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Abstract

This paper documents the design of an experiment to test a debugging oracle
assistant. A debugging oracle is responsible for judging correctness of program
parts or program states. A programmer usually acts as a debugging oracle. The
goal of a debugging oracle assistant is to improve the programmer’s speed and
accuracy.

Factors that complicate our design process include: (1) programmer variability,
(2) interaction between programmers and programs, (3) interaction between pro-
grams and faults, (4) possible confounding experimental factors, (5) any learning
effect from the assistance, (6) any learning effect from the program, and (7) the
lack of experienced programmers for our experimental studies.

This paper explains the rationale behind our design. It explains why the above
factors can make other choices, such as aLatin square design, produce misleading
results. It questions the validity of the so-called within-subjects factorial design
when the experimental factors exclude programmers. It explains the factors related
to programs, programmers, and faults that we need to control. It also explains why
we prefer to use analysis of covariance to reduce experimental error caused by
programmer variability instead of grouping programmers by expertise.

The paper also covers types of analysis to (1) test our hypotheses, (2) verify
assumptions behind the analysis of variance, (3) verify assumptions behind the
analysis of covariance, and (4) estimate adequate sample size. Lastly, we define
the inference space to which we can generalize the experimental results.
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1 Introduction

Debugging, a process of locating and fixing program faults, is considered one of the
most serious bottlenecks in software development today [Agr91]. Program faults,
or bugs, are physical evidence of errors; errors are inappropriate actions made
during software development that may ultimately cause software to fail [IEE83].

Most debugging tools, or debuggers, assist the debugging process by providing as
much program information as possible. Unfortunately, only a small subset of such
information has been experimentally evaluated. Even so, existing experimental
results already contradict several researchers’ expectations. Shneiderman et al.
[SMMH] and Gilmore and Smith [GS84] were surprised that detailed flow charts do
not significantly improve debugging speed and accuracy. Weiser and Lyle [WL91]
were surprised that static slices1 do not help programmers improve debugging
performance.

Experimental evaluations of debugging assistants can improve the quality of
current debuggers. They can help check if a debugger provides information that
significantly improves a programmer’s performance. They can later evaluate the
quality of tools or techniques that provide such information.

This paper documents the design of an experiment to test a particular type
of debugging assistant, called the debugging oracle assistant. This assistant is
explained in Section 2. Design and analysis aspects of the experiment are discussed
in Sections 3 and 4 respectively.

2 Debugging Oracle Assistant

An oracle is responsible for determining correctness. Atesting oracle is responsible
for determining correctness of a program. A debugging oracle is responsible for
judging correctness of the program parts or program states. Aprogram part can
vary from a collection of (not necessarily contiguous) program statements, to an
expression within one statement, to an operation or a variable. A program state
is composed of a control flow location and values of all variables visible at such a
location [Agr91].

A programmer usually assumes the role of a debugging oracle. To check if
faults lie in a suspicious program part, the programmers usually fix and rerun
the program until they obtain correct output [Gou75, Ves85, ADS91]. To check
variable values or flow of control in a program state, programmers usually rely
on their intuitions and deductive abilities. Unlike a debugging assistant that
may identify suspicious program parts (calledfault localization techniques) [Agr91,
Wei84, CC87, Sha83, Pan91], no automated debugging oracle assistant is currently
available. Because an automated oracle is far-fetched (if not impossible) without
using details of formal program specification, most fault localization techniques
assume that programmers know enough to judge a program properly.

The presumption that a programmer is an accurate or reliable oracle lacks
supporting evidence. When a programmer judges suspected locations, he can still
waste time investigating the correct locations, or ignoring the faulty one [Vir91].
To judge a suspected location, randomly fixing and rerunning statements is not
very efficient; when judging variables’ values, programmers might not be able to

1A static slice of a variable x at location l is composed of all statements that may influence x at l.
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distinguish the right from the wrong values.

The goal of a debugging oracle assistant (DOA) is to improve programmers’
oracle abilities by improving their speed and their accuracy. Given a set of one
or more suspicious program parts, or hypothesized fault locations, and/or program
states as an input, the DOA should help the programmer decide on the correctness
status of such locations: the DOA is not required to identify the actual type of fault.
If the hypothesized locations are not faulty, the DOA should help programmers
reject them as soon as possible.

To improve debugging speed, a DOA should help programmers to (1) select a
prime suspect among the given suspects and (2) rule out incorrect suspects from
the suspect list. A suspect is a program part suspected to be faulty or suspected to
cause the program to enter a faulty state. Asuspect list initially consists of all parts
identified in the given hypothesized fault locations.2 A prime suspect is the suspect
that ranks highest in its likelihood to be faulty [Vir91]. An incorrect suspect is a
suspect that is not faulty.

