or more statements as breakpoints,

so whenever the control reaches any of these locations the program execution is sus-

pended and control is passed to the debugger. The user can then inspect the program

state by displaying current values of variables. Most debuggers also allow the control

stack to be displayed. Many also allow program state to be explicitly modi�ed by the

user during execution. After examining (and possibly changing) values, the user can

set new breakpoints and continue execution.

Tracing is another common facility provided by most symbolic debuggers. The

user can specify tracepoints and the corresponding trace information to be displayed

at these points. Trace information may include a simple message about control reach-

ing the tracepoint, or it may include values of certain variables at these points. When-

ever control reaches a tracepoint, the corresponding trace information is displayed and

the execution is continued. Note that a tracepoint is a special case of a breakpoint

where the speci�ed trace information is displayed and the execution continued auto-

matically.

Some symbolic debuggers also allow certain boolean conditions to be associated

with tracepoints. Whenever control reaches such a tracepoint the corresponding con-

dition is evaluated. If the condition is true the speci�ed trace information is displayed

and the execution continued, otherwise the execution is resumed without displaying

anything. Similarly, conditions can also be associated with breakpoints in many de-

buggers.

Another common facility provided bymost interactive debuggers is single-stepping.

The program is executed one statement at a time and control returned to the debugger

after every statement. Note that single-stepping is also a special case of breakpoints

where breakpoints are set after consecutive source statements.



13

Most symbolic debuggers provide limited control over what actions can be per-

formed when a breakpoint is reached. Dalek [OCHW91], a symbolic debugger built

on top of the Gnu Debugger Gdb, provides a full programming language including

conditionals, loops, blocks, procedures, functions, and variables, to program higher-

level actions to be performed at breakpoints. It also provides support for events to

form high level abstractions during program executions.

Interpreted environments, where the program source is interpreted instead of be-

ing compiled, provide a much greater degree of exibility for debugging purposes.

Integrated Programming Environments such as INTERLISP [Tei78], The Program-

mer's Assistant [Tei72], The Cornell Program Synthesizer [TR81], and Saber C pro-

vide integrated support for program editing, execution, and debugging. If an error

is encountered during the program execution, it is possible to correct the erroneous

function immediately and continue execution from there on. The usual debugging

cycle for compiled programs | edit, compile, execute, and debug | is considerably

shortened in such systems.

Window- and mouse-based symbolic debuggers using bitmapped displays like Dbx-

tool [AM86], Pi [Car83, Car86], and Saber C bring about a signi�cant improvement

over traditional command-driven debuggers from the user-interface perspective. With

such debuggers instead of having to type the debugging commands the user can simply

select them using the mouse and button-clicks. Source code is simultaneously dis-

played in one or more windows, and the current control location is highlighted, e.g.,

with an arrow pointing at the next statement to be executed. In Dbxtool [AM86] and

Saber C, the user can select any variables or expressions in the source-window with

the help of the mouse and request their values to be displayed. Pi [Car86] provides

context dependent pop-up menus of variable names, visible in the current scope, for

selecting and displaying their values.
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2.2 Pictorial Debugging

Some debuggers like VIPS [ISO87, SI91] and PROVIDE [Moh88] go a step further

and attempt to present both the control-ow and the data-structures pictorially to

the user. The graphical representations on the screen are updated dynamically as the

program execution proceeds. For example, a stack of integers may be represented by

a sequence of rectangles containing numbers and the stack-top may be represented by

an arrow pointing at the top rectangle in the stack. The arrow moves up or down (and

new rectangles added or deleted) as numbers are pushed on or popped o� the stack.

Such debuggers are still in their infancy, and presently are able to handle only small

programs with simple data-structures. Research in the area of algorithm animation

[BS85, Bro88, LD85] has much to o�er in this respect.

2.3 Debugging with Speci�cations

A debugging technique called \two-dimensional pinpointing" [LST91] aims at lo-

cating inconsistencies in software that is structured in levels. It requires that formal

speci�cations de�ning the program's desired behavior at each structural level be pro-

vided. The technique works by �rst checking the actual execution behavior of the

program under a test sequence against the top level speci�cations. If an inconsistency

is observed, new top level speci�cations may be added and the process repeated to

further narrow down the search to a speci�c program unit. When no new speci�ca-

tions may be added, the same process is repeated at the next lower level but only

for the program unit whose speci�cation was violated at the top level. This process

continues at successive lower levels until a fault is detected.

2.4 Algorithmic Debugging

Shapiro's \Divide & Query" interactive fault-diagnosis approach [Sha83] uses a

kind of binary search on the computation tree of the program to localize bugs. It

relies upon the user to verify the correctness of intermediate function calls based on
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their input and output values. It is based on the premise that if the computation

performed by a subprogram, proc, is correct then computations performed by each

of the subprograms invoked by proc are also correct. On the other hand, if the

computation performed by proc is incorrect, then at least one of the subprograms it

invokes is incorrect. The diagnosis algorithm works by �rst selecting a node in the

computation tree that divides the tree into roughly two equal parts. Then the user

is presented with the input and output values of the function call and asked to check

if the function computation is correct. If it is incorrect, the algorithm is recursively

applied to the subtree rooted at that node, otherwise that subtree is removed from

further consideration and the same algorithm is applied to the rest of the tree. This

cycle is repeated until the fault is located.

The above approach works particularly well for side-e�ect free languages like the

logic programming language Prolog. But it can also be applied to imperative lan-

guages such as Pascal at the procedure-call level [SKF90]. Using this approach the

fault can be localized to a procedure that contains the fault. Then other debugging

techniques may be used to further localize the bug within that procedure. Korel

and Laski's STAD (A System for Testing and Debugging) provides a similar fault-

diagnosis approach at the intra-procedure level for a subset of Pascal [KL91, KL88b],

except that instead of asking users to verify the input-output correctness of proce-

dure calls, it asks them questions like if a given assignment is the correct reaching

de�nition of a variable at a given location, or if the control has correctly reached a

given location, etc. Their approach is targeted to �nd simple operator and operand

faults in the program.

2.5 Knowledge-Based Debugging

Attempts have also been made to apply arti�cial intelligence techniques to the

debugging problem. In particular, many experimental systems have been developed

using the knowledge-based approach (see, e.g., [Sev87, DE88]). However, all these
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systems can presently handle only a restricted class of bugs in small programs. We

discuss a few representative knowledge-based debugging systems below.

PUDSY (Program Understanding and Debugging System) [Luk80] maintains a

knowledge-base of simple programming schemas for solving simple programming tasks,

e.g., swapping two values, �nding the maximum element of an array, etc. For each

such schema an assertion describing the function performed by the schema is also

stored. PUDSY takes a program and an assertion describing its speci�cations, and

searches for code patterns in the program, matching those stored in the knowledge-

base. Then it constructs an assertion describing the program behavior by combining

the assertions fetched from the knowledge-base. The constructed assertion is matched

with the given assertion, and if the two di�er the process is traced back to suggest

possible bugs.

Proust [JS85] uses the opposite approach. It also takes a program and a formal

speci�cation of the program as inputs, but it tries to \synthesize" a program from the

speci�cations, while trying to match the synthesized program with the given program.

The synthesis is performed with the help of a knowledge-base of \programming plans"

for solving simple \goals". If the synthesis fails to produce a program matching the

given program, the discrepancies are analyzed, and possible faults are suggested.

The Programmer's Apprentice [RW88] also uses a similar approach. Given a

\plan" for the intended program, it infers the existence of bugs in the program by

performing a kind of pattern-matching between the plan and the program itself.

Note that all three systems above perform static program analysis irrespective of any

runtime inputs.

Falosy [STJ83], on the other hand, expects both the actual and the expected

output of the program on the failed testcase to be supplied. It compares the two

outputs and tries to infer the fault from the di�erences between the two, with the

help of a knowledge-base of error-cause heuristics. The knowledge-base stores a list of

fault-symptoms (output discrepancies), and a list of possible faults for each symptom.

Faults are described in terms of prototype (faulty) code schemas. The system searches
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for faults in the program corresponding to the output discrepancies observed. It

performs pattern-matching over code-schemas, as in Proust, to locate the faults.

2.6 Program Slicing

The static slicing approach to program debugging was proposed by Weiser [Wei84,

Wei82]. A program slice is helpful in debugging because it presents the user with only

that subset of the program that may have some e�ect on the value of an erroneous

variable. It expedites debugging by narrowing the user's attention to only the code

segments that are relevant to the fault. As slicing constitutes a major component of

our debugging paradigm, it is addressed again in more detail in Chapter 3.

Weiser's algorithm to compute slices was based on iterative solutions of data-

ow equations. Ottenstein and Ottenstein presented an algorithm in terms of graph

reachability in the program dependence graph, but they only considered the intra-

procedural case [OO84] (we describe this algorithm in Chapter 3 in the context

of static slicing). Horwitz, Reps, and Binkley extended the program dependence

graph representation to what they call the \system dependence graph" to �nd inter-

procedural static slices under the same graph-reachability framework [HRB90]. Berg-

eretti and Carr�e also de�ned information-ow relations somewhat similar to data- and

control dependence relations, that can be used to obtain static program slices (referred

to as \partial statements" by them) [BC85]. Uses of program slicing have also been

suggested in many other applications, e.g., program veri�cation, testing, maintenance,

automatic parallelization of program execution, automatic integration of program ver-

sions, software metrics, etc. (see, e.g., [Wei84, BC85, HPR89b, GL89, OT89, LOS86]).

When a program slice is de�ned with respect to a variable occurrence, it is as-

sumed that control does eventually reach the corresponding program location. The

issue of non-termination of program execution is not addressed under this de�nition.

Podgurski and Clark have extended the regular notion of control dependence (which

they refer to as \strong control dependence") to \weak control dependence" that in-

cludes inter-statement dependencies involving program non-termination [PC90]. To
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detect program faults other than in�nite loops, however, strong control dependence

gives much �ner slices compared to weak control dependence. The de�nition of data-

dependence remains the same in both cases.

Korel and Laski extended Weiser's static slicing algorithms for the dynamic case

[KL90]. Their de�nition of a dynamic slice is di�erent from ours (see Chapter 3).

They require that if any one occurrence of a statement in the execution history is

included in the slice then all other occurrences of that statement are automatically

included in the slice, even when the value of the variable in question at the given

location is una�ected by those other occurrences. We examine the consequences of

this requirement in Chapter 3 (Section 3.4.4.1).

Several people have also investigated the semantic basis of program slicing [Ven91,

RY88, CF89, Sel89].

2.7 Program Dicing

Slicing uses the information that the value of a variable is incorrect to narrow

down the search for the fault. It does not, however, use the information that values

of many other variables may be correct. Lyle and Weiser proposed the notion of

program dicing [LW87] which attempts to further narrow down the search for the

fault using information gained during testing about which variables in the program are

observed to have incorrect values and which have correct values when the program is

executed on various testcases. The search for the fault is narrowed down by removing

statements that belong to slices with respect to correct variables from the slice with

respect to an incorrect variable. We discuss this approach again in Chapter 6.

2.8 Anomaly Detection

In the static anomaly detection approach, a program is analyzed using data-ow

analysis to detect certain conditions in the program that are generally indicative of

errors or ine�ciencies [OF76, FO76]. For example, data-ow analysis can detect if an
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assignment statement references a variable before that variable is assigned a value,

or if there are two assignments, A1 and A2, such that both assign a value to the

same variable, var , and control always ows from A1 to A2 without encountering any

reference to var .

As it is not always possible with static analysis to determine if a given path in the

program is feasible, the above approach may also �nd \anomalies" in the program

that cannot arise during execution. Dynamic anomaly detection techniques, on the

other hand, detect anomalous conditions that arise during actual program executions

[Hua79, CC87a]. These techniques instrument the program with extra code that

checks for any anomalous behavior, such as the conditions mentioned above, to occur

during the program execution. The anomalies detected this way are almost always

indicative of errors or ine�cient program behavior. At the same time, as program

instrumentation can only analyze actual program executions it does not guarantee

detection of all possible anomalies in the program.

2.9 Execution Backtracking

Many debugging systems in the past have also supported execution backtracking

facilities. Exdams, an interactive debugging tool for Fortran developed in the late

1960s, provided an execution replay facility [Bal69]. In that system, �rst the complete

history tape of the program being debugged for a testcase was saved. Then the

program was \executed" through a \playback" of this tape. At any point, the program

execution could be backtracked to an earlier location using the information saved on

the history tape. However, if a program was stopped at some location it was not

possible to change values of variables before executing forward again because Exdams

simply replayed the program behavior recorded earlier.

Miller and Choi's Ppd [MC88] also performs ow-back analysis like Exdams

but it uses a notion of incremental tracing where portions of the program state are
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checkpointed at the start and the end of segments of program-code called emulation-

blocks. Later these emulation blocks may be reexecuted to generate the corresponding

segments of the execution history.

Zelkowitz incorporated a backtracking facility within the programming language

PL/1 by adding a Retrace statement to the language [Zel71]. With this statement,

execution could be backtracked over a desired number of statements, up to a statement

with a given label, or until the program state matched a certain condition. This

incorporation of backtracking facilities within a programming language can be useful

in programming applications where several alternate paths should be tried to reach a

goal. Such problems frequently arise in arti�cial intelligence applications, for instance.

However, because the user must program the Retrace statements into the code, this

approach does not provide an interactive control over backtracking while debugging.

Interlisp [Tei78] and the Cornell Program Synthesizer [TR81] also provide facilities

to undo operations. All these systems maintain a �xed-length history list of side-

e�ects caused by operations. As new events occur, the existing events on the list are

aged, with oldest events \forgotten." Thus returning to points arbitrarily far back in

the execution may not be possible. In Chapter 7 we present a structured backtracking

approach to execution backtracking which attempts to overcome this problem.

Igor [FB88] and Cope [ACS84] also provide execution backtracking by perform-

ing periodic checkpointing of memory pages or �le blocks modi�ed during program

execution. This approach, while suitable for undoing e�ects of whole programs, may

be ine�cient for performing statement-level backtracking.

2.10 Summary

The gap between state-of-the-art and state-of-the-practice in software debugging

is a very wide one. Most commonly available debuggers today restrict themselves to

providing facilities described in Section 2.1 (Traditional Debugging). They basically

provide some variants of the breakpoint mechanism coupled with a display facility.

Their use generally results in a substantial saving in debugging time as compared to
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deciphering core-images or using print statements. When debugging large programs,

however, decisions about where to set a breakpoint, or to determine the right balance

between trace information and trace frequency, etc., may not be easy ones to make.

In this dissertation, we describe how some of the tasks commonly performed during

debugging may be automated to make software debugging less arduous.

As the problem of debugging parallel, logic, functional, or optimized programs is

not in the scope of this dissertation, we have not included related work in these areas

here, though research is also being carried out in these areas (see, e.g., [MH89, AS89,

Hen82, Zel84, Cou88]).



22

3. SIMPLE DYNAMIC SLICING

Often during debugging, value of a variable, var , at a program statement, S, is

observed to be incorrect. The program slice with respect to var at S gives the set of

program statements that directly or indirectly a�ect the value of var as observed at

S [Wei82]. But this notion of a program slice does not make any use of the particular

inputs that revealed the error. It is concerned with �nding all statements that could

inuence the value of the variable occurrence for any inputs, not all statements that

did a�ect its value for the current inputs. Unfortunately, the size of a slice so de�ned

may approach that of the original program, and the usefulness of a slice in debugging

tends to diminish as the size of the slice increases. Therefore, here we examine a

narrower notion of \slice," consisting only of statements that inuence the value

of a variable occurrence for speci�c program inputs.1 This problem is referred to

as Dynamic Program Slicing to distinguish it from the original problem of Static

Program Slicing.

Conceptually a program may be thought of as a collection of threads, each com-

puting a value of a program variable. Several threads may compute values of the

same variable. Portions of these threads may overlap one-another. The more com-

plex the control structure of the program, the more complex the intermingling of these

threads. Static program slicing isolates all possible threads computing a particular

variable. Dynamic slicing, on the other hand, isolates the unique thread computing

the variable for the given inputs.

During debugging programmers generally analyze the program behavior under the

testcase that revealed the error, not under any generic testcase. The concrete testcase

1A slice with respect to a set of variables may be obtained by taking the union of slices with
respect to individual variables in the set.
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that exercised the bug helps them focus their attention to the particular \cross-

section" of the program that contains the bug.2 Consider the following scenario: A

friend while using a program discovers an error. He �nds that the value of a variable

printed by a statement in the program is incorrect. After spending some time trying

to �nd the cause without luck, he comes to you for help. Probably the �rst thing you

would demand from him is the testcase that revealed the bug. If he only gave you

the print-statement and the variable with the incorrect value, and didn't disclose the

particular inputs that triggered the error, your debugging task would clearly be more

di�cult. This suggests that while debugging a program we probably try to �nd the

dynamic slice of the program in our minds. This simple observation also highlights

the value of the automatically determining dynamic program slices. The distinction

between static and dynamic slicing and the advantages of the latter over the former

are further discussed in Section 3.4.

In this chapter we examine several approaches to compute dynamic program slices.

We �rst discuss a program representation called the Program Dependence Graph used

in computing static program slices, and present the static slicing algorithm. Then

we present two simple extensions to the static slicing algorithm to compute dynamic

slices. But these algorithms compute overlarge slices|they may include extra state-

ments in the dynamic slice that shouldn't be there. We then present a data-structure

called the Dynamic Dependence Graph and an algorithm that uses it to compute ac-

curate dynamic slices. Size of a Dynamic Dependence Graph depends on the length

of the program execution, and thus, in general, it is unbounded; so we introduce a

mechanism to construct what we call a Reduced Dynamic Dependence Graph which

requires limited space, proportional to the number of distinct dynamic slices that arise

during the current program execution, not to the length of the execution. Finally, we

present an e�cient way to construct a Reduced Dynamic Dependence Graph. The

2When we say the slice contains the bug, we do not necessarily mean that the bug is textually
contained in the slice; the bug could correspond to the absence of something from the slice|amissing
if statement, a statement outside the slice that should have been inside it, etc. This is discussed in
Chapter 5.
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four approaches to dynamic slicing presented span a range of solutions with varying

space-time-accuracy trade-o�s.

For simplicity in exposition, we restrict our attention to the following language

with if-then-else, while-do, composition, assignment, read, and write statements.

Program �! Declarations begin Stmt list end.

Stmt list �! Stmt ; Stmt list j �

Stmt �! Simple stmt j If stmt j While stmt

Simple stmt �! Assgn stmt j Read stmt j Write stmt

Assgn stmt �! Var := Exp

Read stmt �! read(Var)

Write stmt �! write(Var)

If stmt �! if (Predicate exp) then Stmt list else Stmt list end if

While stmt �! while (Predicate exp) do Stmt list end while

Predicate exp �! Exp

Exp �! Exp Binary op Exp j Unary op Exp j Var j Const

Our discussion here is easily extensible to other statement types like do-while,

for, case, etc., and to expressions with side-e�ects (e.g., expressions with pre- and

post-increment or decrement operators as in C). Techniques for handling pointers,

arrays, structures, and procedures are discussed in the next chapter.

3.1 Notation

In the following sections we use a let -in construct (adapted from a similar con-

struct in the programming language ML [MTH90]). Consider the following generic

use of let :

let <declarations> in <expression>

Here, <declarations> consists of a sequence of name bindings that may be used

inside <expression>. The scope of these bindings is limited to <expression>. The
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result of evaluating <expression> is returned as the value of the let construct. For

example, the following expression evaluates to 5.

let a = 2, b = 3 in a+ b

Names may also be bound using \pattern matching" between two sides of the symbol

=. For example, if the complex number X + Y i is represented by the tuple (X;Y ),

then the sum of two complex numbers complex1 and complex2 may be de�ned as

follows:

sum(complex1, complex2) =

let complex1 = (real1, imaginary1), complex2 = (real2, imaginary2)

in (real1 + real2, imaginary1 + imaginary2)

In the above expression, real1, imaginary1, real2, and imaginary2 were all de�ned

using pattern matching.