To improve debugging accuracy, a DOA should help a programmer verify a
program part in question. Given a statement as a prime suspect, for example, a
programmer usually restores and inspects one of its program states. He must verify
correctness of either the values of variables at that program state or the statement
itself. This task is not trivial when the specification of the variables/functions is ab-
sent. A DOA can do the next best thing by providing information that can enhance
programmer understanding of the program. Viravan refers to this information
collectively as decision support evidence [Vir91]. Brook’s beacon [Bro83], the infor-
mation that suggest the presence of a particular data structure or operations in the
program, is also potential decision support evidence.

The experimental design presented here can test whether a DOA helps the
programmer improve his speed or accuracy when he acts as a debugging oracle.
The specific nature of a DOA under test may require slight modification to the
design proposed here.

3 Experimental Design

Our hypothesis is that the presence of an appropriate DOA will help programmers
decide on the correctness status of hypothesized fault locations or program states
significantly faster or more accurately.

The formal model of our design to evaluate this hypothesis is shown in Figure 1.
We refer to Yijklm as a dependent variable. We refer toAi; Bj; R(ij)k; Pl as factors or
independent variables. Other terms in the model represent the interaction, or the
combined effects, between the above factors. An interaction between two factors
means that a change in response between levels of one factor is different for all
levels of the other factor [Hic73]. For example, if assistance and fault interact,
we would not be able to tell if the presence of the assistant always helps improve
verifying time or if certain fault type always required longer time to detect. We
may be able to tell, however, that the assistance provides significant help when the
program has that fault type.

This design guards against several complicating factors. In the following sec-
tions, we will explain how our experiment is structured to mitigate these factors.

2These definitions are broader than, but related to, the ones originally proposed by Viravan in [Vir91].
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Yijklm = �+ Ai +Bj +ABij + R(ij)k + Pl

APil + BPjl + ABPijl + RP(ij)kl + �(ijkl)m

Yijklm = accuracy or time

� = average of Y

Ai = Assistance; i = 1; 2
Bj = Fault ; j = 1; 2

R(ij)k = Programmers ; k = 1; 2; 3
Pl = Program; l = 1; 2

�(ijkl)m = Error ; m = 1

Figure 1: Mathmatical model of our experimental design

We assume that at least one error-revealing test case has been found and general
requirements of the program are available. The design proposed here should work
with a set of hypothesized fault locations, whatever its source. Either a program-
mer or a fault localization technique such as the ones described in [ADS93, PS93]
can define this set.

3.1 Independent Variables

Four independent variables or factors for our experimental design are assistance,
program, fault, and programmers. We also call assistance, program, and fault
treatments or main effects and programmers subjects or experimental units.

3.1.1 Assistance

The two levels of the assistance factor correspond to the absence and the presence
of DOA. The presence of the assistance may be offered off-line or on-line.

Off-line assistance is suitable when the DOA under investigation is not yet
implemented. To test the effectiveness of information that is potential decision
support evidence, for example, we can give additional information to programmers
who debug programs manually. Off-line assistance also prevents the programmer
from obtaining other helpful information that might confound the experiment.

On-line assistance is suitable when the DOA under investigation has already
been implemented or when it offers dynamic information. Testing the ease-of-use
of any tool or technique that generates helpful information, for example, should
be done on-line. Testing the helpfulness of a program trace, for example, is better
done on-line because the programmers can pick and probe at the specific program
states he wishes to observe.
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3.1.2 Program

The levels of program factor correspond to different programs. To keep the pro-
gramming language from becoming a factor, we pick the programming language
C (because our debugger prototype, Spyder [ADS93, Agr91] , works with C pro-
grams). To tap into an extensive collection of programs for the experiment, we use
archie. Archie is a system that allows one to rapidly locate various public domain
programs stored on hundreds of sites across the Internet.3

To keep the program domain from becoming a factor, we pick programs in
the general domain, or at least, from the same domain. To keep the program
size from becoming a factor, we pick comparable length programs. The programs
should contain statements within the same hundreds of lines. If possible, we pick
programs whose vocabulary sizes (Halstead’s total number of unique operators and
operands [Hal79]) are approximately the same.

To keep programming style from becoming a factor, we adjust both programs to
make their style consistent:

� Adjust the indentation level to four spaces. According to the study by Miara et
al. [MMNS83], 2-4 spaces should optimize the aid of indentation to program
comprehension.

� Adjust the comment style, perhaps by leaving only header comments in each
procedure.