We also use
S
notation to denote set unions. For example, if S= fx1, x2, : : : ,

xng, then we have:

S
x2S f(x) � f(x1) [ f(x2) [ : : : [ f(xn)

S
's may also be composed. For example, if S1= fx1, x2g and S2= fy1, y2g, then

we have:

S
x2S1

S
y2S2

g(x, y) � g(x1, y1) [ g(x1, y2) [ g(x2, y1) [ g(x2, y2)

Or, we write the same thing as:

S
x2S1
y2S2

g(x, y) � g(x1, y1) [ g(x1, y2) [ g(x2, y1) [ g(x2, y2)

3.2 Preliminary De�nitions

3.2.1 Flow Graph

Flow-graph Flow of a program P is a four-tuple (V , A, En, Ex) where V is the

set of vertices corresponding to simple statements and predicate expressions (that
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correspond to non-terminals Simple stmt and Predicate exp in the grammar above),3

A is the set of directed edges between vertices, and En and Ex are the distinguished

entry and exit nodes in V respectively. If there is an arc from node vi to node vj (i.e.,

(vi,vj)2A)), then control can pass from node vi to node vj during program execution.

We de�ne Flow in a syntax-directed manner as follows:

Flow(Program) = Flow(Stmt list)

Flow(S) = (fSg, �, S, S), if S is a simple statement

Flow(S1; S2) =

let Flow(S1) = (V1, A1, En1, Ex1),

Flow(S2) = (V2, A2, En2, Ex2),

V 0 = V1[V2,

A0 = A1[A2[f(Ex1,En2)g

in (V 0, A0, En1, Ex2)

Flow(if P then S1 else S2 end if) =

let Flow(S1) = (V1, A1, En1, Ex1),

Flow(S2) = (V2, A2, En2, Ex2),

Ex be a new dummy node,

V 0 = V1[V2[fP ,Exg,

A0 = A1[A2[f(P ,En1), (P ,En2), (Ex1,Ex), (Ex2,Ex)g

in (V 0, A0, P , Ex)

Flow(while P do S end while) =

let Flow(S) = (V , A, En, Ex),

V 0 = V [fPg,

3In program optimization applications vertices of a ow-graph correspond to basic-blocks in the
program. But for our purposes, it is more convenient to associate vertices with simple-statements
and predicates in the program.
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A0 = A[f(P ,En), (Ex,P )g

in (V 0, A0, P , P )

Example: Consider the program in Figure 3.1 (we will refer to this program several

times later in the chapter). Symbols fi and gi in the assignment statements are

used here to denote some unspeci�ed side-e�ect-free functions with which we are not

presently concerned; only the names of variables used in the computation are relevant.

Labels S1, S2, etc. are included only for reference; they are not part of the program.

Figure 3.2 shows the ow-graph for this program (ignore the node annotations U, D

and R for the moment). Node 20 and 50 are the dummy exit nodes for if statements

2 and 5 respectively. 2

3.2.2 Use and Def Sets

Each vertex in the ow-graph has a use and a def set associated with it. The Use

set of a vertex consists of all variables that are referenced during the computation

associated with the vertex, and the Def set consists of the variable computed at

the vertex, if any. use and def are also de�ned in a syntax-directed manner for

Simple stmt and Predicate exp syntactic categories:

use(Var := Exp) = use(Exp)

def (Var := Exp) = fVarg

use(read(Var)) = �

def (read(Var)) = fVarg

use(write(Var)) = fVarg

def (write(Var)) = �

use(Predicate exp) = use(Exp)

def (Predicate exp) = �



28

begin

S1: read(X);

S2: if (X < 0)

then

S3: Y := f1(X);

S4: Z := g1(X);

else

S5: if (X = 0)

then

S6: Y := f2(X);

S7: Z := g2(X);

else

S8: Y := f3(X);

S9: Z := g3(X);

end if;

end if;

S10: write(Y);

S11: write(Z);

end.

Figure 3.1 Example Program 1
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D = {}
U = {Z}

D = {}
U = {Y}

D = {Z}
U = {X}

D = {Y}
U = {X}

D = {Y}
U = {X}

D = {}
U = {X}

U = {}

R(X) = {1}

R(X) = {1}

R(X) = {1}

R(X) = {1}R(X) = {1}

R(X) = {1}

R(X) = {1}R(X) = {1}

U = {X}
D = {Z}

U = {X}
D = {Y}

1

2 3 4

D = {X}

U = {X}
D = {}

U = {X}
D = {Z}

5 6 7

D = {}
U = {}

5’8 9

R(Y) = {3,6,8}
10

11

2’
U = {}
D = {}

R(Z) = {4,7,9}

Figure 3.2 Flow Graph with use(U), def (D) and StaticReachingDefns(R) sets for the
program in Figure 3.1
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use(Exp1 Binary op Exp2) = use(Exp1) [ use(Exp2)

use(Unary op Exp) = use(Exp)

use(Var) = fVarg

use(Const) = �

use and def sets of dummy vertices in the ow-graph (introduced as exit nodes

for if-then-else statements) are null sets.

Example: Consider the program in Figure 3.1. Figure 3.2 shows the use and def sets,

denoted by U and D respectively, associated with all nodes in the ow-graph (ignore

node annotations labeled R for the moment). Statement 6, for example, de�nes

variable Y and uses variable X in computing the value assigned to Y. So we have U

= fXg and D = fYg for node 6. 2

3.2.3 Reaching De�nitions

Given a ow-graph, F , a node n in F , and a variable, var , we de�ne StaticReach-

ingDefns(var , n, F), the set of all reaching de�nitions of variable var at node n in

ow-graph F , to be the set of all those nodes in F at which variable var is assigned

a value and control can ow from that node to node n without encountering any

rede�nitions of var . More precisely:

StaticReachingDefns(var , n, F) =

let F = (V , A, En, Ex)

in
S
(x,n)2A (if var2def (x)

then fxg

else StaticReachingDefns(var , x, (V , A�f(x,n)g, En, Ex)))

Example: Figure 3.2 shows the StaticReachingDefns sets, denoted by R, for all nodes

with nonempty use sets. For example, consider node 10: It has one variable Y in its

use set. There are three de�nitions of Y, at nodes 3, 6 and 8, and all three de�nitions
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can reach node 10, via paths 3 4 2' 10, 6 7 5' 2' 10, and 8 9 5' 2' 10 respectively,

without encountering any rede�nitions of Y along these paths. So we have R(Y) =

f3,6,8g at node 10. 2

3.2.4 Data Dependence

A Data Dependence Graph, DataDep, of a program, P , is a pair (V , D), where

V is the same set of vertices as in ow-graph of P , and D is the set of edges that

reect data-dependencies between vertices in V . If there is an edge from vertex vi to

vertex vj, it means that the computation performed at vertex vi directly depends on

the value computed at vertex vj.4 Or, more precisely:

DataDep(P ) =

let Flow(P ) = (V , A, En, Ex),

D =
S

n2V
var2use(n)
x2StaticReachingDefns(var , n, Flow(P ))

f(n,x)g

in (V , D)

Example: Consider the program in Figure 3.1 whose ow-graph is shown in Figure 3.2.

Figure 3.3 shows the corresponding Data Dependence Graph. Consider node 10, for

example: As shown in Figure 3.2, there is only one variable Y in its use set, and

StaticReachingDefns set for Y at node 10 is f3, 6, 8g. So, there are three data

dependence edges from node 10 to nodes 3, 6, and 8, respectively, in Figure 3.3. 2

3.2.5 Control Dependence

A Control Dependence Graph, ControlDep, of a program, P , is a three-tuple (V ,

C, In), where V is the same set of vertices as in ow-graph of P , C is the set of edges

that reect control dependencies between vertices in V [fIng, and In is a dummy

initial node that is not in V (unlike a ow-graph where En and Ex both belong to

4At other places in the literature, particularly that related to vectorizing compilers, e.g.,
[KKL+81, FOW87], direction of edges in the Data Dependence Graphs is reversed, but for the
purposes of program slicing our de�nition is more suitable, as will become apparent later.
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2’

11

10

98 5’

5 6 7

432

1

Figure 3.3 Data Dependence Graph for the ow-graph in Figure 3.2
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V ). If there is an edge from vi to vj in ControlDep, it means the execution of node

vi directly depends on the boolean value of the predicate at node vj. ControlDep is

de�ned in a syntax-directed manner as follows:

ControlDep(Program) = ControlDep(Stmt list)

ControlDep(S) = (fSg, f(S,In)g, In), if S is a simple statement

ControlDep(S1; S2) =

let ControlDep(S1) = (V1, C1, In),

ControlDep(S2) = (V2, C2, In)

in (V1[V2, C1[C2, In)

ControlDep(if P then S1 else S2 end if) =

let ControlDep(S1) = (V1, C1, In),

ControlDep(S2) = (V2, C2, In),

V 0 = V1[V2[fPg,

C 0 = (
S
(x,y)2C1[C2

if y=In then f(x,P )g else f(x,y)g) [ f(P ,In)g

in (V 0, C 0, In)

ControlDep(while P do S end while) =

let ControlDep(S) = (V , C, In),

V 0 = V [fPg,

C 0 =
S
(x,y)2C (if y=In then f(x,P )g else f(x,y)g) [ f(P ,In)g

in (V 0, C 0, In)

Example: Figure 3.4 shows the Control Dependence Graph for the program in Fig-

ure 3.1. For example, statements 6, 7, 8 and 9 are immediately nested under the

predicate at statement 5, so there are control dependence edges from nodes 6, 7, 8

and 9 to node 5. Statement 5 itself is immediately nested under predicate at state-

ment 2, so there is an edge from node 5 to node 2 in the Control Dependence Graph.

2
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5 6 7
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1

Figure 3.4 Control Dependence Graph of the Program in Figure 3.1
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Note that every vertex v in V has at most one outgoing control dependence edge.

De�nition: ControlPred(v) denotes the predicate statement upon which node v is

control dependent. More precisely, for a program P if ControlDep(P ) = (V , C, In),

then

ControlPred(v) =
S
(v, x) 2C fxg

Example: From the Control Dependence Graph of Figure 3.4, we get ControlPred(10)

= � whereas ControlPred(9) = f5g. 2

Notice that Control Dependence Graph for our language corresponds exactly to

the nesting structure of statements in the program.

3.2.6 Program Dependence Graph

A Program Dependence Graph, ProgramDep, of a program, P , is obtained by

merging the Data and Control Dependence Graphs of P .5 Or,

ProgramDep(P ) =

let DataDep(P ) = (V , D),

ControlDep(P ) = (V , C, In)

in (V , D[C)

Example: Figure 3.5 shows the Program Dependence Graph of the program in Fig-

ure 3.1. It is the union of the Data Dependence Graph shown in Figure 3.3 and

the Control Dependence Graph shown in Figure 3.4. Dummy nodes 20 and 50 have

been omitted from the Program Dependence Graph as they do not have any data or

control dependence edges associated with them; their only purpose was in the syntax

directed construction of the program ow-graph. 2

5In other applications like vectorizing compilers, a Data Dependence Graph may include other
types of dependence edges besides data and control dependence, e.g., anti-dependence, output-
dependence etc., but for the purposes of program slicing, the former two su�ce.
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1

Figure 3.5 Program Dependence Graph of the Program in Figure 3.1
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3.2.7 Reachable Nodes

Given a graph G = (V , A) and a vertex v in V , where V is the set of vertices and

A is the set of edges in G, ReachableNodes(v, G) is the set of all those vertices that

can be reached from v by following one or more edges in G. Equivalently,

ReachableNodes(v, G) =

let G = (V , A)

in fvg [
S
(v,x)2A ReachableNodes(x, (V , A�f(v,x)g))

Example: Consider the node 10 in the Program Dependence Graph of Figure 3.5.

Traversing the graph starting at node 10 and �nding all nodes that can be reached

from there, we get ReachableNodes set for node 10 to be f1, 2, 3, 5, 6, 8, 10g. 2

3.3 Static Slicing

Given a program P , a simple statement or a predicate expression in P (or, equiv-

alently, a node n in the ow-graph of P ), and a variable var , the static slice of P

with respect to variable var at node n is a subset6 P 0 of P such that, for any input,

whenever execution reaches node n in P 0, variable var will have the same value as it

has when execution reaches node n in P . Of course, this means that P 0 should be

such that, for any execution, node n is reached exactly the same number of times in

P as well as P 0.

Let F = (V , A, En, Ex) be the ow-graph of P . The static slice P 0 of P

can be constructed by �nding a subset of V consisting only of those nodes whose

execution could possibly a�ect the value of variable var at node n. We call this

subset StaticSlice(P , var , n). If var is the only variable used at node n (e.g. if the

node n corresponds to write(var) statement), then such a subset is easily obtained

by traversing the Program Dependence Graph starting at node n and collecting all

6A program may also be viewed as an ordered set of statements where each statement is uniquely
identi�ed by its location in the program, e.g., using line numbers. In this sense, the set operations
union, intersection, subset, etc., may also be applied over programs.
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nodes reachable from there. If there are other variables besides var used at node

n, then we need to select only those outgoing edges from node n that lead to nodes

de�ning var , and then traverse the Program Dependence Graph from there on. If var

is not used at node n, then we �rst need to �nd all reaching de�nitions of var at node

n using the ow-graph of the program, and start traversing the Program Dependence

Graph from those nodes. StaticSlice(P , var , n) can be precisely de�ned as follows:

StaticSlice(P , var , n) =

let F = Flow(P ),

D = ProgramDep(P )

in
S
x2StaticReachingDefns(var , n, F) ReachableNodes(x, D)

Example: Consider the program in Figure 3.1. Suppose we wish to �nd the Static

Slice with respect to variable Y at statement 10. We �rst �nd the set of reaching

de�nitions of Y at node 10 using the ow-graph of the program shown in Figure 3.2.

This set consists of the three nodes f3, 6, 8g. Now we �nd the set of all reachable

nodes from these three nodes in the Program Dependence Graph of the program

shown in Figure 3.5. This set, which consists of nodes 1, 2, 3, 5, 6 and 8, gives us

the desired slice. Figure 3.6 shows the slice; nodes belonging to the slice are shown

in bold. 2

3.4 Dynamic Slicing

In the previous example, the static slice for the program in Figure 3.1 with respect

to variable Y at statement 10 contains all three assignment statements, namely, 3, 6

and 8, that assign a value to Y. But we know that for this program for any testcase

only one of these statements may be executed. For example, for the testcase when

X is �1, only statement 3 is executed. In this case, if the value of Y is found to be

wrong at the write statement 10, either an error in function f1 at statement 3 or an

error in the if predicate at statement 2 is responsible for the error. The purpose of
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in the sliceKey:

1

2 3 4

765

8 9

10

11

not in the slice

Figure 3.6 Static Slice for Variable Y at Statement 10 for the Program in Figure 3.1



40

dynamic slicing is to �nd the subset of program statements whose execution \really"

a�ected the value of the given variable, as observed at the given execution point, for

the given testcase. So, the dynamic slice for the testcase with X = �1, for variable

Y at statement 10, contains statements 1, 2, 3, and 10, as opposed to the static

slice which contains statements 1, 2, 3, 5, 6, 8, and 10. Clearly, while debugging the

program, if the above error is observed, the dynamic slice would help localize the

bug much more quickly than the static slice. This is because the dynamic slice will

include only statements that did in fact inuence the value of the variable in question

for the current testcase and not all statements that \could have" a�ected its value

for any testcase

In the next few sections, we describe some approaches to compute successively

more re�ned dynamic slices. But �rst, for the purposes of de�ning our algorithms

precisely, we need to formalize the notion of execution history.

3.4.1 Execution History

Let F be the ow-graph of program P . Let test be a testcase consisting of a

speci�c set of input-values read by the program. We denote the execution history

of the program P for test by a sequence hist = <v1, v2, : : : , vn> of vertices in

F appended in the order in which they are visited during the program execution.

The execution history at any instance denotes the partial program execution till that

instance.

Example: Consider the program in Figure 3.1. For the testcase X = �1, we get the

execution history <1, 2, 3, 4, 10, 11>. Also, consider the program with a loop in

Figure 3.7 (we will refer to this program again in the next section). Symbols f1 and

f2 in statements 6 and 7 respectively are some unspeci�ed functions not relevant for

the current discussion. For the testcase N = 2, we get the execution history <1, 2,

3, 4, 51, 61, 71, 81, 52, 62, 72, 82, 53, 9>. Note that we use superscripts 1, 2, etc.

to distinguish between multiple occurrences of the same statement in the execution

history. 2
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begin

S1: read(N);

S2: Z := 0;

S3: Y := 0;

S4: I := 1;

S5: while (I <= N)

do

S6: Z := f1(Z, Y);

S7: Y := f2(Y);

S8: I := I + 1;

end while;

S9: write(Z);

end.

Figure 3.7 Example Program 2
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De�nition: Last(hist) denotes the last node in hist , and Prev(hist) denotes the sub-

sequence with all but the last node in hist . That is,

Last(<v1, : : : , vn�1, vn>) = vn

Prev(<v1, : : : , vn�1, vn>) = <v1, : : : , vn�1>

We use the notation <Prev(hist) j Last(hist)> to denote the two parts of hist .

Also, <> denotes the empty sequence.

De�nition: LastOccur(v, hist) denotes the last occurrence of the node v in hist . Or,

LastOccur(v, <>) = �

LastOccur(v, <prevhist j lastnode>) =

if lastnode an occurrence of v

then flastnodeg

else LastOccur(v, prevhist)

Example: For the execution history of program in Figure 3.1 for testcase X = �1,

we have LastOccur(9, <1, 2, 3, 4, 10, 11>) = �. For the program in Figure 3.7 and

testcase N = 2, we have LastOccur(6, <1, 2, 3, 4, 51, 61, 71, 81, 52, 62, 72, 82, 53, 9>)

= f62g. 2

De�nition: DynamicReachingDefn(var , hist) denotes the last occurrence of the node

that assigns a value to var in the sequence hist . Or,

DynamicReachingDefn(var , <>) = �

DynamicReachingDefn(var , <prevhist j lastnode>) =

if var2def (lastnode)

then flastnodeg

else DynamicReachingDefn(var , prevhist)

Example: For the execution history of program in Figure 3.1 for testcase X = �1,

we have DynamicReachingDefn(Y, <1, 2, 3, 4, 10, 11>) = f3g. For the program in
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Figure 3.7 and testcase N = 2, we have DynamicReachingDefn(Z, <1, 2, 3, 4, 51, 61,

71, 81, 52, 62, 72, 82, 53, 9>) = f62g. 2

Note that both LastOccur and DynamicReachingDefn result in either the empty

set, implying no occurrence of the desired node, or in a singleton consisting of the

unique node desired.

Given an execution history hist of a program P on a testcase test , and a variable

var , the dynamic slice of P with respect to hist and var is the set of all statements in

hist whose execution had some e�ect on the value of var as observed at the end of the

execution (we shall give a more precise de�nition of a dynamic slice in Section 3.4.4.1).

Note that unlike static slicing where a slice is de�ned with respect to a given location

in the program, we de�ne dynamic slicing with respect to the end of an execution

history. If a dynamic slice with respect to some intermediate point in the execution

is desired, then we simply need to consider the partial execution history up to that

point.

3.4.2 Dynamic Slicing: Approach 1

For the program in Figure 3.1, we saw above that the static slice with respect

to variable Y at statement 10 contains all three assignment statements|3, 6, and

8. But clearly, for any given testcase, only one of these statements is executed. If

we marked the nodes in the Program Dependence Graph that get executed for the

current testcase, and traverse only the marked nodes in the graph, the slice obtained

will not contain nodes that were not executed for the current testcase. In other words,

we �rst take a \projection" of the Program Dependence Graph with respect to only

those nodes that are reached during the program execution for the current testcase,

and then use the algorithm of Section 3.3 on the projected Dependence Graph to �nd

the desired slice:

DynamicSlice1 (P , hist , var) = ReachableNodes(DynamicReachingDefn(var , hist),

Project(ProgramDep(P ), Nodes(hist)))
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Project(D, V 0) =

let D = (V , A)

A0 =
S
(x, y) 2A (if (x2V \V 0) and (y2V \V 0) then f(x, y)g else �)

in (V \V 0, A0)

Nodes(<>) = �

Nodes(<prevhist j node>) = fnodeg [ Nodes(prevhist)

Example: For the program in Figure 3.1, for testcase X = �1, we have the execution

history <1, 2, 3, 4, 10, 11>. Also we have DynamicReachingDefn(Y, <1, 2, 3, 4, 10,

11>) = 3. Traversing only the nodes that occur in the execution history, starting at

node 3 in the Program Dependence Graph in Figure 3.5, we get the dynamic slice for

Y at the end of the execution to be f1, 2, 3g. Figure 3.8 depicts this: All nodes in the

graph are drawn dotted in the beginning. As statements are executed, corresponding

nodes in the graph are made solid. Then the graph is traversed only for solid nodes,

beginning at node 3, the last de�nition of Y in the execution history. All nodes

reached during the traversal are made bold. The set of all bold nodes, f1, 2, 3g in

this case, gives the desired slice. 2

Unfortunately, DynamicSlice1 does not always �nd accurate dynamic slices. It

may sometimes include extra statements in the slice that did not a�ect the value of

the variable in question for the given execution history. To see why, consider the

program in Figure 3.7 and the testcase N = 1, which yields the execution history <1,

2, 3, 4, 51, 6, 7, 8, 52, 9>. Figure 3.9 shows the the result of applying the algorithm

DynamicSlice1 on the Program Dependence Graph of this program with respect to

Z at the end of the execution. Looking at the execution history <1, 2, 3, 4, 51, 6, 7,

8, 52, 9> carefully, we �nd that statement 7 assigns a value to Y which is never used

later, for none of the statements that appear after 7 in the execution history, namely,

8, 5, and 9, uses variable Y. So statement 7 should not be in the dynamic slice for

the current testcase. DynamicSlice1 includes it in the slice because statement 7 is

executed under the current testcase, and statement 9 depends on statement 6 which
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1

2 3 4

765

8 9

10

11

Key: not executed

executed and in the slice

executed but not in the slice

Figure 3.8 DynamicSlice1 for the program in Figure 3.1, for testcase X = �1, for
variable Y, at the end of execution
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1 2 3 4

765 8 9

executed but not in the slice

executed and in the slice

not executedKey:

Figure 3.9 DynamicSlice1 for the program in Figure 3.7, testcase N = 1, for variable
Z, at the end of execution

has a data dependency edge to statement 7 in the Program Dependence Graph. In the

next section we present a re�nement to the above approach that avoids this problem.

3.4.3 Dynamic Slicing: Approach 2

The problem with the DynamicSlice1 approach discussed above lies in the fact

that a statement may have multiple reaching de�nitions of the same variable in the

program ow-graph, and hence it may have multiple outgoing data dependence edges

for the same variable in the Program Dependence Graph. Selection of such a node

in the dynamic slice, according to DynamicSlice1 , implies that all nodes to which it

has outgoing data-dependence edges also be selected if the nodes have been executed,

even though the corresponding data-de�nitions may not have reached the current

node. In the example above, Statement 6 has multiple reaching de�nitions of the

same variables: two de�nitions of variable Y from statements 3 and 7, and two of
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variable Z from statements 2 and 6 itself. So it has two outgoing data dependency

edges for each of variables Y and Z, to statements 3 and 7, and 2 and 6 respectively

(besides a control dependence edge to node 5). For the testcase N = 1, each of

these four statements is executed, so inclusion of statement 6 in the slice leads to the

inclusion of other three statements 3, 7, and 2 as well, even though two of the data

dependencies of statement 6|on statement 7 for variable Y and on itself for variable

Z|are never activated for this testcase (N = 1), because the loop is iterated only

once.

In a ow-graph a statement may have multiple reaching de�nitions of a variable

because there could be multiple execution paths leading up to that statement, and

each of these paths may have di�erent statements assigning a value to the same

variable. But for any single path, there can be at most one reaching de�nition of any

variable at any statement. And as we are interested in examining dependencies for

a single execution path|the execution history under the given testcase|inclusion of

a statement in the dynamic slice should lead to inclusion of only those statements

that actually de�ned values used by it under the current testcase. This suggests that

we should mark the edges of the Program Dependence Graph as the corresponding

dependencies occur during the program execution, and traverse the graph only along

the marked edges. Or, more precisely:

DynamicSlice2 (P , hist , var) =

let ProgramDep(P ) = (V , A)

in ReachableNodes(DynamicReachingDefn(var , hist), (V , Edges(hist)))

Edges(<>) = �

Edges(<prevhist j next>) =

let D =
S

var2use(next)
x2DynamicReachingDefn(var , prevhist)

f(next , x)g

C =
S

x2ControlPred(next)
y2LastOccur(x, prevhist)

f(next , y)g

in D [ C [ Edges(prevhist)
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activatednot activated

1 2 3 4

765 8 9

not in the slice in the slice

Key:

Figure 3.10 DynamicSlice2 for the program in Figure 3.7, testcase N = 1, for variable
Z, at the end of execution

Example: Consider again executing the program of Figure 3.7 for testcase N = 1.

Applying DynamicSlice2 on its execution history <1, 2, 3, 4, 51, 6, 7, 8, 52, 9>

for variable Z yields the dynamic slice f1, 2, 3, 4, 5, 6, 8g which does not include

statement 7. This is depicted in Figure 3.10: All edges are drawn as dotted lines in the

beginning. As statements are executed, edges corresponding to the new dependencies

that occur are drawn as solid lines. Then the graph is traversed only along solid edges

and the nodes reached are made bold. The set of all bold nodes at the end gives the

desired slice. Note that statement 7 that was included by DynamicSlice1 in the slice

in not included by DynamicSlice2 . 2

If programs had no loops then the above approach would always yield accurate dy-

namic slices. But in the presence of loops, it may sometimes include more statements

than necessary in the slice. Consider the program in Figure 3.11 and the testcase

when N = 2, and the two values of X read are �4 and 3. Then, for �rst time through



49

the loop statement 6, the then part of the if statement, is executed and the second

time through the loop statement 7, the else part is executed. Now suppose the exe-

cution has reached just past statement 9 the second time through the loop and the

second value of Z printed is found to be wrong. The execution history thus far is <1,

2, 31, 41, 51, 6, 81, 91, 101, 32, 42, 52, 7, 82, 92>. If we used DynamicSlice2 to �nd the

slice for variable Z for this execution history, we would have both statements 6 and

7 included in the slice, even though the value of Z, in this case, is only dependent on

statement 7. Figure 3.12 shows a segment of the Program Dependence Graph (only

statements 4, 6, 7, 8, and 9) along with the e�ect of executing DynamicSlice2 . Data

dependence edge from 8 to 6 is marked during the �rst iteration, and that from 8 to

7 is marked during the second iteration. As both these edges are marked, inclusion

of statement 8 leads to inclusion of both statements 6 and 7, even though the value

of Z observed at the end of the second iteration is only a�ected by statement 7.

As we mentioned earlier, DynamicSlice2 will always �nd accurate dynamic slices

if the program has no loops.7 This is so because a statement can never appear more

than once in any execution history if the program has no loops. Also, for any given

occurrence of a statement in the execution history, that occurrence has at most one

reaching de�nition of each variable used by that occurrence. Hence, for each statement

occurrence and for each variable used by that occurrence, the corresponding node in

the Program Dependence Graph will have at most one outgoing data dependence edge

marked. As, in absence of loops, a statement can occur only once in the execution

history, other outgoing data dependence edges for the statement, if any, are never

marked. So whenever a node is selected in the slice, it leads to selection of only

those nodes that a�ected the current occurrence of the selected node. And as we

always start the selection of nodes for inclusion in the dynamic slice by selecting the

node that directly a�ected the value of the given variable at the end of the execution

history, we always obtain accurate dynamic slices.

7This is not to say that it will always �nd overlarge slices if the program has loops. Figure 3.10
shows an example where DynamicSlice2 obtains an accurate dynamic slice for a program with a
loop.
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begin

S1: read(N);

S2: I := 1;

S3: while (I <= N)

do

S4: read(X);

S5: if (X < 0)

then

S6: Y := f1(X);

else

S7: Y := f2(X);

end if;

S8: Z := f3(Y);

S9: WRITE(Z);

S10: I := I + 1;

end while;

end.

Figure 3.11 Example Program 3
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4 98

76

Key:

in the slicenot in the slice

not activated activated

Figure 3.12 Subset of DynamicSlice2 for the Program in Figure 3.11, testcase (N = 2,
X = �4, 3), for Variable Z
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It may seem that the di�culty with DynamicSlice2 discussed above will disappear

if, before marking the data-dependence edges for a new occurrence of a statement in

the execution history, we �rst unmarked any outgoing dependence edges that are

already marked for this statement. This scheme will work for the above example, but

unfortunately, it may lead to wrong dynamic slices in other situations. Consider, for

example, the program in Figure 3.13. Consider the case when the loop is iterated

twice, the �rst time through statements 7 and 11, and the second time through

statement 8 but skipping statement 11. If we obtain the dynamic slice for A at the

end of execution, we will have statement 8 in the slice instead of statement 7. This is

because when statement 9 is reached second time through the loop, the dependence

edge from 9 to 7 (for variable Y) is unmarked and that from 9 to 8 is marked. Then,

while �nding the slice for A at statement 13, we will include statement 11, which last

de�ned the value of A. As statement 11 used the value of Z de�ned at statement 9,

9 is also included in the slice. But inclusion of 9 leads to inclusion of 8 instead of 7,

because the dependence edge to the latter was unmarked during the second iteration.

The value of Z at statement 11, however, depends on value of Y de�ned by statement 7

during the �rst iteration, so 7 should be in the slice, not 8.

Thus the above scheme of unmarking previously marked edges with every new

occurrence of a statement in the execution history does not work. This scheme is

worse than both DynamicSlice1 and DynamicSlice2 , as the latter two �nd supersets

of minimal dynamic slices while this may omit statements that belong to the slice.

3.4.4 Dynamic Slicing: Approach 3

DynamicSlice2 , as we saw above, may lead to overlarge dynamic slices because

a statement may have multiple occurrences in an execution history, and di�erent

occurrences of a statementmay have di�erent reaching de�nitions of the variables used

at that statement. The Program Dependence Graph does not distinguish between

these di�erent occurrences, so inclusion of a statement in the dynamic slice by virtue

of one occurrence may some times lead to inclusion of statements on which a di�erent
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begin

S1: read(N);

S2: A := 0;

S3: I := 1;

S4: while (I <= N)

do

S5: read(X);

S6: if (X < 0)

then

S7: Y := f1(X);

else

S8: Y := f2(X);

end if;

S9: Z := f3(Y);

S10 if (Z > 0)

then

S11: A := f4(A, Z);

else

end if;

S12: I := I + 1;

end while;

S13: write(A);

end.

Figure 3.13 Example Program 4
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occurrence of that statement is dependent. In other words, di�erent occurrences

of the same statement may have di�erent dependencies, and it is possible that one

occurrence contributes to the slice and another occurrence does not. Inclusion of one

occurrence in the slice should lead to inclusion of only those statements on which this

occurrence of the statement is dependent, not those on which some other occurrences

may be dependent. This suggests that we should have di�erent nodes for di�erent

occurrences of the same statement in the execution history, and each occurrence of

a statement should have dependence edges to only those statements (their speci�c

occurrences) on which this particular statement occurrence is dependent. Then every

node in the dependence graph will have at most one outgoing edge for each variable

used at the statement. We call this new dependence graph the Dynamic Dependence

Graph. A program has di�erent dynamic dependence graphs for di�erent execution

histories. In the next section we precisely de�ne how a Dynamic Dependence Graph

is built.

3.4.4.1 Dynamic Dependence Graph

The Dynamic Dependence Graph, DynamicDep, of an execution history hist is a

two-tuple (V , A), where V is the multi-set of ow-graph vertices (i.e., multiple entries

of the same element are treated as distinct), and A is the set of edges denoting dynamic

data dependencies and control dependencies between vertices. We use the symbol ]

to denote a disjunctive union of elements that constructs multi-sets (i.e., sets allowing

multiple occurrences of the same element). DynamicDep is de�ned as follows:

DynamicDep(<>) = (�, �)

DynamicDep(<prevhist j next>) =

let DynamicDep(prevhist) = (V , A),

D =
S

var2use(next)
x2DynamicReachingDefn(var , prevhist)

f(next , x)g,

C =
S

x2ControlPred(next)
y2LastOccur(x, prevhist)

f(next , y)g
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in (V ]fnextg, A[D[C)

Example: Consider the program in Figure 3.11, and testcase (N = 3, X = �4, 3, �2),

which yields the execution history <1, 2, 31, 41, 51, 61, 81, 91, 101, 32, 42, 52, 71, 82, 92,

102, 33, 43, 53, 62, 83, 93, 103, 34>. Figure 3.14 shows the Dynamic Dependence Graph

for this execution history. The middle three rows of nodes in the �gure correspond to

the three iterations of the loop. Notice in particular occurrences of node 8 on these

rows. During the �rst and third iterations, it depends on node 6 which corresponds

to dependence of statement 8 for the value of Y assigned by node 6, whereas during

the second iteration, it depends on node 7 which corresponds to the dependence of

statement 8 for the value of Y assigned by node 7. 2

Once we have constructed the Dynamic Dependence Graph for the given execution

history, we can easily obtain the dynamic slice for a variable, var , by �rst �nding the

node corresponding to the last de�nition of var in the execution history, and then

�nding all nodes in the graph reachable from that node. DynamicSlice3 can be de�ned

precisely as follows:

DynamicSlice3 (hist , var) =

ReachableNodes(DynamicReachingDefn(var , hist), DynamicDep(hist))

Example: Consider again the program in Figure 3.11, and testcase (N = 3, X = �4,

3, �2). Figure 3.14 shows the e�ect of executing DynamicSlice3 on the Dynamic

Dependence Graph for variable Z at the end of the execution. Nodes in bold belong

to the slice. Note that statement 6 belongs to the slice whereas statement 7 does not.

DynamicSlice2 , on the other hand, would have included statement 7 as well. 2

As the above algorithm accurately captures our notion of dynamic slicing, dis-

cussed informally above, we use this algorithm as the precise de�nition of dynamic

slicing:

De�nition: The Dynamic Slice of a variable, var , with respect to the end of an

execution history, hist , is de�ned by:
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10987543

103 4 5 6 8 9

10986543

1 2

Figure 3.14 Dynamic Dependence Graph for the Program in Figure 3.11 for the
testcase (N = 3, X = �4, 3, �2). Nodes in bold give the Dynamic Slice for this
testcase with respect to variable Z at the end of execution
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DynamicSlice(hist , var) =

ReachableNodes(DynamicReachingDefn(var , hist), DynamicDep(hist))

Contrast this de�nition of a dynamic slice with that proposed by Korel and Laski

[KL88a]. Their de�nition may yield unnecessarily large dynamic slices. They require

that if any one occurrence of a statement in the execution history is included in the

slice then all other occurrences of that statement be automatically included in the

slice, even when the value of the variable in question at the given location is una�ected

by other occurrences. The dynamic slice so obtained is executable and produces

the same value(s) of the variable in question at the given location as the original

program. For our purposes, the usefulness of a dynamic slice lies not in the fact that

one can execute it, but in the fact that it isolates only those statements that a�ected

a particular value observed at a particular location. For example, in the program of

Figure 3.11 each loop iteration computes a value of Z, and each such computation

is totally independent of computation performed during any other iteration. If the

value of variable Z at the end of a particular iteration is found to be incorrect, we

would like only those statements to be included in the slice that a�ected the value

of Z as observed at the end of that iteration, not during all previous iterations. For

example, for the testcase when N = 3, and X = (�4, 3, �2), both statements 6 and 7

will be included in the dynamic slice with respect to Z under their de�nition, even

though statement 7 does not a�ect the �nal value of Z in any way. It is interesting to

note that our Approach 2 (which may yield an overlarge dynamic slice) would obtain

the same dynamic slice as obtained under their de�nition.

The Dynamic Dependence Graph of an execution history contains a node for every

occurrence of a statement (simple statement or predicate expression) in the execution

history. This means that we need to save the entire execution history of a testcase to

be able to construct the Dynamic Dependence Graph and �nd dynamic slices with

respect to any variables at the end of the execution. In the next section, we discuss an

approach to obtain accurate dynamic slices that does not require the entire execution

history to be saved.
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3.4.5 Dynamic Slicing: Approach 4

The size (total number of nodes and edges) of a Dynamic Dependence Graph as

de�ned in Section 3.4.4.1 is, in general, unbounded. This is because the number of

nodes in the graph is equal to the number of statements in the execution history,

which, in general, may depend on values of run-time inputs. For example, consider

the program in Figure 3.7. The number of statements in the execution history, and

hence the size of the Dynamic Dependence Graph, of this program for any testcase

depends on how many times the while loop at statement 5 is iterated, which in turn

depends on the value read by variable N at statement 1. On the other hand, we know

that every program can have only a �nite number of possible dynamic slices because

it contains only a �nite number of statements, and a slice is a subset of statements.

Further, only a subset of these possible dynamic slices arise in any given execution

history. This suggests that we ought to be able to restrict the number of nodes

in a Dynamic Dependence Graph so its size is not a function of the length of the

corresponding execution history. We address below one such mechanism to achieve

this.

3.4.5.1 Reduced Dynamic Dependence Graph

In a Reduced Dynamic Dependence Graph, instead of creating a new node for

every occurrence of a statement in the execution history we create a new node only if

another node with the same transitive dependencies does not already exist. To do this

we maintain two tables called DefnNode and PredNode. DefnNode maps a variable

name to a node in the Reduced Dynamic Dependence Graph that last assigned a

value to that variable. PredNode maps a control predicate statement to a node in

the Reduced Dynamic Dependence Graph that corresponds to the last occurrence

of the predicate in the execution history thus far. We need these tables because we

do not save the execution history. Also, we associate a set, ReachableStmts, with

each node in the graph. This set consists of all statements one or more of whose

occurrences can be reached from the given node. We maintain reachable statements
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and not reachable nodes for each node because it is the statements that eventually

de�ne the dynamic slice, not their individual occurrences. Every time a statement,

Si, gets executed, we determine the set of nodes, D, that last assigned values to the

variables used by Si, and the last occurrence, C, of the control predicate node of the

statement. The ReachableStmts set for this occurrence of Si is obtained by taking the

union of ReachableStmts of all nodes in D[C. If a node, n, associated with Si already

exists with the same ReachableStmts set, we associate the new occurrence of Si with

node n. Otherwise we create a new node with outgoing edges to nodes in D[C. The

DefnNode table entry for the variable assigned at Si, if any, is also updated to point to

this node. Similarly, if the current statement is a control predicate, the corresponding

entry in PredNode is updated to point to this node.

Precisely, a Reduced Dynamic Dependence Graph is a �ve-tuple (V , A, Reach-

ableStmts, DefnNode, PredNode), where V and A are the sets of nodes and edges

respectively, and ReachableStmts, DefnNode and PredNode are maps de�ned above.