� Adjust the programs to have approximately the same percentage of comments
over non-blank lines and same percentage of blank lines.

� Adjust the program to have the same proportion of mnemonic terms.

To keep the program control structure from becoming a factor, we pick pro-
grams that contain no goto’s. The study by Weissman [Wei74] shows a higher
comprehension score with structured programs.

To keep the procedure interconnections from becoming a factor, we pick pro-
grams whose procedures have the similar number of parameters, if possible. The
study by Woodfield et al. [WDS81] suggests that module interconnection may play
a more important role in ease of comprehension than the level of modularization.

To keep program reading strategies from becoming a factor, we rearrange the
procedures to follow (approximately) the execution order of the programs. The
study by Jefferies [Jef82] shows that experts understand programs better because
they read them in execution order whereas novices read programs in linear order.

We will vary only the complexity among programs. This will be done by varying
the types of data structure and the number of nesting levels. To avoid the confound-
ing problem, it is important to vary only one factor. Though the above list is not
necessarily an exhaustive list of all factors that affect comprehension or debugging
ability, it at least suggests the factors researchers must consider.

After adjustment to control program characteristics, we compile the programs
to ensure that they contain no syntactic errors. We test the programs thoroughly
before seeding a new fault. We find an error-revealing test case that reveals erro-
neous output caused by the seeded fault, then use a fault localization technique to
generate the hypothesized fault locations.

3To access archie, telnet to “quiche.cs.mcgill.ca” and use the login name “archie”. No password is
required.
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3.1.3 Faults

The levels of fault factor correspond to fault categories from which the fault types
are randomly selected. To expand our inference space, we choose two frequently
occurring fault categories: logic faults and data definition/handling faults. Most
error studies [Lip84, Bow80, PAFB82, MB77] rank logic faults first and data defini-
tion/handling faults second in frequency of occurrence. A few studies, like [WO84],
rank data definition/handling first.

To keep fault presence from becoming a factor, we select a fault type from a list
of either fault of commission or fault of omission, not both. According to [Gla81],
fault of omission (the failure to do something) is harder to find than a fault of
commission.

To keep fault location from becoming a factor, we plant the fault in procedures
in the same nesting level. The study by Atwood and Ramsey [AR78] reports that an
error both lower in the propositional hierarchy4 and lower in the program structure
is more difficult to detect and correct than a similar error higher in the program
structure.

To plant the fault, we use randomly selected statements (in the same nested
procedure level) that are pertinent to the selected fault type. For example, when
the fault type is an incorrect boolean operator, the statements in the list include if-
then-else, while-do, case, etc. Simple syntactic manipulation in randomly selected
statements for fault seeding, according to Knight and Ammann [KA85], can yield
the diversity of mean-time-to-failure (MTF) similar to that of unintended faults.

3.1.4 Programmers

Programmers, our experimental subjects, will be graduate students or seniors in
the department of Computer Sciences at Purdue University. All must have at least
three years of programming experience and know the programming language C.

3.1.5 Notes

Note that we leave out hypothesized fault location as a factor. If the hypothesized
fault location is a factor, a response variable to measure the accuracy will take on
either a 0 or 1 value. Zero may represent a wrong judgment and one may represent
a correct judgment. Variation in this type of data is difficult to detect with a small
sample size.

We define and fix the characteristics of a set of hypothesized fault locations
instead. Such characteristics may be expressed in terms of either the fault local-
ization technique that generates them or by the restrictions under which they are
selected. For example, the restrictions may state that five of the 10 non-overlapping
locations have no effect on the erroneous output and the other five do. Thus, our
response variables measure programmers’ performance with respect to a set of
hypothesized fault locations.

4Proposition hierarchy refers to the embedding or nesting of clauses in a sentence structure.
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3.2 Dependent Variables

Two dependent variables or response variables we want to measure are time and
accuracy.

3.2.1 Accuracy

The objective is to measure the accuracy of the programmers in judging correctness
of the given set of hypothesized fault locations and program states. Ananswer is
composed of judgements for all hypothesized fault locationss and program states
presented. It is up to the experimenter to count either one statement as a location
or one hypothesis with multiple statements as a location. A judgement for each
location is I, C, or D. I stands for incorrect. C stands for correct. D stands for do
not know yet. We add the D to avoid coincidentally-correct judgement.

We envision two types of accuracy measurements:

1. Accuracy of an answer (AC)
AC is the percentage of correct judgements of an answer. For example, sup-
pose the fault is in the second hypothesized fault location out of the given five
locations. The answer CICCC has 100% accuracy. IICCC has 80% accuracy.
CDDII has 20% accuracy. DDIDD has 0% accuracy.