ReducedDynamicDep1 (<>) = (�, �, �, �, �)

ReducedDynamicDep1 (<prevhist j next>) =

let ReducedDynamicDep1 (prevhist) = (V , A, ReachableStmts, DefnNode, PredNode),

D =
S
var2use(next) DefnNode(var),

C =
S
x2ControlPred(next) PredNode(x),

R = fnextg [
S
x2D[C ReachableStmts(x),

N = SimilarNode1 (next , R, V , ReachableStmts),

in if N=�

then AddNode1 (next , D[C, R, (V , A, ReachableStmts, DefnNode, PredNode))

else let DefnNode 0(var) = if var2def (next) then N else DefnNode(var),

PredNode 0(Stmt) = if (next an occurrence of Stmt) then N

else PredNode(Stmt))

in (V , A, ReachableStmts, DefnNode 0, PredNode 0)
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SimilarNode1 (S, R, �, ReachableStmts) = �

SimilarNode1 (S, R, V , ReachableStmts) =

let V = fvg[V 0

in if (v an occurrence of S) and (ReachableStmts(v) = R)

then fvg

else SimilarNode1 (S, R, V 0, ReachableStmts)

AddNode1 (v, D, R, G) =

let G = (V , A, ReachableStmts, DefnNode, PredNode),

A0 =
S
x2D f(v, x)g,

ReachableStmts 0(n) = (if n=v then R else ReachableStmts(n)),

DefnNode 0(var) = (if var2def (v) then fvg else DefnNode(var)),

PredNode 0(S) = (if (v an occurrence of S) then fvg else PredNode(S))

in (V ]fvg, A[A0, ReachableStmts 0, DefnNode 0, PredNode 0)

Example: Consider again the program in Figure 3.11, and testcase (N = 3, X = �4,

3, �2), which yields the execution history <1, 2, 31, 41, 51, 61, 81, 91, 101, 32, 42,

52, 71, 82, 92, 102, 33, 43, 53, 62, 83, 93, 103, 34>. Figure 3.15 shows the Reduced

Dynamic Dependence Graph for this execution history. Every node in the graph is

annotated with the set of all reachable statements from that node. Note that there is

only one occurrence of node 10 in this graph, as opposed to three occurrences in the

Dynamic Dependence Graph for the same program and the same testcase shown in

Figure 3.14. This is because all three occurrences of node 10 in Figure 3.14 have the

same set R. Hence only one node 10 is created in the Reduced Dynamic Dependence

Graph. 2

Once we have the Reduced Dynamic Dependence Graph for the given execution

history, to obtain the dynamic slice for any variable var we �rst �nd the entry in

the table DefnNode for var . The ReachableStmts set associated with that entry

gives the desired dynamic slice. So we don't even have to traverse the Reduced
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{1,2,3,4,5,6,8,9,10}

{1,2,3,4,5,6,8,10}
{1,2,3,4,5,6,10}

{1,2,3,4,5,7,8,9,10}

{1,2,3,4,5,7,8,10}{1,2,3,4,5,7,10}

{1,2,3,4,5,10}

{1,2,3,4,10}{1,2,3,10}

{1,2,3,4,5,6,8,9}

{1,2,3,10}{1,2,3,4,5,6,8}

{1,2,3,4,5,6}

{1,2,3,4,5}

{1,2,3,4}

{1,2,3}

{2}{1}

986

987

21

986543 10

3 4 5

Figure 3.15 Reduced Dynamic Dependence Graph for the Program in Figure 3.11 for
the testcase (N = 3, X = �4, 3, �2). Each node is annotated with ReachableStmts,
the set of all statements reachable from that node
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Dynamic Dependence Graph to �nd the slice. DynamicSlice4 can be de�ned precisely

as follows:

DynamicSlice4 (hist , var) =

let ReducedDynamicDep1 (hist) = (V , A, ReachableStmts, DefnNode, PredNode)

in ReachableStmts(DefnNode(var))

Example: Consider again the program in Figure 3.11, and testcase (N = 3, X = �4,

3, �2). Figure 3.15 shows the Reduced Dynamic Dependence Graph of the execution

history for this testcase. The dynamic slice for variable Z at the end of execution is

given by the ReachableStmts set, f1, 2, 3, 4, 5, 6, 8, 10g, associated with node 8 in

the last row, as that was the last node to de�ne value of Z. 2

Note that under this approach we do not really need to construct the graph edges;

the ReachableStmts sets associated with the nodes directly give the corresponding

dynamic slices so we never need to traverse the edges. Also, as we always require the

last occurrence of the node that de�ned a variable, we only need to keep one node

for each statement. This means instead of looking for a statement occurrence node

with the similar ReachableStmts set we can simply overwrite the ReachableStmts set

of the unique node for the corresponding statement. This approach will work well

if we always needed dynamic slices with respect to the end of the current execution

history. But this simpli�cation will also make obtaining dynamic slices with respect

to pre�xes of the current execution history much more di�cult.

Constructing the Reduced Dynamic Dependence Graph requires that at each step

in the execution history we determine the set of reachable statements associated with

the new statement occurrence. This means a union of ReachableStmts sets of all

immediate descendent nodes of the new node is performed at each step. In the next

section we present a variation of the graph reduction mechanism discussed above

where instead of performing the expensive set union operation at each step, we need

to perform it only once for each node|at the time of its creation.
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3.4.6 E�cient Reduction of Dynamic Dependence Graph

In this section we describe a new scheme to reduce the Dynamic Dependence

Graph that is more e�cient than the one described above. Under this scheme for

every new occurrence of a statement in the execution history we only need to �nd

the set of nodes on which the new occurrence is immediately dependent, and check

if another node with same set of direct dependencies already exists. If such a node

is found, then the new node is not created, but the DefnNode and PredNode tables

are updated appropriately. If there were no circular dependencies in the dependence

graph then this scheme of only considering direct dependencies would work �ne.

But in the presence of loops, the program may have circular dependencies, in which

case the graph reduction described above will not occur; for every iteration of the

loop we would have to create new node occurrences. We can avoid this problem, if

whenever we need to create a new node, say for statement Si, we �rst determine if

any of its immediate dependents, say node v, already has a dependency on a previous

occurrence of Si and if the other immediate dependents of Si are also reachable from

v. This is easily done by checking if the ReachableStmts set to be associated with

the new occurrence is a subset of the ReachableStmts set associated with v. If so

we can merge the new occurrence of Si with v. After this merge, during subsequent

iterations of the loop the search for a node for Si with the same immediate dependents

will always succeed. So under this scheme, the expensive set union operations have

to be performed only during initial iterations of a loop when new inter-statement

dependencies are being activated, but not during subsequent iterations if the same

old dependencies are being repeated. In the previous scheme, on the other hand,

every iteration required computation of set unions. The new reduction scheme is

precisely de�ned as follows.

ReducedDynamicDep2 (<>) = (�, �, �, �, �)

ReducedDynamicDep2 (<prevhist j next>) =

let ReducedDynamicDep2 (prevhist) = (V , A, ReachableStmts, DefnNode, PredNode),
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D =
S
var2use(next) DefnNode(var),

C =
S
x2ControlPred(next) PredNode(x),

N = SimilarNode2 (next , D[C, V ),

DefnNode 0(var) = (if var2def (next) then N else DefnNode(var)),

PredNode 0(S) = (if (next an occurrence of S) then N else PredNode(S))

in if N=�

then AddNode2 (next , D[C, (V , A, ReachableStmts, DefnNode, PredNode))

else (V , A, ReachableStmts, DefnNode 0, PredNode 0)

SimilarNode2 (S, D, �) = �

SimilarNode2 (S, D, V ) =

let V = fvg[V 0

in if (v an occurrence of S) and (SimilarDeps(v, D, A))

then fvg

else SimilarNode2 (S, D, V 0)

SimilarDeps(v, �, A) = true

SimilarDeps(v, D, A) =

let D = fxg[D0

in if (x=v) or ((v, x)2A)

then SimilarDeps(v, D0, A)

else false

AddNode2 (v, D, G) =

let G = (V , A, ReachableStmts, DefnNode, PredNode),

R = fvg [
S
x2D ReachableStmts(x),

A0 =
S
x2D f(v, x)g,

ReachableStmts 0(x) = (if x=v then R else ReachableStmts(x)),

DefnNode 0(var) = (if var2def (v) then fvg else DefnNode(var)),
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PredNode 0(S) = (if (v an occurrence of S) then fvg else PredNode(S))

in if CyclePossible(D, R, ReachableStmts) = fng

then MergeNode(v, n, D, G)

else (V ]fvg, A[A0, ReachableStmts 0, DefnNode 0, PredNode 0)

CyclePossible(�, R, ReachableStmts) = �

CyclePossible(D, R, ReachableStmts) =

let D = fxg[D0

in if (R � ReachableStmts(x))

then fxg

else CyclePossible(D0, R, ReachableStmts)

MergeNode(v1, v2, D, G) =

let G = (V , A, ReachableStmts, DefnNode, PredNode),

A0 =
S
x2D f(v2, x)g,

DefnNode 0(var) = (if (var2def (v1) then fv2g else DefnNode(var)),

PredNode 0(S) = (if (v1 an occurrence of S) then fv2g else PredNode(S))

in (V , A[A0, ReachableStmts, DefnNode 0, PredNode 0)

Example: Consider again the program in Figure 3.11, and testcase (N = 3, X = �4, 3,

�2), which yields the execution history <1, 2, 31, 41, 51, 61, 81, 91, 101, 32, 42, 52, 71,

82, 92, 102, 33, 43, 53, 62, 83, 93, 103, 34>. Figure 3.16 shows the Reduced Dynamic

Dependence Graph obtained by applying ReducedDynamicDep2 to this execution

history. Note that the second occurrence of node 3 is merged with its immediate

dependent node 10 because the ReachableStmts set, f1, 2, 3, 10g, of the former was a

subset of that of the latter. The third occurrence of node 3 in the execution history

has node 1 and node 10 as immediate dependents. As these immediate dependencies

are also contained in the merged node (10,3), the third occurrence of node 3 is also

associated with this node. The dynamic slice for variable Z at the end of execution
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is given by ReachableStmts set, f1, 2, 3, 4, 5, 6, 8, 10g, associated with node 8 in the

last row, as that was the last node to de�ne value of Z. 2

3.5 Summary

The conventional notion of a program slice|the set of all statements that might

a�ect the value of a variable occurrence|is totally independent of the program input

values. Program debugging, however, involves analyzing the program behavior under

the speci�c inputs that revealed the bug. In this chapter, we addressed the dynamic

counterpart of the static slicing problem|�nding all statements that really a�ected

the value of a variable occurrence for the given program inputs|and examined several

approaches to computing dynamic slices.

Our prototype debugging tool, Spyder, provides facilities for displaying both

static and dynamic program slices. Figure 3.17 shows a program similar to that in

Figure 1.1 except that it does not use any array or structure variables. Suppose this

program is also executed for testcase #1 (N = 2 and the sides of the two triangles

being (3, 3, 3) and (6, 5, 4), respectively). Figure 3.18 shows its static slice with

respect to area at line 37. Figure 3.19 shows the corresponding dynamic slice when

the execution is stopped there during the �rst loop iteration. Figure 3.20 shows the

corresponding slice during the second iteration. Note that the static slice contains

every statement except the assignments to sum on lines 13 and 37, because an assign-

ment to sum does not a�ect the value of area; it is the other way round. In the case

of the �rst dynamic slice, only the statements relevant to the computation of the area

of an equilateral triangle belong to the slice. Although assignments on lines 18{20

are executed, they are not included in the slice because the values they compute do

not contribute towards computation of the area of an equilateral triangle. The same

assignments, however, are included in the second dynamic slice because the values

they compute are responsible for incorrectly classifying the second triangle as a right

triangle instead of a scalene triangle. Clearly, this second dynamic slice provides �ner

error localization information compared to the static slice.
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Figure 3.16 Reduced Dynamic Dependence Graph for the Program in Figure 3.11
for the testcase (N = 3, X = �4, 3, �2), obtained using DynamicSlice5 . Each node
is annotated with ReachableStmts, the set of all statements reachable from that node
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Spyder also provides a facility to obtain approximate dynamic slices using Ap-

proach 1 discussed in Section 3.4.2. Figure 3.21 shows the approximate dynamic

slice with respect to area on line 37 when the execution reaches there during the �rst

loop iteration. The approximate slice obtained in this case is exactly the same as

the corresponding exact dynamic slice shown in Figure 3.19. Figure 3.22 shows the

approximate dynamic slice for the same variable occurrence but during the second

loop iteration. Compare this with the corresponding exact dynamic slice shown in

Figure 3.20 and the corresponding static slice shown in Figure 3.18.
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Figure 3.17 A variant of the program in Figure 1.1
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Figure 3.18 Static slice with respect to area on line 37.
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Figure 3.19 Dynamic slice with respect to area on line 37 during the �rst loop
iteration.
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Figure 3.20 Dynamic slice with respect to area on line 37 during the second loop
iteration.
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Figure 3.21 Approximate dynamic slice on area on line 37 during the �rst loop
iteration.
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Figure 3.22 Approximate dynamic slice on area on line 37 during the second loop
iteration.
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4. COMPLETE DYNAMIC SLICING

In the previous chapter, we discussed several approaches to �nding dynamic pro-

gram slices of programs that involved only scalar variables. Slicing is even more useful

in debugging programs that use complex data-structures involving pointers|when in-

terstatement dependencies are hard to visualize by manual examination of the source

code. In this chapter we discuss how the techniques described in the previous chap-

ter can be extended to �nd slices of programs that involve pointers and composite

variables.

Scalar variables are relatively easy to handle because the memory location that

corresponds to a scalar variable is �xed and known at compile time; it does not vary

during the course of program execution. Hence, if one statement modi�es a scalar

variable and another statement references a scalar variable, it is easy to determine, at

compile time, if the latter statement references the same memory location modi�ed

by the former.

The chief di�culty in dealing with an indirect reference through a pointer or an

array element reference1 is that the memory location referenced by such an expression

cannot, in general, be determined at compiled time. Further, when such a reference

occurs inside a loop, the memory location referenced may vary from one loop itera-

tion to another. The di�culty is compounded if the language used is not strongly-

typed and permits integer arithmetic over pointer variables. Techniques proposed in

[CWZ90, HPR89a, LH88] may be used to obtain conservative static approximations

of what a pointer might point to at run time, but in the presence of unconstrained

pointers, as in C, such analysis has only limited usefulness. In this case we are forced

to make the most conservative assumption: an indirect assignment through a pointer

1Not regarding an array as a single unit.
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can potentially de�ne any variable. The outcome of this assumption is that static

slices of programs involving pointers tend to be very large; in many instances they

include the whole programs themselves. Fortunately, it is possible to perform precise

dynamic dependence analysis even when the language is not strongly-typed.

In this chapter, we present an approach to obtain dynamic program slices when the

language permits unconstrained pointers. Besides pointers, composite variables such

as arrays, records, and unions are also handled uniformly under this approach. It also

allows precise interprocedural dynamic slicing to be performed. We �rst present, in

Section 4.1, a general framework to obtain static slices in the presence of pointers and

composite variables, and then extend it to the dynamic case in Section 4.2. While the

static slicing algorithm assumes that an indirect assignment may potentially modify

any variable, the dynamic slicing algorithm detects exact dependencies. Section 4.3

discusses how our approach may be extended to the interprocedural case.

4.1 Static Slicing with Pointers and Composite Variables

In Section 3.2.3, we de�ned reaching de�nitions for scalar variables. A de�nition

of a variable var at a statement S1 reaches its use at statement S2, if there is a path

from S1 to S2 in the ow-graph of the program such that no other node along the

path de�nes var . But what happens if S1 de�nes an array element A[i], and S2 uses

an array element A[j]; if S1 de�nes a �eld of a record s:f , and S2 uses the whole

record s; or if S1 de�nes a variable X, and S2 uses a pointer dereference expression

�p? To be able to handle such situations, we �rst introduce the notion of intersection

of two l-valued expressions.

4.1.1 Intersection of L-valued Expressions

An expression is said to be an l-valued expression if a memory location can be

associated with it. A simple check to �nd if an expression is an l-valued expression

is to check if it can appear on the left hand side of an assignment statement. For

example, expressions var, A[i], s:f , B[i]:r:x, �p, are all l-valued expressions. On the
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other hand, none of the expressions 103, x + y, or a > b, is l-valued. The presence

of pointers and composite variables such as arrays and records in a programming

language requires that both use and def sets of statements be de�ned in terms of

l-valued expressions.

A use expression e1 is said to intersect with a def expression e2, if the memory lo-

cation associated with e1 may overlap with that associated with e2. We identify three

types of intersections between l-valued expressions: complete intersection, maybe in-

tersection, and partial intersection.

4.1.1.1 Complete Intersection

A use expression e1 completely intersects a def expression e2 if the memory loca-

tion associated with e1 is totally contained in that associated with e2. For example,

consider the following code fragment:

S1: X := : : :

...

S2: := : : :X : : :

Here, use of variable X at S2 completely intersects its de�nition at S1. Also, in the

following code fragment,

S1: s := : : :

...

S2: := : : : s.f : : :

use of �eld s:f at S2 completely intersects the de�nition of record s at S1.

4.1.1.2 Maybe Intersection

Consider the following situation:

S1: A[i] := : : :
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...

S2: := : : :A[j] : : :

Whether or not the use of A[j] at S2 intersects with the de�nition of A[i] at S1 depends

on the actual values of variables i and j at statements S1 and S2, respectively. If

their values are the same, the two expressions intersect, otherwise they do not. We

refer to such intersections as maybe intersections. Use of pointer dereferencing also

causes maybe intersections. In the following code fragment,

S1: *p := : : :

...

S2: := : : :X : : :

use of variable X at S2 maybe-intersects with the de�nition at S1 because the pointer

variable p may or may not be pointing at variable X.

4.1.1.3 Partial Intersection

Consider the following scenario:

S1: s.f := : : :

...

S2: := : : : s : : :

The whole record s is used at S2, but only one of its �elds is de�ned at S1. A similar

situation occurs if an array is used at S2, and only one of its elements is de�ned at S1.

We refer to such intersections as partial intersections. If a use expression e1 partially

intersects with a def expression e2, we de�ne PreExp(e1, e2) to be the portion of the

memory location associated with e1 that lies before that associated with e2. Similarly

we de�ne PostExp(e1, e2) to be the portion of the memory location associated with

e1 that lies after that associated with e2.
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4.1.2 Static Reaching De�nitions Revisited

Let CompleteIntersect , MaybeIntersect , and PartialIntersect be boolean functions

that determine if two l-valued expressions have complete, maybe, or partial intersec-

tions, respectively. We can now extend our de�nition of StaticReachingDefns, de�ned

in Section 3.2.3 for programs involving only scalar variables, to that involving pointers

and composite variables.

StaticReachingDefns(var , n, F) =

let F = (V , A)

in
S
(x,n)2A if def (x) = �

then StaticReachingDefns(var , x, (V , A�f(x,n)g))

else let def (x) = fvar0g, A0= A�f(x,n)g

in if CompleteIntersect(var , var0)

then fxg

else if MaybeIntersect(var , var0)

then fxg [ StaticReachingDefns(var , x, (V , A0))

else if PartialIntersect(var , var0)

then let e1= PreExp(var , var0),

e2= PostExp(var , var0)

in fxg [ StaticReachingDefns(e1, x, (V , A0))

[ StaticReachingDefns(e2, x, (V , A0))

else StaticReachingDefns(var , x, (V , A0))

Note that both maybe and partial intersections may occur together. For example,

consider the following situation:

S1: A[i].f := : : :

...

S2: := : : :A[j] : : :
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Because we check for maybe intersection before partial intersection, the former takes

precedence over the latter whenever they occur together.

The de�nitions of data-, control-, and program dependence, and that of a static

slice remain the same as given in Sections 3.2.4, 3.2.5, 3.2.6, and 3.3, respectively.

Only we now use the new de�nition of static reaching de�nitions described above to

�nd the data dependence edges of the program dependence graph.

4.2 Dynamic Slicing with Pointers and Composite Variables

Dynamic slicing di�ers from static slicing in that the former has no maybe in-

tersections. This implies that for each use of a scalar variable, there is at most one

dynamic reaching de�nition; and for each use of a composite variable, there is at most

one dynamic reaching de�nition of each of its scalar components. To de�ne dynamic

slices in the presence of composite variables and pointers, we generalize the notion of

an l-valued expression to that of a memory cell.

4.2.1 Use and Def Sets Revisited

A memory cell is a tuple (adr , len) where adr represents its address in mem-

ory, and len represents its length in bytes.2 The memory-cell corresponding to an

l-valued expression e1 is given by the tuple (AddressOf (e1), SizeOf (e1)), where Ad-

dressOf (exp) gives the current address associated with the l-valued expression exp

at runtime, and SizeOf (exp) gives the number of bytes required to store the value of

exp.

We now de�ne use and def sets of all simple statements and predicates in terms

of memory cells instead of l-valued expressions. Though the length component of

these memory-cells may be determined at compile time, the address components may

2Or the smallest addressable unit on the computer, e.g. a word. For languages where memory
allocation for a variable is not necessarily contiguous, de�nition of a memory-cell may be changed
to include the set of all its contiguous subcells.
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have to be determined at runtime just before the corresponding simple statement or

predicate is executed.

4.2.2 Dynamic Reaching De�nitions Revisited

Now, instead of determining intersection of l-valued expressions, we check if two

memory cells intersect. Using this formulation, we rede�ne DynamicReachingDefns

function, earlier de�ned in Section 3.4.1, as follows:

DynamicReachingDefns(cell , <>) = �

DynamicReachingDefns((adr , 0), hist) = �

DynamicReachingDefns(cell , hist) =

let hist = <prevhist j next>

in if def (next) = �

then DynamicReachingDefns(cell , prevhist)

else let def (next) = fcell 0g

in if CellIntersect(cell , cell 0)

then fnextg [ DynamicReachingDefns(PreCell(cell , cell 0), prevhist)

[ DynamicReachingDefns(PostCell(cell , cell 0), prevhist)

else DynamicReachingDefns(cell , prevhist)

CellIntersect(useCell , defCell) returns true if there is any overlap between the two

cells. PreCell and PostCell return the non-overlapping portions of the useCell that

lie before and after the overlapping portion, respectively. It is possible that one or

both of these portions may be empty (len = 0). The case when both pre- and post-

cells are empty is analogous to complete intersection in static slicing; the case when

one or both are non-empty is analogous to partial intersection; and, as we mentioned

earlier, there are no maybe intersections in the dynamic case.

The advantage of this formulation is that all the usual problems associated with

handling pointers in the static case are automatically taken care of in the dynamic

case because all use and def sets are resolved in terms of memory cells; there is no
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ambiguity in determining if two memory cells overlap. As in the case of static slicing,

the de�nitions of dynamic dependence graph and dynamic slice remain the same as

those given in Section 3.4.4. Only the de�nition of dynamic reaching de�nitions has

changed.

4.3 Interprocedural Dynamic Slicing

The dynamic slicing approach described above can be easily extended to obtain

slices of programs with procedures and functions. We �rst consider the case when

parameters are passed by value, as in C. In this case, we simply need to treat a proce-

dure invocation, proc(actual1; actual2; : : : ; actualn), to be a sequence of assignments

formali = actuali; 1 � i � n, where formali is the ith formal parameter of proc.

The use set of each of these assignments is computed in terms of memory-cells just

before the procedure is invoked, and the def set is computed just after the control

enters the procedure. Memory cells that correspond to def sets belong to the current

activation record of proc on the stack.

Note that unlike interprocedural static slicing [HRB90], our approach for dynamic

slicing does not require that we determine which global variables are referenced inside

a procedure, or which variables may be aliases to each other, nor do we need to

eliminate name conicts among variables in di�erent procedures.

Call-by-reference is even easier to handle: no initial assignments to formal param-

eters need to be made. The address of a formal parameter variable is automatically

resolved to that of the corresponding actual parameter. Call-by-result parameter

passing is handled by making assignments, actuali = formali, just before control

returns to the calling procedure. Call-by-value-result can be handled similarly by

making appropriate assignments both at the beginning and the end of the procedure.
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4.4 Summary

Static program slices tend to be over large and imprecise when the program be-

ing debugged involves pointers and composite variables such as arrays, records, and

unions (see examples below). They lose their usefulness altogether if the language

involved is not strongly-typed and permits use of unconstrained pointers. In this

chapter we have shown that we can �nd accurate dynamic slices even in the presence

of unconstrained pointers and composite variables. The approach outlined provides

a uniform framework for handling pointers as well as various types of composite vari-

ables. It does not require that the language be strongly-typed or that any runtime

checks (out-of-bound array element reference, illegal pointer dereference, etc.) be

performed.

Figure 4.1 shows a simple program involving pointers. It initializes all elements of

an array a and then prompts the user for values of i, j, and k. It increments the ith,

jth and kth elements of the array and prints out the new values of these elements. P,

q, and r are three pointer variables that point to the ith, jth and the kth elements of

the array a respectively. Consider the testcase when this program is executed with

input values (i = 1; j = 3; k = 3). Figure 4.1 also shows the static program slice with

respect to a[i] on line 29. Figure 4.2 shows the corresponding dynamic slice. Note that

the static slice contains all three indirect assignments through pointers on lines 25{27

because all three pointers, p, q, and r, can possibly be pointing at a[i]. This in turn

requires that the three assignments on lines 21{23, the scanf statement on line 19,

and all assignments on lines 7{16 also be included in the slice. The dynamic program

slice, on the other hand, contains only one indirect assignment through p on line 25

because, during the current testcase, q and r do not point at a[i]. This means, of the

three assignments on lines 21{23, only the assignment to p on line 21 is included in

the dynamic slice. Similarly, of all assignments on lines 7{16, only the assignment

to the ith array element, a[1], is in the slice; assignments to all other elements of

the array do not belong to the slice. If we obtain the dynamic program slice for a[j]
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on line 29, both indirect assignments on lines 26 and 27 are in the dynamic slice, as

shown in Figure 4.3. This is because, for the current testcase, values of j and k are

equal, making both q and r as aliases to the same array element a[3].

Figure 4.4 shows a variant of the above program where a loop is used to initialize

the array instead of using a separate assignment for each array element. If we execute

this program for the same testcase (i = 1; j = 3; k = 3), we get the following output:

a[1] = 2; a[3] = 4; a[10] = 0. Instead of printing the value of a[3] it prints that of

a[10]. This implies that the value of k somehow got corrupted during the program

execution. If we obtain the dynamic slice of k on line 27, we would expect only line

8 to be in the slice as that is the only place in the program where k is modi�ed.

Instead, we �nd that the loop on lines 10{17 is included in the dynamic slice, as

shown in Figure 4.4. This suggests that the variable k was clobbered during the

execution of the loop. Further examination reveals that the fault indeed lies either

with the loop predicate: it iterates ten times when the array is declared to be only

eight elements long, or with the array declaration: it is declared to be eight elements

long instead of being ten elements long. Figure 4.5 shows the memory allocation made

by our compiler for all variables along with their contents at the end of the program

execution for the above testcase3. Note that the memory location that corresponds

to variable k indeed overlaps with that for a[9]. It is situations like this where precise

dynamic analysis in terms of memory cells is invaluable in revealing the fault.

The program in Figure 4.6 shows the same program as in Figure 1.1 except that

the segment of code that determines the class of a triangle has been moved into a

procedure. Figure 4.6 also shows the inter-procedural dynamic slice with respect

to area on line 53 during the second loop iteration in the main program when the

program is executed for the testcase: N = 1 and the sides of the two triangles are

(3, 3, 3) and (6, 5, 4).

3Memory allocation will vary from compiler to compiler.
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Figure 4.1 Static slice with respect to a[i] on line 29.
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Figure 4.2 Dynamic slice with respect to a[i] on line 29.
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Figure 4.3 Dynamic slice with respect to a[j] on line 29.
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Figure 4.4 Dynamic slice with respect to k on line 27.
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a[4]

a[5]

4

5

Figure 4.5 Storage layout of the program in Figure 4.4 at the end of the program
execution for the testcase (i = 1; j = 3; k = 3).
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Figure 4.6 Interprocedural dynamic program slice with respect to area on line 53
during the second loop iteration.
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5. LOCAL V/S GLOBAL SLICING

In Chapters 3 and 4 we informally de�ned a dynamic slice with respect to a

variable, a program location, and a testcase to be the set of those statements that

a�ect the value of the given variable at the given location when the program is

executed for the given testcase, and presented a constructive de�nition of a dynamic

slice. In this chapter we take another look at what it really means for a statement

to \a�ect" the value of a variable at a given location or for a statement to have

\inuenced" the control reaching a certain location.

5.1 Local Analysis

A program fault manifests itself, directly or indirectly, in one of the following

ways:

Case 1. Value of an expression, exp, at location, L, is observed to be incorrect.

Case 2. Control has incorrectly reached a location, L, it should never have reached.

Case 3. Control didn't reach the desired location, L.

Case 1

If the value of exp at location L is incorrect, there are two possibilities:

Case 1.1. Function computed by exp is incorrect, e.g., exp should have been x + y

instead of x� y. If we have determined this, we have localized the fault.

Case 1.2. Value of one (or more) of the variables, var, used in exp is incorrect, e.g.,

value of expression x+ y is incorrect because the value of x is incorrect. In this

case, we must �nd the dynamic reaching de�nition, R, of var at L. Note that
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there may be several static reaching de�nitions of exp at L, but there is only

one corresponding dynamic reaching de�nition.1

Having found the unique reaching de�nition R of the erroneous variable var at

L, there are two further possibilities:

Case 1.2.1. Value of the expression, exp1, computed at R is incorrect. In this

case, we are back to Case 1 with respect to the value of exp1 computed at

R.

Case 1.2.2. R is the wrong reaching de�nition of var. If this is the case, there

are four further possibilities:

Case 1.2.2.1. Control shouldn't have reached R, in which case we are back

to Case 2 with respect to the location of R.

Case 1.2.2.2. The correct de�nition of var is missing: either there is a

missing assignment to var along the path between R and L, or one

of the assignments along this path is incorrectly assigning a value to

the wrong variable. If we have determined this, we have localized the

fault.

Case 1.2.2.3. Control correctly reached R, but it didn't reach the correct

de�nition, R2, of var because it took the wrong path between R and

L. In this case, we are back to Case 3 with respect to location of R2.

Case 1.2.2.4. R shouldn't have been included in the program at all. In

this case, as we have discovered an extraneous assignment, we have

localized the fault.

Case 2

If control shouldn't have reached the location L, there are two possibilities: there

is no predicate enclosing L, or L is immediately enclosed by a predicate, pred.

1If var is a composite variable, e.g., an array or a record, we �nd the reaching de�nition of the
scalar component(s) of var with the wrong value.
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Case 2.1. L is not enclosed by any predicate. If control shouldn't have reached L, it

should have been enclosed by a predicate that would have prevented control

from reaching L. This means there is a missing predicate enclosing L. In this

case, we have localized the fault.

Case 2.2. L is immediately enclosed by a predicate, pred, e.g., an if-then-else or a

while predicate. Again, there are two possibilities:

Case 2.2.1. Control shouldn't have reached pred either. Then we are back to

Case 2 with respect to location of pred.

Case 2.2.2. Control should have reached pred but not L. In this case, there are

two more possibilities:

Case 2.2.2.1. pred evaluated incorrectly, in which case we are back to Case

1 with respect to the value of pred.

Case 2.2.2.2. There is a missing predicate along the path between pred

and L. If we have found this, we have localized the fault.

Case 3

If control didn't reach the desired location L, it must be immediately enclosed

by a predicate, pred which must have prevented control from reaching L. There are

three possibilities in this case:

Case 3.1. Control didn't reach pred either. In this case, we are back to Case 3 with

respect to the location of pred.

Case 3.2. Control correctly reached pred but not L. In this case, pred evaluated

incorrectly, so we are back to Case 1 with respect to the value of pred.

Case 3.3. pred should never have been included in the program. As we have found an

extraneous predicate in this case, we have localized the fault.
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5.2 Global Analysis

For large programs, the above step by step analysis may be much too tedious to

perform. If the fault is far removed from the location where it is manifested, it may

take a long time before we �nd the fault. Notice that in the above analysis many times

we need to recursively follow one of the three Cases 1, 2, or 3. The basis situations,

which imply the end of the search, are:

� An assignment statement is found to compute an incorrect function.

� A predicate expression is found to compute an incorrect function.

� An assignment statement is found to assign a value to a wrong variable.

� The desired assignment to a variable is missing.

� The desired predicate expression guarding a given statement is missing.

� An extraneous assignment is found to be present in the program.

� An extraneous predicate is found to be present in the program.

The inductive steps that require recursive application of Cases 1, 2, or 3 are:

� We �nd the dynamic reaching de�nition of a variable at a given location.

� We �nd the predicate immediately enclosing a given statement.

Sometimes fault localization may be expedited if, in the above analysis, we com-

bined many successive recursive steps into one. With this in mind, let us revisit the

three cases discussed above.

Case 1 Revisited

If the value of an expression, exp, at location L is incorrect, there are the following

possibilities:
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� There exists an incorrect assignment, A, such that the wrong value computed

by A has propagated into the value of exp at L through a transitive closure of

reaching de�nitions.

� An assignment, A, whose computation should have propagated into the value

of exp at L is missing from the program.

� An assignment, A, whose computation has propagated into the value of exp at

L should never have been executed.

� An assignment, A, whose computation should have propagated into the value

of exp at L never got executed.

� An assignment, A, whose computation has propagated into the value of exp at

L should never have been included in the program.

� A assignment, A, inside a loop, got executed an incorrect number of times (more

or less than necessary).

Case 2 Revisited

If control incorrectly reached a location, L, then there are two possibilities:

� There is a missing predicate enclosing the given location (not necessarily en-

closing it immediately; it may be enclosing it several nesting levels up).

� One of the several predicates that are enclosing the given location has evaluated

incorrectly.

Case 3 Revisited

If control didn't reach a given location, L, there are again two possibilities:

� One of the several predicates enclosing L must have evaluated incorrectly.

� One of the predicates enclosing L should never have been included in the pro-

gram.
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5.2.1 Dynamic Data Slice

In Case 1 of the global analysis, we need to �nd all assignments whose compu-

tations have propagated into the current value of exp. This can be done by taking

the transitive closure of dynamic reaching de�nitions of variables used in exp at the

given location. We call the set of all assignments that belong to this closure as the

\dynamic data slice" with respect to the given expression, location, and testcase. If

we know that the current value of exp is incorrect, then by examining its dynamic

data slice, we can �nd if a relevant assignment is missing, or if one of the assignments

computes a wrong function. Similarly, by examining the dynamic data slice, we can

also check if one of the assignments that shouldn't be present in the slice is present

there, and vice versa. If it is the former case (missing or incorrect assignment), we

have localized the fault. If it is the latter case (wrong assignment reached or the

correct assignment not reached), we are one step closure to �nding the fault: we

should continue our search using Case 2 or 3 of global analysis with respect the new

location. If, on the other hand, examining the data slice does not suggest any of these

two cases, it indicates that the error must have been caused because an assignment in

the data slice was executed an incorrect number of times. That is, the fault lies with

the execution frequency of an assignment, not with the assignment itself. This means

one of the loop predicates enclosing assignments in the data slice must be faulty. We

may have to resort to local analysis described above to detect such situations.

5.2.2 Control Slice

In Cases 2 and 3 of the global analysis, we need to �nd all the predicates that

enclose a given location. This can be done by taking the transitive closure of control

predicates starting with the given location. We call the set of all predicates that

belong to this closure as the \control slice" of the given location. If we know that

control has incorrectly reached a given location, we can examine the control slice

and check if a relevant predicate is missing, or if one of the predicates has evaluated

incorrectly. In the former case, we have localized the fault. In the latter case, we
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are again one step closer to �nding the fault: the predicate that evaluated incorrectly

either computes an incorrect function, or one of the arguments to the function has a

wrong value. In the former case, we have found the fault; in the latter case we continue

our search using Case 1 of global analysis with respect to the incorrect argument.

5.2.3 Dynamic Program Slice

Note that in the global analysis, we keep alternating between data and control

slices until we have localized the fault. Often times a fault manifests itself indirectly

several levels of indirection away from the fault itself. In such situations it may be

possible to localize the fault more quickly if we determined the closure of all relevant

data and control slices. That will give us the set of all statements, assignments as

well as predicates, that have any e�ect on the variable and/or location in question.

If we �nd that the value of an expression at some location is incorrect, we �rst �nd

its dynamic data slice. Then for each assignment in the data slice we �nd its control

slice. Next, for each predicate in the control slice we �nd its dynamic data slice, and

so on, until we reach a situation when no new statements can be added to this set.

We call the set of statements so obtained as the \dynamic program slice" with respect

to the given expression at the given location. Similarly, if we �nd that control has

incorrectly reached a given location, or if control didn't reach a given location, we

�rst �nd the control slice of that location. Then for each predicate in the control

slice, we �nd its dynamic data slice. Then for each assignment in the data slice we

�nd its control slice, and so on, until the situation is reached when no new statements

can be added. We call the resulting set as the dynamic program slice with respect

to the given location. So a dynamic program slice is really the transitive closure of

data and control slices with respect to each expression and location in the dynamic

data/control slice with respect to the variable/location in question.
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5.2.4 Static Slices

Just as we de�ned a dynamic data slice, we may de�ne static data slice with

respect to a variable and a location to be the transitive closure of static reaching

de�nitions of the given variable at the given location.

Notice that while de�ning a control slice above we did not use the word `dynamic'

in front of it. This is because, unlike reaching de�nitions, a statement always has at

most one predicate immediately enclosing it. No narrowing of enclosing predicates

can occur at run time. Thus the control slice with respect to a given location remains

the same in both static and dynamic cases. If control incorrectly reaches a statement

during program execution, we must examine all predicates enclosing the statement;

if, on the other hand, a desired statement is not reached during program execution,

we must still examine the same set of predicates.

The transitive closure of all relevant static data slices and control slices gives us the

static program slice with respect to the variable and/or location in question. A static

program slice with respect to a variable at a given location includes all statements

that could a�ect the value of the variable observed at the given location when the

program is executed for any testcase. Unlike a dynamic slice, a static program slice

also has another property: it is an executable program itself. It evaluates the variable

in question identically to the original program for all testcases [Wei84].

5.3 Summary

A program slice may be viewed as a closure of the corresponding data and control

slices. A data slice is the closure of relevant data dependencies alone while a control

slice gives the closure of control dependencies alone. Depending on the size and

complexity of the program, sometimes it may be better to examine data or control

slices instead of examining their closure (program slice). On the other hand, if the

person debugging the program is completely familiar with the program code, and the

fault is several indirections removed from its manifestation, examining the program
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slice may expedite fault localization. By the same token, if the person is not too

familiar with the program code or if the fault is only one or two indirections away

from its manifestation, the best course may be to follow direct reaching de�nitions or

examine the enclosing predicate.

Our prototype debugging tool, Spyder, provides mechanisms to allow both local

as well as global analysis to be performed. Besides program slices, it also provides

facilities for displaying data and control slices as well as direct reaching de�nitions.

And all these may be obtained for both static and dynamic cases. For example,

Figure 5.1 shows the static reaching de�nitions of variable area at line 43. Figure 5.2

shows the unique dynamic reaching de�nition for the same variable occurrence during

the second iteration of the enclosing while loop for testcase #1.

Figure 5.3 shows the dynamic data slice for sum at line 46 for testcase #1. Note

that the assignment on line 35 that computes the area of a right triangle is included

in the data slice even though neither of the two triangles in this testcase are right tri-

angles. This suggests that we should pursue Case 2 with respect to line 35. Figure 5.4

shows the corresponding static data slice.

Figure 5.5 shows the control slice with respect to the assignment on line 35. This

statement is incorrectly reached during the second loop iteration when the program

is executed for the testcase #1 because the enclosing predicate on line 34 evaluates

incorrectly: it evaluates to true instead of false because the value of variable class

examined by the predicate is incorrect at that instance. This suggests that we pursue

Case 1 with respect to value of class on line 34.