2. Average accuracy (AAC)
AAC is the sum of accuracy of all answers by a programmer divided by the
number of answers. A programmer can get 100% AAC only when he gets his
first answer correct. If the programmer fixes and reruns some statements
three times before revising his answer from CDDII to CDDCI, we will count it
as four answers: three CDDII and one CDDCI. Suppose he follows that by two
CDDCC, one CDCCC, and one CICCC. His AAC is (3�:20+:4+2�:6+ :8+1)=8
or 50%.

AAC should reflect the programmer’s performance variability better than AC.
If we only use AC, both programmers in the example above will get 100%. Lower
AAC also suggests the amount of guessing involved.

3.2.2 Time

The time each programmer takes to judge the given locations correctly may either
be an absolute measure or a relative measure. We envision three time measure-
ments.

1. Verification time
This is the absolute time measurement, measured in terms of minutes. This
figure must exclude the noise, that is, the time that has nothing to do with the
verification. Suppose the experiment is off-line and we designate some people
to verify the correctness of the programmers’ answer. If we do not designate
enough people, some programmers may have to wait a while before they can
check their answers. This waiting time must be subtracted from the total
time.

2. Number of times program parts are fixed and rerun
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This is a relative time measurement appropriate for when we monitor the
programmers on-line.

3. Number of program parts fixed and rerun
This is a relative time measurement appropriate for when we monitor the
programmers off-line.

If a programmer fails to find the right answer at the end, then his time mea-
surement is infinite. Data transformation is required to analyze data with infinite
value. One possibility is to analyze the reciprocal of the time. The reciprocal value
of infinity is zero. Vessey uses this approach to solve a similar problem in [Ves85].

3.3 Covariance

A covariate or a concomitant variable X is a variable that varies with the response
variable Y [Hic73]. This supplementary measurement should, to some extent, pre-
dict the performance of the experimental units (e.g., programmers) or remove some
biases that arise from uncontrolled variables in the experiment [Coc57]. Analy-
sis of covariance can adjust the observed response variable Y for the effect of the
covariate X [Mon91]. Without the adjustment, a covariate could inflate the ex-
perimental error term and make true differences in response caused by treatments
harder to detect [Mon91]. We may find the differences among programmers greater
than the effects of treatments [Ves85, Cur80, MS81]. We may need hundreds of
programmers to see the statistical significance of our treatments.

We want to find a covariateX that can reduce the experimental error caused by
programmer variability. To qualify as a covariateX, a measurement variable M
must meet the following assumptions [Hic73].

� Y correlates linearly withM (e.g., regression model is linear).

� M can predict Y to a certain extent (e.g., regression coefficient is not zero).

� M is not affected by treatments given to the groups (e.g., the regression
coefficients within each group are homogeneous).

Section 4.3 covers the test for these assumptions to ensure the validity of co-
variance analysis. If the treatment affectsM , for example, the covariance analysis
will remove some (or much) of the effect that the treatments had on the response
variable and badly distort the analysis [NW74].

Candidates for X that might reduce programmer variability include:

1. Biographical data

2. Familiarity with the programming language C

3. Understanding of a program domain

4. Understanding of causal knowledge in a program

5. Accuracy and time to judge hypothesized fault locations with no assistance

Two promising biographical factors are experience (e.g., number of computer
science classes) and aptitude (e.g., GPA). Moher and Schneider [MS81] found that
both factors explain about 40% of the variations in program comprehension scores
for student programmers (including novices).

9



Both programming language familiarity and the understanding of the domain
are promising covariate candidates. The study by Pennington [Pen87] suggests
that programmers need both forms of knowledge to achieve high program compre-
hension.

Causal knowledge is also promising. Causal knowledge is the understanding of
causal connections in the program as the program executes. According to Littman
et al. [LPLS86] programmers need it to modify programs correctly. Both program
comprehension and modification are tasks related to debugging. Moher and Schnei-
der found that a measurement of programmers performing one task correlates with
a measurement of another task better than any biographical variables [MS81].

Accuracy and time to judge hypothesized fault locations with no assistance are
promising covariate candidates because we will get the same unit of estimate as
those from the experiment. Though the programmers carry out the same tasks, the
measurements are not 100% guaranteed to work [PIS80]. The characteristics of
the program and the fault we choose can still affect the programmer’s performance.