Figure 5.6 shows the dynamic program slice for area at line 43 when the execution

is stopped there during the second loop iteration for testcase #1. Note that the

erroneous assignment on line 24 is included in the slice. Also note that assignment on

line 37 that computes the area of the �rst triangle is not included in the slice because,

in this case, the computation of area during one loop iteration does not a�ect that

during another iteration. If, however, we obtained the dynamic program slice with

respect to sum on line 46, both assignments on lines 35 and 37 will be included in the
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slice because computation of area during each iteration a�ects the �nal value of sum.

Figure 5.7 shows the corresponding static program slice.
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Figure 5.1 Static reaching de�nitions of area on line 43
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Figure 5.2 Dynamic reaching de�nition of area on line 43 during the second loop
iteration
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Figure 5.3 Dynamic data slice with respect to sum on line 46 for the testcase #1.
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Figure 5.4 Static data slice with respect to sum on line 46.
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Figure 5.5 Control slice with respect to the statement on line 35.
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Figure 5.6 Dynamic program slice with respect to area on line 43 during the second
loop iteration for the testcase #1.
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Figure 5.7 Static program slice with respect to variable area on line 43
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6. FURTHER FAULT LOCALIZATION

In Chapters 3 and 4 we discussed various techniques to �nd dynamic program

slices. A dynamic slice is helpful in program debugging because it highlights only

those statements in the program that are relevant to the erroneous behavior of the

program. Sometimes we may be able to identify the fault simply by examining the

dynamic slice: we may notice that a statement in the slice computes an incorrect

function, or we may �nd that a statement we expected to be included in the slice is

not included there or vice versa. But oftentimes simply examining the slice is not

enough; we need to carry out further investigation into the program behavior before

we can localize the fault. In this chapter we discuss how we can further narrow down

our search for the fault by combining multiple dynamic slices.

6.1 Combining Dynamic Program Slices

In Chapter 2, we mentioned that program dicing [LW87] attempts to reduce the

size of the relevant program text to be examined by combining multiple static slices.

We can naturally extend that approach to using dynamic slices instead of static

slices to get even �ner error localization information. But a dynamic slice has four

arguments|program, variable, location, and testcase, and instead of varying only the

variable argument we can also vary the other arguments|testcase, location, and even

the program itself, to generate multiple dynamic slices and use the same approach to

combine them. In this section we explore how we can use this observation to derive

several heuristics that help further localize the fault.
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6.1.1 Varying the Testcase Argument

A testcase, T , for a program, P , is said to be an error-revealing testcase if P

produces an incorrect output when executed on T [DM91], and it is called a non-

error-revealing testcase if it produces the correct output.

6.1.1.1 Di�erence of Dynamic Slices

Many times we have a situation where a program works correctly on one testcase

but fails on another. In other words, we have an error-revealing testcase, Te, and a

non-error-revealing testcase, Tn. One way to proceed in this situation would be to

ask the following question: What does this program do di�erently under Te that it

does not do under Tn? That is, we should examine the di�erence in the program

behavior under Te and Tn. One way to �nd this di�erence is to see how the two

dynamic program slices with respect to Te and Tn di�er. If the dynamic slice of a

program, P , with respect to a faulty variable, var , at a program location, loc, for an

error-revealing testcase, Te, is denoted by DPS (P , var , loc, Te), and that with respect

to a non-error-revealing testcase, Tn, is denoted by DPS (P , var , loc, Tn), then one

heuristic would be to examine the set of statements given by:

DPS (P; var ; loc; Te)�DPS (P; var ; loc; Tn)

For simplicity, we also write this as:

DPS (�; �; �; Te)�DPS (�; �; �; Tn)

where omitting the �rst three arguments to DPS means their values are �xed; only

the fourth argument varies.

For example, consider again the program in Figure 3.17. Figure 6.1 shows its

dynamic program slice with respect to sum on line 40 for testcase #1 (recall that for

testcase #1 N = 2 and the lengths of sides of the two triangles are (3, 3, 3) and

(6, 5, 4), respectively). The program incorrectly evaluates the value of sum for this

testcase, so this is an error-revealing testcase. But when the same program is executed
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for another testcase where N = 2, and the lengths of the sides of the two triangles

are (4, 4, 4) and (5, 3, 3), respectively, the value of sum output on line 40 is correct.

We will refer to this testcase as testcase #2. So testcase #2 is a non-error-revealing

testcase. Figure 6.2 shows the dynamic program slice with respect to sum on line 40

for testcase #2. Figure 6.3 shows the di�erence between the two dynamic slices, or,

DPS (P , sum, line 40, testcase #1) � DPS (P , sum, line 40, testcase #2). Examining

the di�erence, in this case, should lead to faster localization of the fault on line 19

compared to examining the complete dynamic program slice shown in Figure 6.1.

Collofello and Cousins [CC87b] have proposed a similar approach where they �nd

basic-blocks (referred to as \decision-to-decision-paths" by them) in the program that

control reaches when the program is executed for an error-revealing testcase but that

are not reached when the program is executed for any non-error-revealing testcase.

But as a basic-block may also contain statements totally unrelated to the fault, this

approach yields much coarser error localization information compared to ours.

Sometimes after we subtract a dynamic slice with respect to a non-error-revealing

testcase from that with respect to an error-revealing testcase, we may be left with an

empty set. At other times, even if the set is non-empty, we may not �nd any fault

with statements in the di�erence set. These cases are generally indicative of one of

the following situations:

� A predicate in the program has a fault which causes some statements to be

incorrectly included in the slice with respect to the error-revealing testcase, but

it causes the same statements to be correctly included in the slice with respect to

the non-error-revealing testcase. Thus the extraneous statements in the former

slice do not get included in the di�erence set.

� A fault in a loop predicate is causing the loop body to execute an incorrect

number of times in the case of the error-revealing testcase, but it causes the
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Figure 6.1 Dynamic program slice of sum on line 40 for testcase #1.
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Figure 6.2 Dynamic program slice of sum on line 40 for testcase #2.
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Figure 6.3 Dynamic program slice for testcase #1 minus that for testcase #2.
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same loop body to execute the correct number of times in the case of the non-

error-revealing testcase. As the faulty loop predicate belongs to both slices it

is not included in their di�erence set.

� A faulty assignment statement, which a�ects the value of the variable in ques-

tion, is coincidentally computing the correct value in the case of the non-error-

revealing testcase, but it is unable to shield the fault in the case of the error-

revealing testcase. As the faulty assignment belongs to both slices, it does not

belong to their di�erence set.

All three cases above are instances of coincidental correctness|the �rst two involving

coincidentally correct evaluation of a faulty predicate and the third involving that of a

faulty assignment|when the program is executed on the non-error revealing testcase.

In such situations we may be able to �nd other non-error-revealing testcases that do

not cause the above problem. For some faults, however, it may be impossible to �nd a

non-error-revealing testcase that does not cause coincidental correctness. Oftentimes

the fault may be such that the program fails on every testcase we try. For such faults

we may not be able to �nd a non-error-revealing testcase at all. In these situations

we may not be able to apply the strategy outlined above, but we may still be able to

localize the fault using some of the other strategies discussed below.

The success of the above strategy depends on judicious selection of the non-error-

revealing testcase Tn. For this strategy to work, we should try to �nd a non-error-

revealing testcase that is \similar" to Te. In the example above, Tn was similar to Te

in that both involved an equilateral triangle. If, on the other hand, the non-error-

revealing testcase has nothing in common with the error-revealing testcase, exam-

ining the di�erence between the corresponding slices may not be meaningful at all.

examined. For example, consider another non-error-revealing testcase, testcase #3,

where N = 1, and the sides of the triangle are (5, 3, 3). If we subtracted the dynamic

slice of sum on line 40 for testcase #3 from that for testcase #1, we will get very
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little reduction in the relevant code to be examined. Figure 6.4 shows the resulting

set after performing this subtraction.

6.1.1.2 Union of Dynamic Slices

In the strategy outlined above, we subtracted the dynamic slice with respect to

one non-error-revealing testcase from that with respect to an error-revealing testcase.

Very often we have a situation where the program under test fails on a speci�c testcase

but works correctly on many other testcases. That is, we have only one error-revealing

testcase, Te, but several non-error-revealing testcases, Tn1 ; Tn2; : : : ; Tnq . In this case,

we may be able to get a further reduction in the relevant code to be examined if we

subtracted the dynamic slices with respect to all non-error-revealing testcases from

the dynamic slice with respect to the single error-revealing testcase. That is, we

should examine:

DPS (�; �; �; Te)�
[

i=1;2;:::;q

DPS (�; �; �; Tni)

For example, for the same program mentioned above, consider an error-revealing

testcase, testcase #4, where N = 3 and the lengths of sides of the three trian-

gles are (5, 5, 5), (6, 5, 4), and (3, 2, 2), respectively (we now have a total of four

testcases for this program: two error-revealing testcases, viz. #1 and #4, and two

non-error-revealing testcases, viz. #2 and #3). Figure 6.5 shows the set resulting

from subtraction of the dynamic slice with respect to the non-error-revealing testcase

#3 from that with respect to the error-revealing testcase #4. If, instead, we subtract

dynamic slices with respect to both non-error-revealing testcases #2 and #3 we end

up with a much smaller set of statements to examine, as shown in Figure 6.6.

6.1.1.3 Intersection of Dynamic Slices

If a non-error-revealing testcase is hard to �nd for an erroneous program, it should

be relatively easy to �nd another error-revealing testcase for the program. If we have

two error-revealing testcases, Te1 and Te2, another debugging strategy would be to
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Figure 6.4 Dynamic program slice for testcase #1 minus that for testcase #3.
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Figure 6.5 Dynamic program slice for testcase #4 minus that for testcase #3.
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Figure 6.6 Dynamic program slice for testcase #4 minus those for testcases #2 and
#3.
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examine the intersection of the dynamic slices with respect to the two testcases. That

is, we should examine:

DPS (�; �; �; Te1) \DPS (�; �; �; Te2)

If we have several error-revealing testcases, Te1; Te2; : : : ; Tep, we should check the in-

tersection of dynamic slices with respect to each of these testcases. That is, we should

examine:
\

i=1;2;:::;p

DPS (�; �; �; Tei)

We may try the above intersection strategy even if we are able to �nd non-error-

revealing testcases for the program. For example, consider another error-revealing

testcase, testcase #5, where N = 2 and the lengths of the sides of the two triangles

are (6, 5, 4) and (5, 3, 3), respectively, for the same program mentioned above.

Figure 6.7 shows the intersection of the dynamic slices with respect to sum on line 40

for testcases #1 and #5. The resulting set, in this case, should lead to relatively

faster localization of the fault as it is smaller than each dynamic slice with respect to

the two testcases.

But the intersection strategy may not always lead to reduction in the size of the

relevant code to be examined, depending on the nature of the fault. If we have both a

set of error revealing testcases and a set of non-error-revealing testcases, we may �rst

obtain the intersection of dynamic slices with respect to all error-revealing testcases

and then subtract the dynamic slice with respect to each non-error-revealing testcase

from the intersection. That is, if we have p error-revealing testcases, Te1; Te2 ; : : : ; Tep,

and q non-error-revealing testcases, Tn1; Tn2; : : : ; Tnq , we may examine:

\

i=1;2;:::;p

DPS (�; �; �; Tei) �
[

i=1;2;:::;q

DPS (�; �; �; Tni)

For example, Figure 6.8 shows the result of subtracting dynamic slices of sum on

line 40 for non-error-revealing testcases #2 and #3 from the intersection shown in

Figure 6.7.
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Figure 6.7 Intersection of dynamic program slices of sum on line 40 for testcases #1
and #5.
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Figure 6.8 Result of subtracting dynamic program slices of sum on line 40 for testcases
#2 and #3 from the intersection of the corresponding slices for testcases #1 and #5.
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6.1.2 Varying the Variable Argument

So far, while combining two or more dynamic slices, we always �xed the �rst three

arguments of a dynamic slice and varied only the fourth argument. Instead, we could

also �x the last three arguments and vary the �rst. That is, for the same testcase and

the same program location, we may �nd that the value of one variable is incorrect

but that of another is correct. In this case, another debugging strategy would be to

subtract the dynamic slice with respect to the latter from that with respect to the

former and examine the di�erence. In other words, we should examine:

DPS (�; vare; �; �)�DPS (�; varn; �; �)

where vare denotes a variable whose value is observed to be erroneous and varn de-

notes a variable whose value in not erroneous. This strategy is the dynamic analogue

of program dicing strategy proposed by Lyle and Weiser [LW87]

For example, consider the program in Figure 6.9. It reads a date (month, day,

year) and �nds the corresponding day-of-the-year and day-of-the-week. This program

has a fault on line 68 where the right-hand-side of the assignment performs an addition

instead of a subtraction. Consider the testcase when the date entered is (month=3,

day=1, year=1991). The program incorrectly computes day-of-the-week for this date

as a Monday instead of a Friday. But it correctly computes day-of-the-year as 60.

Figure 6.9 shows the dynamic slice with respect to date.day of the week on line 80 for

this testcase and Figure 6.10 shows the dynamic program slice for date.day of the year

at the same location for the same testcase. Figure 6.11 shows the result of subtracting

the latter from the former. Clearly, this di�erence should lead to faster localization

of the fault on line 68 compared to the dynamic slice shown in Figure 6.9.

Just as we generalized the strategies discussed in Section 6.1.1 from considering

only two testcases to multiple testcases, we can also generalize the above strategy from

considering only two variables to multiple variables. That is, instead of subtracting

the dynamic slice with respect to one correct variable from that of an incorrect one,

we may subtract dynamic slices of several correct variables from the dynamic slice
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Figure 6.9 Dynamic program slice of date.day of the week on line 80 for testcase
(month=3, day=1, year=1991)
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Figure 6.10 Dynamic program slice of date.day of the year on line 80 for testcase
(month=3, day=1, year=1991)



125

Figure 6.11 Result of subtracting the dynamic program slice of date.day of the year
on line 80 for testcase (month=3, day=1, year=1991) from the corresponding slice of
date.day of the week.
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of the incorrect variable. Similarly, if we observe that values of several variables are

incorrect, we may check the intersection of dynamic slices with respect to each of

these variables.

6.1.3 Varying the Location Argument

Sometimes while debugging a program, we may observe that the value of a variable

is correct at one instance but incorrect at another. For example, we may �nd that a

variable being modi�ed inside a loop has a correct value at the end of one iteration

but the same variable assumes an incorrect value at the end of the next iteration.

In this situation, we may want to examine the di�erence in the dynamic slices with

respect to the two instances of the same variable for the same testcase. That is, if the

instance when the variable in question assumes an erroneous value is denoted by loce

and that when it assumes a correct value is denoted by locn, another strategy would

be to examine:

DPS (�; �; loce; �)�DPS (�; �; locn; �)

For example Figure 6.12 shows the dynamic slice with respect to area on line 37

during the �rst loop iteration for testcase #1, and Figure 6.13 shows the corresponding

slice during the second iteration. For this testcase, area is computed correctly during

the �rst iteration but incorrectly during the second. Figure 6.14 shows the result

after the slice in Figure 6.12 is subtracted from that in Figure 6.13.

As was done in Sections 6.1.1 and 6.1.2, we can also generalize the above strategy

to subtracting dynamic slices of multiple correct instances of a variable for a given

testcase from that of an incorrect instance of the same variable for the same testcase.

Similarly it can also be generalized to taking intersections of the dynamic slices with

respect to multiple incorrect instances of the same variable for the same testcase.

6.1.4 Varying the Program Argument

Oftentimes during program development, we encounter the following situation:

We have a correct program, Pn, which when executed on a testcase, T , computes the
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Figure 6.12 Dynamic program slice of area on line 37 during the �rst loop iteration
for testcase #1.
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Figure 6.13 Dynamic program slice of area on line 37 during the second loop iteration
for testcase #1.
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Figure 6.14 Result of subtracting the dynamic program slice of area on line 37 during
the �rst loop iteration for testcase #1 from the corresponding slice during the second
loop iteration.
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correct value of an output variable, var . We then make some changes to Pn, e.g., to

add some new functionality to it. But when the modi�ed program, Pe, is executed

on T , it produces a wrong value of var . In situations like this, another debugging

strategy would be to examine the changes we made to P , especially those portions

of the changes that a�ect the value of var . This can be facilitated by obtaining the

di�erence in dynamic program slice of Pe with respect to var for testcase T from the

corresponding slice of Pn. That is, we should examine:

DPS (Pe; �; �; �)�DPS (Pn; �; �; �)

This, of course, requires that we keep track of correspondence between statements

in the old and the new program. If the changes made to Pn consist of addition of

new statements, deletion of some old statements, or simple modi�cations of some old

statements, this correspondence is easy to keep. But if the changes made are more

complex, e.g., moving statements around and modifying them at the same time, the

correspondence between statements in the two programs may not be clear any more.

But in situations where the correspondence between statements in Pn and Pe remains

largely intact, this strategy should be useful. Our prototype debugging tool, Spyder,

presently does not keep track of correspondence between statements in versions of the

same program, hence it does not currently support this strategy.

6.2 Combining Data Slices

A program slice contains both assignments and predicate expressions. So the

di�erence of two program slices may also contain both assignments and predicates.

While it is relatively easy to reason about the presence or absence of an assignment

statement from the di�erence set, doing the same for a predicate expression may

become di�cult. Suppose an assignment statement, A, is present in the dynamic

slice of var at the program end for an error-revealing testcase, Te. If A is absent

from the di�erence set obtained by subtracting the corresponding dynamic program

slice with respect to a non-error-revealing testcase, Tn, from the above slice, it means
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that the value computed by A also contributed towards computation of var for Tn,

and hence, baring a case of coincidental correctness, A is unlikely to contain a fault.

Now suppose an if-predicate, P , is also present in the dynamic program slice with

respect to Te but absent from the di�erence set mentioned above. Does this mean P

is unlikely to contain a fault? It may be the case that P incorrectly evaluated to true

in the case of Te thus producing the wrong output, but correctly evaluated to true in

the case of Tn. As there are only two possible outcomes of evaluating a predicate, true

or false, it is relatively easy for faulty predicates to achieve coincidental correctness.

Thus it may be helpful if, instead of examining di�erences of dynamic program

slices, we examined di�erences of dynamic data slices. If we �nd that the value of var

is incorrect at the end of the program execution for testcase Te, we should �rst apply

the strategies discussed in Section 6.1 but substituting dynamic data slices in place of

program slices. Then, examining the resulting set, either we are able to localize the

fault, or we �nd that an assignment is incorrectly present or absent in the resulting

set. In the latter case, we can examine the control slice of that assignment. Again,

either we are able to identify the fault with some predicate in the control slice or we

are able to identify another variable, var0, used in some predicate in the control slice

to have a wrong value. We can then repeat the same process with respect to var0.

Let us apply this strategy for fault localization for the program in Figure 6.1 for

testcase #1. Our �rst step would be obtain the dynamic data slice with respect to

sum on line 40. Figure 6.15 shows this slice. Also, we know that the value of sum is

printed correctly for testcase #2. So we also obtain the corresponding dynamic data

slice with respect to testcase #2. Figure 6.16 shows this slice. We next subtract the

latter data slice from the former. Figure 6.17 shows the resulting set. It contains

only one assignment on line 30, indicating that as far as the value of sum is concerned

the only thing that the program does for testcase #1 but not for testcase #2 is the

assignment on line 30. Examining this assignment reveals that it computes the area of

a right triangle. But testcase #1 does not contain any right triangle which means this

assignment is incorrectly reached during the program execution. So we next examine
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the control slice of line 30, shown in Figure 6.18. We �nd that line 30 is reached

because the predicate on line 29 evaluates to true. That happens because class has

an incorrect value at that instance. So we have localized the problem to class having

an incorrect value on line 29. We then examine the dynamic data slice of class on

line 29, shown in Figure 6.19. We �nd that only the assignment on line 26 is in the

slice and that assignment is also incorrectly reached. Figure 6.20 shows the control

slice of line 26. Examining this slice, we �nd that assignment on line 26 is reached

because the predicate on line 25 evaluates to true. This indicates that the value of

one of the variables referenced by the predicate must be incorrect. After examining

these variables we �nd that the value of b sqr is indeed incorrect. Figure 6.21 shows

the dynamic data slice of b sqr. Examining this data slice, we can quickly isolate the

fault on line 19.

6.3 Summary

In this chapter we have proposed several strategies for fault localization based on

examining the di�erence, union, intersection, or a combination of these operations,

on dynamic program- or data slices. It should be emphasized that these strategies are

only heuristics; they are not guaranteed to work in all situations. They provide mech-

anisms that are useful in many debugging situations, and it is up to the programmer

to use them e�ectively.
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Figure 6.15 Dynamic data slice of sum on line 40 for testcase #1.
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Figure 6.16 Dynamic data slice of sum on line 40 for testcase #2.
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Figure 6.17 Result of subtracting the dynamic data slice of sum on line 40 for testcase
#2 from the corresponding slice for testcase #1.
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Figure 6.18 Control slice of line 30 for testcase #1.
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Figure 6.19 Dynamic data slice of class on line 29 for testcase #1.
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Figure 6.20 Control slice of line 26 for testcase #1.
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Figure 6.21 Dynamic data slice of b sqr on line 25 for testcase #1.
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7. EXECUTION BACKTRACKING

One of the three steps in the debugging paradigm outlined in Chapter 1 is to

restore the program state to that attained when the program execution last reached

a given earlier statement. This can be easily achieved if the debugging tool provided

an execution backtracking facility. In this chapter, we outline two approaches to

implement statement-level execution backtracking. We �rst consider, in Section 7.1,

how such a facility may be implemented for a simple programming language. Then,

in Section 7.2, we discuss how additional language features can be handled under the

same approaches.

7.1 Simple Execution Backtracking

At any time during the program execution, the state of the program consists of

two things: values of all variables in the program at the time, and the location of the

program control. Executing a statement causes one program state to be transformed

into another. The type of the transformation depends on the type of the statement.

For simplicity, let us �rst consider the simple language used in Chapter 3 that consists

of assignment, conditional (if-then-else), loop (while-do), and input-output (read,

write) statements and their compositions. We also assume for the moment that

only scalar variables are used and that expressions do not cause side-e�ects. An

assignment statement modi�es the program state so that the new state is identical

to the previous state except for two things: the value of the variable on the left hand

side of the assignment may be di�erent, and the control location is modi�ed to be

the successor statement. The if and the while predicates, on the other hand, only

modify the control-location.
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Thus execution of a statement essentially causes two kinds of e�ects on the pro-

gram state: it modi�es control location, and it may change values of one or more

variables. Backtracking over a statement would require some way of undoing these

two e�ects. The �rst e�ect, modifying the control location, can easily be undone if we

simply record the execution history of control locations|the sequence in which state-

ments are visited during program execution. Then undoing the control-location e�ect

would simply require traversing this sequence in the opposite direction. The second

e�ect, viz., changing values of variables, can easily be undone if before executing the

statement we save the current values of variables modi�ed by the statement. Then

undoing this e�ect would simply require restoring the previous values saved. In the

following section we discuss the execution history saving approach to backtracking.

Then in section 7.1.2 we show that by constraining backtracking in a particular way,

it can be implemented much more e�ciently.

7.1.1 The Execution History Approach

In Section 3.2.2 we associated a def set with each node in the ow-graph of a

program. Nodes in a ow-graph correspond to simple statements (assignments, reads,

writes) and predicate expressions (conditions in if, while statements) in the program.

The def set of an assignment statement consists of the variable on the left-hand-side

of the assignment, while the def set of a predicate expression is the empty set. If the

language permits expressions with side-e�ects, then def sets of both assignments and

predicates may contain several variables. The def set of a read statement includes

variables read by the statement, and that of a write statement is an empty set.

Henceforth, we also refer to read statements as assignment statements.

To be able to backtrack to any statement arbitrarily far back in execution, we need

to record the complete execution history of statements and the corresponding previ-

ous values of variables in their def sets. Then we can backtrack to any statement by
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restoring the previously saved values of def set variables starting at the current loca-

tion and going backwards until that statement is encountered in the saved execution

history.

For example, Figure 7.2 shows the execution history of the program in Figure 7.1

for the testcase (x = 7, y = 3), annotated with the saved def set values. The program

state at the end of the execution is x = 7, y = 3, r = 1, q = 2, and temp = 3. If

we wish to backtrack execution until just before the loop at statement S7 started

execution, then we will have to restore all values in the def sets starting at the end

of the execution history and going backwards up to (and including) entry 10. The

program state will now become x = 7, y = 3, r = 7, q = 0, and temp = 12, just like

it was when control �rst reached the while loop at statement S7.

Note that if a statement nested in a loop body is executedN times because of loop

iteration, there will be N corresponding entries for that statement in the execution

history. Hence, for programs with long-running loops, the execution history of the

program can grow very long. Further, because the number of times a loop iterates may

depend on run-time input, the length of the execution history may not be bounded

at compile time. Thus, the space required to record the execution history and the

corresponding def set variable values may not be allocated in advance. Besides having

this space problem, the above approach is also time ine�cient. If we have to backtrack

up to a statement before a loop, then we have to backtrack individually over each

iteration of the loop. In the next section we outline a di�erent approach that does

not have these disadvantages.

7.1.2 The Structured Backtracking Approach

Just as we de�ned def sets of assignment statements and predicate expressions,

we can also de�ne def sets of composite statements like if and while to be the set

of all those variables whose values could be modi�ed during the execution of that

statement. For example, the def set of a while loop will consist of all variables that

could be modi�ed if the loop body is executed one or more times.
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S1: read (x, y);

S2: r := x;

S3: q := 0;

S4: temp := y;

S5: while (temp <= x) do

S6: temp := temp * 2;

S7: while (temp <> y) do begin

S8: q := q � 2;

S9: temp := temp div 2;

S10: if (temp <= r) then begin

S11: r := r � temp;

S12: q := q + 1;

end;

end;

S13: write (q, r);

Figure 7.1 Program to divide two integers.
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1: S1, [x:?, y:?]

2: S2, [r:?]

3: S3, [q:?]

4: S4, [temp:?]

5: S5, [ ]

6: S6, [temp:3]

7: S5, [ ]

8: S6, [temp:6]

9: S5, [ ]

10: S7, [ ]

11: S8, [q:0]

12: S9, [temp:12]

13: S10, [ ]

14: S11, [r:7]

15: S12, [q:0]

16: S7, [ ]

17: S8, [q:1]

18: S9, [temp:6]

19: S10, [ ]

20: S7, [ ]

21: S13, [ ]

Figure 7.2 Execution history of the program in Figure 7.1 for the testcase X = 7, Y
= 3, along with the saved def set values.
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def sets of composite statements can be computed from the def sets of their

constituent assignment statements. If we denote source statements by S, S1, and S2,

and a boolean expression by cond, then the def sets of some composite statements

may be computed as follows:

def (S1;S2) = def (S1) [ def (S2)

def (if cond then S) = def (cond) [ def (S)

def (if cond then S1 else S2) = def (cond) [ def (S1) [ def (S2)

def (while cond do S) = def (cond) [ def (S)

For example, the def set of the while loop beginning at statement S7 in Figure 7.1

is fq, temp, rg, and that of the if statement at statement S10 is fr, qg.

Like assignment statements, we can also save values of all variables in the def set

of a composite statement just before executing that statement. To backtrack over a

while statement, we simply need to restore previous values of variables in its def set

instead of undoing the e�ect of each iteration of the loop in the reverse order. If we

also restrict backtracking such that one may not directly backtrack from a statement

outside a composite statement to a statement nested inside it, then we can avoid both

the space and time ine�ciency problems of the execution history approach outlined

above. Under the structured backtracking approach, for each statement|simple or

composite|the debugger allocates space to save just one instance of values of all

variables in its def set. Any time control reaches that statement, the debugger saves

the current values of variables in its def set in the same space. So every time a

statement in a loop body gets executed, the current values of variables in its def

set overwrite the previously saved values. Thus, it is possible to backtrack from a

statement in a loop body to an earlier statement in the same loop body for the current

iteration, but it is not possible to directly backtrack to a previous iteration of that

loop.

To illustrate how backtracking is constrained, consider the following program seg-

ment:
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S1: ....

S2: while cond do begin

S3: ....

S4: ....

S5: ....

end;

S6: ....

S7: if cond then begin

S8: ....

S9: ....

end else begin

S10: ....

S11: ....

end;

S12: ....

S13: ....

All of the following instances of backtracking are not allowed under structured back-

tracking:

from S6 to S5

from S12 to S9

from S9 to S3

from S3 in iteration i to S5 in iteration i� 1

Following are some valid instances of structured backtracking:

from S2 to S1

from S5 to S3 within the same iteration

from S6 to S2

from S4 to S1
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from S9 to S8

from S13 to S7

Note that one can backtrack from a statement inside a loop to a statement outside

it. These restrictions are analogous to those followed in structured programming and

included in most modern language standards|disallowing jumps to a statement inside

a loop from outside it, but allowing breaks from inside a loop to outside.

The restriction on backtracking over only complete statements is not an unduly

constraining one. In a sense, it is similar to encouraging structured execution in

the backward direction. As such, analyzing the e�ects of statements in reverse order

should be much easier and logical because the user needs to consider only one complete

statement at a time. If one needs to backtrack to a statement inside a composite

statement from a statement outside it, one can always backtrack �rst to the beginning

of the composite statement, and then execute forward to the desired statement.

Under the structured backtracking approach, we no longer need to save the exe-

cution history. Also, for each statement the amount of space required to save values

of variables in its def set is �xed, so all the space required may be allocated in ad-

vance. In the next section we derive bounds on space requirements of the structured

backtracking approach.

7.1.3 Bounds on Space Requirements

If an assignment statement is nested N levels deep, then the variables modi�ed

by it would belong to def sets of N statements|N � 1 composite statements in

which it is nested, and the assignment statement itself.1 Let A be the total number

of assignment statements in the program, si be the size of change set of the ith

assignment statement, ni be the nesting level of the ith assignment statement, and S

1For simplicity, an assignment statement not nested in any composite statement is assumed to
be at level one; an assignment statement with a single enclosing if or while statement is assumed
to be at level two; and so on.



148

be the sum of sizes of def sets of all statements in the program. Then we have:

S =
AX

i=1

(ni � si) (7:1)

Or,

S � A�maxAi=1ni �maxAi=1si (7:2)

Let

� = maxAi=1ni (7:3)

and

� = maxAi=1si (7:4)

That is, � represents the maximum nesting level in the program, and � represents

the size of the largest change set of all assignment statements in the program. Then,

from (7.2), (7.3), and (7.4), we have:

S � A� �� � (7:5)

Let L be the length of the program in number of source lines. Then, because there

are A assignment statements in the program, there can be at most L�A composite

statements in the program. As only composite statements increase nesting levels of

statements, the maximum nesting level of any assignment statement in the program

can be L �A+ 1. That is,

� � L�A+ 1 (7:6)

From (7.5) and (7.6) we have:

S � A� (L�A+ 1) � � (7:7)

Or,

S � � � (L�A�A2 +A) (7:8)

For a given L, the right-hand side of this equation is a function of A. We �nd its

maximum by di�erentiating it with respect to A and equating the derivative to zero.
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That gives us:2

A =
L+ 1

2
(7:9)

Substituting this value of A in (7.8), we get:

S �
1

4
� � � (L2 + 2 � L+ 1) (7:10)

Or,

S = O(L2) (7:11)

But this is only a theoretical worst-case upper bound. In practice, we have observed

that both � and � are usually small constants. Denoting the product �� � by c, we

get from (7.5):

S � c�A (7:12)

But the number of assignment statements in the program is bounded by the program

length, so we also have:

A � L (7:13)

Combining (7.12) and (7.13) we get:

S � c� L (7:14)

Or,

S = O(L) (7:15)

That is, in the usual case, the sum of the sizes of the def sets of all statements in

the program is of the order of the length of the program. In particular, this size is

independent of running time.

7.2 Extensions

In the previous section we used a simple programming language to describe two

approaches to implement execution backtracking. In this section we examine how

other language features like records, arrays, pointers, and procedures are handled.

2For simplicity of presentation, we treat the function as continuous, although it is a function of
the discrete variable A. For this discrete function, the maximum occurs at A = dL=2e.
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Records are easy to handle: We simply need to treat each �eld of a record as

a separate variable. Handling arrays and pointers, however, requires more work.

Assignment to an array element, like A[i] := : : :, or an indirect assignment through

a pointer, like pointer " := : : :, di�ers from an assignment to a scalar variable,

like var := : : :, in that the exact address of the memory location modi�ed by the

assignment in the latter case is �xed and known at compile time, whereas that in the

former case is not. We can, however, easily overcome this problem by recording both

the address and the contents of the memory location modi�ed by the assignment just

before it is executed. Then the execution can be backtracked over the assignment by

restoring the contents at the address saved. Or, all|records, arrays, and pointers|

can be uniformly handled by de�ning def sets in terms of memory cells, as was done

in Chapter 4 the case of dynamic slicing. Now, just before executing an assignment,

both its def cell and the contents of the def cell are saved. Backtracking over an

assignment now means restoring the saved contents into the appropriate memory cell.

When an indirect assignment through a pointer appears within a loop, the address

of the memory location assigned may vary from one iteration to another. In this case,

the precise def set of the loop can not be determined at compile time. Thus it is

constructed at run-time: each time around the loop, the address and the contents

of the memory cell assigned are added to def set of the loop. If the def cell being

added is already present in the def set of the loop, then it is simply ignored. The

size of the def set of the loop, in this case, may not be bounded at compile time.

But the space bounds derived in Section 7.1.3 would still hold if, in the case of an

indirect assignment, we treat si to be the size of the complex data-structure modi�ed

incrementally by multiple occurrences of the same statement during the program

execution.

Backtracking into a procedure call from outside it, in the execution history ap-

proach, requires recreating the stack frame of the call. In the structured backtracking

approach, however, procedure calls are treated just like composite statements: one
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may not backtrack into a procedure call from outside it. The side-e�ects of the proce-

dure call constitute the def set of the call. Like a loop, when an indirect assignment

is executed inside a procedure, the def set of the procedure call is updated appropri-

ately. Recursion is handled by saving def sets of all statements inside a procedure on

the current stack frame of the procedure.

Backtracking over I/O operations poses special problems. Any system can at most

undo things that are directly under its control. If any of its actions have e�ects outside

the boundary of the system, then the system, in general, cannot always retract them.

For instance, we have no way to save the \state" of a line-printer to allow us to later

backup to that state. One possible approach to handling I/O operations involves use

of bu�ering along with pushback operations, similar to the \ungetc" operation in the

C programming language standard library. Another way to handle �le I/O is to record

the current o�set of the �le pointer from the start of the �le just before executing the

�le I/O statement. Then, backtracking over a read from a �le also entails restoring

the �le pointer to the saved o�set. Spyder, our prototype debugging tool, employs

the latter technique using the \lseek" system call in Unix.

7.3 Summary

In this chapter we have outlined two approaches to implementing execution back-

tracking. Our prototype debugging tool, Spyder, currently supports backtracking

the execution history approach outlined in Section 7.1.1 Just as the forward program

execution is suspended whenever a breakpoint is encountered, Spyder can \execute"

the program in the reverse direction and continue executing backwards until a break-

point is reached. This way, when stopped at a breakpoint, if we �nd that the error

occurred at an earlier location and we wish to examine the program state at that

location, we simply need to set another breakpoint there and execute backwards.

When the backward execution stops at that breakpoint, Spyder will have restored

the program state to whatever it was when the execution last reached that point.
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Most conventional debuggers provide facilities to step through the program exe-

cution, statement by statement. Spyder also provides a back-stepping facility with

which the user can step back through the program one statement at a time.

For example, consider again the program in Figure 1.1 and testcase #1. If the

program execution is stopped at line 46, and we discover that the value of sum is

incorrect there, we may set a breakpoint on line 43 and start backward execution.

The loop was iterated two times for this testcase, so the second iteration will be

reached �rst during backward execution. When this execution stops at line 43, the

program state will be exactly the same as if the execution had stopped there during

normal execution during the second iteration of the loop. If we examine the value

of sum there, we will get its value just before the last assignment was executed, as

shown in Figure 7.3. If we �nd this previous value of sum to be correct, we may

conclude that it is the current value of area that is incorrect. If we wanted to backup

to the same location during the previous iteration, we simply need to continue our

backward execution from there on. As no other breakpoint is encountered during

the same iteration, the backward execution is again suspended when it reaches the

breakpoint at line 44 during the previous iteration.

Figure 7.4 shows another example of backtracking. The bottom output window

shows the tool output for a sequence of debugging commands. After we select a

testcase, the program execution is automatically stopped before the �rst executable

statement (on line 7, in this case). If we examine the value of array a at this time, we

�nd that all elements 0{9 of a have the value 0. We now set a breakpoint on line 16

and continue the program execution. The execution stops when the breakpoint on

line 16 is reached. We again examine the value of array a and �nd, as expected,

that elements 0{8 of the array have values 0{8 respectively but element 9 still has

zero because the execution stopped just before the assignment on line 16 is executed.

We may now set a breakpoint on line 12 and start reverse execution. The reverse

execution stops upon encountering the breakpoint after backing over the statement

on line 12. If we now examine the value of array a we notice that elements 5{8 have
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their values restored to zero. If we continue the reverse execution, the control stops

upon reaching the start of the program on line 7. Now the value of each element

of the array is restored back to zero, their initial value. If we continue the program

execution in the forward direction from here, it will again stop at the breakpoint on

line 12. The values of elements 0{4 will now again be 0{4 respectively, while those of

5{9 will still be zero.
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Figure 7.3 Tool screen after backtracking from line 46 to line 43
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Figure 7.4 Execution backtracking from line 16 to line 12 to line 7



156

8. SPYDER: A PROTOTYPE IMPLEMENTATION

Throughout this dissertation we have used �gures to present examples of various

types of program slices. These �gures are actually screen dumps of our prototype

debugging tool, Spyder, in action. In this chapter, we discuss functions provided by

Spyder in order to support our slicing{guessing{backtracking paradigm of debug-

ging. We also briey discuss the approach we used to implement Spyder.

8.1 The Tool Screen

Figure 8.1 shows a snapshot of the Spyder screen during a debugging session.

The screen is divided into �ve windows tiled vertically in the following order (from

top to bottom):

� File-Label Window

� Source Window

� Commands Window

� Output Window

� Testcase-Label Window

The �le-label window simply displays the name of the source �le currently dis-

played in the source window.

The source window provides a small viewing \window" into the source code of

the program being debugging. Contents of this window can be scrolled up and down

using the vertical scroll bar on the left of the source window. Another vertical bar,

on the left of the scroll bar, displays source line numbers for reference. Line numbers
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Figure 8.1 A snapshot of the Spyder screen during a debugging session.
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also scroll up and down along with the source code. Slices are displayed in the source

window by highlighting the lines that belong to the slice in reverse \video." If a stop

icon, in the shape of a stop sign, is displayed to the left of a source line, it indicates

that a breakpoint is currently set there. Multiple stop icons indicate that multiple

breakpoints are set at the same time. An arrow icon, in the shape of a right-pointing

solid arrow, to the left of a source line indicates that the control is currently stopped

at that line. There can be at most one arrow icon displayed at any time.

The commands window consists of three rows of buttons for issuing various slicing,

backtracking, and traditional debugging commands discussed in the next section.

The output window echos the commands entered by clicking on buttons in the

commands window, and displays Spyder's response to some of these commands,

most notably the print command.

Finally, the testcase-label window indicates the id-# of the testcase that is cur-

rently selected. All dynamic slicing commands are executed with respect to this

testcase.

8.2 Spyder Commands

Functions supported by Spyder can be classi�ed into the following �ve categories:

� Selection Setting Commands

� Slicing Commands

� Fault Guessing Commands

� Backtracking Commands

� Traditional Debugging Commands

8.2.1 Selection Setting Commands

Four commands fall into this category|three corresponding to the three toggle

buttons in the top row of the commands window, and one corresponding to the button
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labeled testcase in the bottom row. Exactly one of the three toggle buttons in the

top row, labeled static analysis, approximate dynamic analysis, and exact dynamic

analysis, is selected at any time, indicating the current slicing criterion selected.

These three buttons correspond to static slicing, dynamic slicing using Approach 1,

and dynamic slicing using Approach 3, discussed in Chapter 3, respectively. The

criterion selected speci�es whether the slices obtained with buttons labeled p-slice,

d-slice, c-slice, and r-defs in the second row, are static slices, approximate dynamic

slices, or exact dynamic slices.

In case one of the latter two toggle buttons is selected, we also need to specify

the id-# of the testcase to use, as dynamic slices are always obtained with respect

to a testcase. This can be done using the button labeled testcase in the bottom row

of the commands window. When this button is clicked, a dialogue window pops up

prompting the user to specify which testcase to use. The speci�ed testcase becomes

the current testcase and remains so until a new testcase is selected. The testcase-label

window is updated appropriately every time a testcase selection is made.

Testcases themselves are speci�ed using a separate tool called tcgen. When this

tool is invoked, it executes the program's object code, captures all input supplied to

the program, and saves it as a testcase. It also assigns an id-# to this testcase that

is used to refer to it during the current testcase selection process mentioned above.

8.2.2 Slicing Commands

Slicing functions of Spyder are provided by the �rst four buttons in the middle

row of the commands window, labeled p-slice, d-slice, c-slice, and r-defs. The but-

ton labeled p-slice is used to obtain program slices. The buttons labeled d-slice and

c-slice are used to obtain data- and control-slices, discussed in Chapter 5, respec-

tively. The button labeled r-defs is used to obtain immediate reaching de�nitions of

variables and other l-valued expressions. The slices obtained are static, approximate

dynamic, or exact dynamic, depending on which of the three toggle buttons in the

�rst row of the commands window is currently selected. The variable argument to
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these commands is speci�ed by selecting appropriate text in the source window using

the mouse. Any text there can be selected by clicking and dragging the mouse over

it. The location argument is speci�ed implicitly: In case of static and approximate

dynamic slicing, it is the location associated with the current selection in the source

window; in case of exact dynamic slicing, it is the location where the control is cur-

rently stopped, indicated by the right pointing arrow icon. The testcase argument

in case of both approximate and exact dynamic slices is speci�ed using the testcase

button, as discussed above.

8.2.3 Fault Guessing Commands

Spyder also provides mechanisms for guessing regions of the program that are

likely to contain a fault by combining slices in various ways discussed in Chapter 6.

Any slice currently displayed in the source window can be saved into an \accumulator"

by clicking on the button labeled save. The button labeled union performs a union

of the currently displayed slice with that saved in the accumulator and stores the

result in the accumulator. That is, it \adds" the currently displayed slice to the

accumulator. The currently displayed slice remains una�ected. The button labeled

inter performs an intersection instead of union in a similar fashion. The button labeled

di�er takes the di�erence of the accumulator and the currently displayed slice and

stores the result into the accumulator. That is, it \subtracts" the currently displayed

slice from the accumulator. If, instead, one wishes to subtract the saved slice from

the one currently displayed, one can �rst swap the two slices using the swap button,

and then use the di�er button. Contents of the accumulator can be displayed any

time using the show button. This command will replace the currently displayed slice

with that saved in the accumulator. The latter will remain una�ected. The currently

displayed slice can also be cleared any time using the clear button. The accumulator

is una�ected by this command. If one wishes to clear the accumulator, one can do

so by �rst clearing the display with the clear command and then storing it in the

accumulator using the save command.
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8.2.4 Backtracking Commands

Spyder provides two execution backtracking functions: backup and stepback.

Clicking on the backup button starts execution backtracking. Backtracking con-

tinues until a breakpoint is reached when the control is returned to the debugger

with the program state restored to what it was the last time control reached that

location. The button labeled stepback provides reverse single-stepping. Currently,

Spyder uses the execution history approach to execution backtracking, discussed

in Chapter 7, thus execution can also be backtracked to locations inside composite

statements. At present, execution can not be backtracked into procedure calls from

outside them because doing so requires that the corresponding stack frame be recre-

ated. Thus back-stepping over a procedure call restores the program state to the

state just before the procedure was invoked.

8.2.5 Traditional Debugging Commands

As we mentioned earlier, our slicing{guessing{backtracking paradigm works in

conjunction with traditional interactive debugging commands. For this reason, we

also implemented some of the basic traditional debugging functions such as break-

points, single-stepping, and examining variable values, into Spyder. A breakpoint

can be easily set by selecting some text on the corresponding line in the source win-

dow using the mouse and clicking on the stop button. Clicking on the delete button

removes a breakpoint from the currently selected line if one is set there. Values of

variables or expressions can be printed by selecting the corresponding text in the

source window and clicking on the print button1. Clicking on the continue button

resumes forward execution. Execution can also be single-stepped in forward direction

using the step command. Execution can be resumed at the beginning of the program

using the run command. A debugging session with Spyder is terminated by clicking

on the quit button.

1Values printed are always \current" values, i.e., with respect to the location where control is
currently stopped, not with respect to the location associated with the selection on the screen.



162

Many more standard debugging commands could be supported by Spyder, but

as our goal was to demonstrate usefulness of slicing, guessing, and backtracking func-

tions, we implemented only the bare minimum of other functions we needed.

8.3 Implementation

Spyder is built into versions of the GNU C compiler \Gcc" [Sta90] and the

GNU source-level debugger \Gdb" [Sta89]. As mentioned earlier, our intent was not

to write a production-quality tool but to demonstrate the feasibility as well as the

usefulness of the above mechanisms. We decided, therefore, to modify an existing

compiler and debugger rather than write a new system. We chose the GNU tools

because of their availability and their ability to run on di�erent hardware platforms.

Although this choice has led to some problems, it has allowed us to rapidly develop

a prototype that will work for full ANSI C.

8.3.1 Modi�cations to the Compiler

We modi�ed Gcc to produce the program dependence graph along with the object

code of the given program. This required making changes to the parser. The modi�ed

parser, apart from doing its normal functions, also builds the program's ow and

control dependence graphs in a syntax directed manner, as described in Chapter 3.

Both these graphs share the same set of nodes but di�erent sets of edges. Each node

is also annotated with its use and def sets, consisting of the l-valued expressions that

are used and de�ned, respectively, by the node. After parsing is complete, the ow

graph is traversed to compute data dependencies among nodes, and a third set of

edges belonging to the data dependence graph is created. The aggregate graph, that

now consists of ow, control, and data dependence subgraphs, is then written out.

This graph is later read and used by the debugger to �nd the various static slices.
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8.3.2 Modi�cations to the Debugger

Gdb was modi�ed to read the aggregate graph consisting of ow, control, and data

dependence subgraphs, produced by the modi�ed Gcc. Code was added to traverse

the aggregate graph to �nd static reaching de�nitions, and static data, control, and

program slices.

To support dynamic slicing and execution backtracking, Gdb was also modi�ed

to record the execution history of the program as it executes. The execution history

consists of a list of nodes in the aggregate graph appended in the order in which they

are visited during program execution. Each entry in this list also constitutes a node

in the dynamic dependence graph. Each such node is annotated with use and def sets

consisting of memory-cells used and de�ned by the node, respectively. The contents

of memory-cells that belong to def sets are also saved for each node. The modi�ed

Gdb captures all this information by setting numerous \transparent" breakpoints in

the program that the user does not see. It associates appropriate callback functions

with each of these transparent breakpoints. These callback functions perform all the

work of recording execution history, determining use and def memory-cells, saving

contents of the def memory-cells, etc., using the use and def set annotations of

the corresponding nodes in the static program dependence graph. After all callback

functions associated with a transparent breakpoint have been performed, program

execution is resumed automatically.

Whenever the program execution stops, e.g., when a breakpoint is reached, the

newly built portion of the execution history is traversed to create dynamic data

and control dependence edges of all nodes newly added to the dynamic dependence

graph. Now the dynamic dependence graph can be traversed to �nd dynamic reaching

de�nitions and dynamic data, control, and program slices. To perform execution

backtracking, the execution history is traversed in the reverse order and the previously

saved contents of memory-cells in def sets of nodes encountered are restored into the

corresponding memory-cells. Backtracking is stopped when a node is reached that has

a breakpoint currently set there. Segments of the execution history may correspond to
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program execution inside procedures. Thus care is taken while backtracking execution

over these segments. def sets of nodes in these segments may contain memory-cells

that belonged to the stack-frame of the procedure which may no longer be accessible.

Contents of such memory cells are not restored during backtracking as we currently

do not support backtracking into a procedure from outside it. But such use and def

sets are still used for the purpose of �nding dynamic slices.

Another major modi�cation that was made to Gdb was to provide a window

and mouse-based user interface for it so slices could be displayed by highlighting

corresponding source lines. We also added hooks into the system so all the traditional

debugging functions supported by Spyder, such as setting breakpoints, could also

be performed by simply selecting appropriate text in the source window using the

mouse and clicking on appropriate command buttons. We used the Athena widget

set and the Xt toolkit of the X Window System, Version 11, Release 4 to build this

interface.

8.4 Summary

In this chapter, we discussed our prototype debugging tool, Spyder, that ex-

plicitly supports our slicing{guessing{backtracking paradigm. We discussed various

functions provided by Spyder that make it possible for the programmer to follow

this paradigm. We also briey discussed the approach we took to quickly implement

Spyder.
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9. CONCLUSIONS AND FUTURE DIRECTIONS

Debugging is a complex and di�cult activity. The person debugging a program

must determine the cause and the location of the program failure. The failure may be

manifested far away from the fault itself|both textually (in terms of source lines) and

temporally (in terms of execution time). Providing facilities that increase the ability

of the programmer to identify the location or the nature of the fault involved will

lead to more e�cient debugging. In this dissertation, we have presented a debugging

paradigm and a prototype tool that attempt to provide precisely these facilities. Our

experience with both the paradigm and the tool so far has convinced us that they are

quite useful, and when applied properly they can result in signi�cant savings in de-

bugging time. They are, however, no panacea. They only provide useful mechanisms;

it is up to the user to use them e�ectively. In this chapter we list some limitations

of the these techniques, discuss some lessons learned from the implementation, and

�nally conclude this dissertation with some ideas on future research directions.

9.1 Limitations of the Paradigm

In Chapter 5, we mentioned that a fault manifests itself, directly or indirectly, in

terms of a data or a control inconsistency. While this is true, it requires that the

programmer translates the externally visible symptom of the fault into an internal

program symptom in terms of a data or a control problem before the techniques

described here may be used. This translation may not always be an easy one to

make. For example, if the external symptom is that some value in the program

output is incorrect, the corresponding internal symptom|the value of a variable or

an expression being incorrect at a print statement|may be easily determinable. But

if the external symptom is a missing value in a list, the programmer may �rst have to
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use traditional debugging facilities to �nd the corresponding internal symptom, and

then only the techniques described here may be used.

Also, slices do not make dependences among multiple occurrences of the same

statement explicit. For example, if a statement inside a loop body is included in a

slice and the value it computes during one iteration depends on the value it computes

during the previous iteration, this dependence is not made explicit in the slice as both

occurrences are grouped together while displaying the slice.

Execution backtracking also has some limitations. Backtracking over a statement

requires that all side-a�ects of executing the statement be undone. But, as we men-

tioned before, any system can at most undo things that are within its control. If

executing a statement has e�ects outside the boundaries of the program, e.g., into

the operating system, then the outside agents a�ected must cooperate with the de-

bugging tool to enable execution backtracking. In other situations when executing

a statement may have e�ects outside the controlling environment, it may not even

be feasible to undo them. In such situations one may have to either accept \partial"

backtracking, or resort to reexecuting the program from the beginning.

The programmer using these techniques must be aware of these limitations. The

limitations are not restrictive enough so as to preclude their use. On the contrary, our

experience has shown that despite these limitations, these techniques are extremely

useful in quickly isolating program faults.

9.2 Limitations of the Current Implementation

As we mentioned before, we built our prototype tool on top of an existing com-

piler and a debugger. While this choice enabled us to quickly build a working system

with which we could experiment with the proposed techniques and gain more insight

into their usefulness, it also enforced some limitations on what could or could not be

supported. For example, in Gdb, one cannot associate breakpoints with expressions

or statements; one can only associate them with source lines. As we use transparent
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breakpoints to capture all the information required for dynamic slicing and back-

tracking, the above limitation requires that there be a one-to-one correspondence

between the smallest syntactic units used in slicing and backtracking|assignments

and predicates|and source lines. Thus the current implementation requires that no

source line contains more than one assignment, and that predicates and assignments

appear on di�erent lines. If the program does not follow these conventions, the results

of backtracking and slicing may be unpredictable. Of course, it is easy to provide

a preprocessor that converts a program into the \canonical" form acceptable to the

tool.

It may be noted that these limitations are of the current implementation, not those

of the techniques themselves. These limitations arose because both the compiler and

the debugger were not originally written to support these techniques. They would

not arise if we implemented them in the context of an interpretor, or if we wrote our

own compiler and the debugger.

9.3 Lessons Learned from the Implementation

At the beginning of this research, we were faced with the following question:

Should we build our own compiler and a debugger in order to implement the tech-

niques we proposed, or should we use existing tools? The �rst alternative was rejected

because it would have meant signi�cant investment in time and energy in building

things that were not the focus of our research. Having decided on the second alter-

native, the next question was: Which existing compiler and debugger should we use?

One alternative was to build the prototype on top of an interpretor, but we couldn't

do so because of the lack of availability of a good interpretor for C in the public

domain. The Gnu tools, on the other hand, had several factors in favor of them:

� source code for these tools is freely available,

� they are quickly portable to multiple hardware platforms, and

� they support ANSI C.
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They also had some factors against them:

� no documentation about their implementation was available,

� both these tools are big (e.g., in terms of number of source lines), and

� they are undergoing evolution with frequent new releases and bug �xes.

Despite the negative factors, we believed the positive factors were strong enough to

warrant their use. In the hindsight, we certainly do not regret our decision to use

the Gnu tools. We believe the rich functionality of Gdb was an important factor in

enabling us to quickly develop our prototype.

Another decision we had to make was whether to modify the compiler to produce

instrumented code to gather runtime information necessary for dynamic slicing and

backtracking, or to have the debugger probe the program execution to collect the

same information. Both approaches had their own advantages and disadvantages. We

decided to use the latter approach because we believed it would be easier to implement

and experiment with. One side bene�t of using this approach was that by delaying

instrumentation of probes until debugging time it becomes possible to interactively

control which parts of the program to instrument and when to instrument. With

this approach it would be possible to start without any instrumentation and �rst

use static slicing techniques to narrow down the search for the fault to the extent

possible to a smaller region of the program. Then we could successively increase

program instrumentation to use approximate and exact dynamic slicing techniques

but on successively smaller and smaller program regions. This way we don't pay the

cost associated with instrumentation all the time. Also, once we have debugged a

particular region|a procedure, a module, or some other program segment|it would

be possible to instruct the debugger to \uninstrument" that region. If we had used the

former approach, it would mean either to pay the cost of instrumentation throughout

the program execution, or to repeatedly recompile the program with lesser and lesser

instrumentation.
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One consequence of our decision to let the debugger perform all the instrumen-

tation and collect necessary runtime information was that a lot of time is spent by

the system in context switching between the debugee and the debugger processes. As

processes are heavyweight processes in Unix, and as a context switch from one process

to another is a costly operation there, we can notice a signi�cant slow-down in pro-

gram execution in long-running programs because of the constant context switching.

But in other systems that provide lightweight processes and fast context switches the

overhead would be substantially smaller. Also, we can use the approach discussed

in the paragraph above to restrict this context switching to small regions. Another

promising approach to reduce the context switching overhead is to have the debug-

ger \patch" the object code of the debugging process with instructions that do all

the necessary logging of information required for dynamic slicing and backtracking

purposes [Kra91, DKM91].

9.4 Future Directions

We conclude this dissertation by listing some ideas on extending our work and

some preliminary thoughts on other research directions.

9.4.1 Fault Prediction Heuristics

In Chapter 6, we discussed several heuristics based on combining multiple dynamic

slices in certain ways. The success of these heuristics depends on the judicious selec-

tion of the criteria used to generate the slices to be combined. The selection is usually

made based on the programmer's knowledge of how the program has \behaved" on

various testcases during program testing. A promising research direction is to inves-

tigate if the tool can capture the wealth of information generated during testing, and

make recommendations about which criteria to use based on this information.
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9.4.2 User Interfaces

Spyder uses a simple user interface to display slices: The program source is

displayed in a window and source lines belonging to the slice are highlighted in reverse

\video". But at any instance only a fraction of the program is visible in the source

window. If one wants to examine a portion of the program that is currently not

visible, one must manually scroll up or down the text window. While this interface

may be su�cient for small programs, it is obviously not suitable for large programs.

An important line of research would be investigate how to display slices of large

programs with thousands of lines of code. One possible approach is to have an

interface that displays slices in a hierarchical manner. For example, at the top level,

a slice may simply consist of the names of relevant modules that have an a�ect on the

chosen slicing criterion. Then any module could be expanded to show the next level

of the slice within the module. This, for example, may simply consist of the names

of relevant functions or procedures within the module. Any procedure or function, in

turn, can then be expanded to reveal the corresponding intra-procedural slice.

In the previous section, we mentioned that one limitation of slices is that they do

not show inter-occurrence dependences of the same statement. One way to overcome

this limitation would be to construct another interface where multiple occurrences of

the same statement are not grouped together. But this interface may have some of

the same disadvantages of traces|it may ood the user with too much information.

One way to handle this could be to have a combination of the two interfaces.

9.4.3 Extensions to Other Domains

As we mentioned in Chapter 1, the scope of this research included examining the

proposed debugging paradigm in the context of sequential and procedural program-

ming languages such as Pascal and C. An obvious next step would be to examine how

the techniques described here can be extended for use with parallel or distributed

programs, and for programs written in other language domains such as functional,

logical, or object oriented programming languages.
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The idea of dynamic slicing is particularly appealing in the context of parallel

programs because unlike the techniques used in static analysis, dynamic analysis

will not face the problem of an exponential growth in the number of possible state

transitions of a parallel program. Dynamic analysis will only analyze the events that

did occur and in the order they actually occurred, not all possible events and their

orderings. Of course, one must be aware that any dynamic instrumentation of a

parallel program may modify its timing characteristics, thus possibly shielding some

timing-related faults in the program. But this limitation should not prevent one from

exploring other signi�cant advantages of using these techniques.

Similarly, the idea of dynamic slicing is also appealing for object-oriented programs

for the simple reason that an object-oriented program heavily relies on dynamic bind-

ing of messages sent to an object to methods that implement them, because there

may be many message-handlers for the same message in the class hierarchy of the

object. Dynamic slicing will highlight relevant code in the handlers that were actually

used and not all possible handlers that could be used.

Dynamic slicing will have the same advantage in case of logic programs: There may

be several clauses de�ning one predicate in a logic program, and dynamic slicing will

analyze what actually occurred during uni�cation instead of analyzing the possibly

in�nite search space.

9.4.4 Other Applications

Another research direction is to investigate if we could also put the information

gathered for slicing and backtracking to other uses besides debugging. One possibility

is to examine if we can perform some on-the-y code optimizations based on all the

dynamic information gathered. Another possibility is to investigate if, in cases when

methods used to �nd static slices provide overly conservative information (such as

including the whole program in the slice because the program used unconstrained

pointers), we can use the union of dynamic slices with respect to a judiciously selected

set of testcases to provide an estimate of the corresponding static slice. This approach
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may be useful in program maintenance when a good regression testset may already

be available.
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