Other possible covariates includes time measurement and software complexity
metrics. Time measurement may reduce biases in the accuracy measurement. A
software metric may adjust for variability in program complexity. According to the
study by Curtis et al. [CSM79], both Halstead’s E and MacCabe’s v(G) are good
predictors of time to find and fix bugs. A program’s complexity covariate is not
needed when each programmer sees all programs during the experiment. Such is
the case in our proposed experimental design model.

Note that the formal model in Figure 1 does not include any covariate. If we
find an appropriate covariate, we will add a term to the model to represent it.

3.4 Design Models

3.4.1 The proposed design model

.

.

.

Assistance

Fault

Programmers

Program

1 2 4 5 6 7 8 9 10 11 123

1

2

1 2 1 2

1 2

Figure 2: Design Layout

The design layout of the mathmatical model in Figure 1 is shown in Figure 2.
This is called a repeated measure design. A repeated measure design is a design
that takes several observations from the same subject under different treatments
[OM88]. Two kinds of comparisons in a repeated measure design are between-
subjects and within-subjects. Between-subjects comparison is made when subjects
are nested under the treatment levels. Thus, we compare assistance and fault
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between-subjects. Within-subject comparison is made when subjects are crossed
(repeatedly measured) with treatment levels. Thus, we compare programs within-
subjects.

Up to five things can be randomized in this design. First, three programmers
will be randomly allocated for each fault and assistance treatment combination.
Second, each programmer will see the two programs in random order. Third, the
fault type will be randomly selected for each fault category. Fourth, the fault
location will be randomly selected within a fixed nesting procedure level. Fifth, if
hypothesized fault locations are not selected based on a particular fault localization
technique, these locations can be randomly selected under restriction.

This design is presented in a minimal form. The increase in levels of any in-
dependent variable can extend the design. This is a conservative design, in the
sense that we presume that several complicating factors can arise. These include
(1) programmer variability, (2) interaction between programmer and program ef-
fects, (3) interaction between program and fault effects, (4) possible confounding
experimental factors, (5) the learning effect from the assistance, (6) the learning
effect from the programs, and (7) the difficulty in finding experienced programmers
for the experiments. Section 3.4.2 explains why some of these matter. Section 3.4.3
shows some designs can produce misleading result because of them.

3.4.2 Rationale

We will address some obvious questions about our design choice.

1. Why use a repeated measure design?

A repeated measure design reduces the experimental error caused by program-
mer variability, making it possible to use fewer subjects to gather as much infor-
mation as with a larger design [OM88]. The word error is not synonymous with
“mistakes,” but includes all types of extraneous variations. Such variations tend
to mask the effect of the treatments [CC57].

A major problem in programmer-related experiments is that the effect of pro-
grammer variability is frequently greater than the effects of treatments [Ves85,
Cur80, MS81]. The study by Sackman et al. [SEG68] points out a 28:1 per-
formance difference among the professional programmers employed in the same
position in the same firm. Dickey [Dic81] later points out that this figure is mis-
leading because it encompasses all differences between (1) time sharing and batch
systems, (2) JTS and machine language programmers, and (3) prior experience
with time-sharing systems. After accounting for these differences, only a range of
5:1 can be attributed to programmer variability [Dic81].

The nested factorial design shown in Figure 3 can have a large error term
that reflects programmer variability. Our repeated measure design should have
a smaller error term because part of it now reflects variation within the same
programmer.5 Another problem is that experienced programmers willing to par-
ticipate in an experiment are hard to find. This makes our design more attractive
than the one in Figure 3, as it does not require as many programmers.

A repeated measure design does have its limitations, however. There should be

5The error of a repeated measure design is actually a combination of two terms, R(ij)k and RP(ij)kl.
This leaves �(ijkl)m equal to zero. R(ij)k is the between-subject error term. RP(ij)kl is the within-subject
error term.
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no carry-over effect from learning, training, ordering, or fatigue when a program-
mer is measured more than once [OM88]. We show the impact of these limitations
later in this section.

.

Fault

Programmers 1 2 5 6 7 8 9 10 11 12

Program

Assistance

1 2 1 2

1 2

1 2 1 2 1 2 1 2

3 4 13 14 15 16

Figure 3: A Nested Factorial design

2. Why use more than one program?

More than one program is needed to define and expand our inference space.
Brooks [Bro80] complains that “the lack of knowledge about the description and
specification of differences among subjects and programs has a damaging effect on
the generalizability of the experimental finding. If there is no effective, replicable
way to describe the characteristics of subjects or programs used in an experiment,
then there is no way to determine whether the results of the experiment apply to real
world situations.”

With one program, we cannot readily generalize our findings. We do not know
what aspects of that program influence our experimental results. With two or more
programs, we can control the similarities and differences among them. We can
define our inference space with respect to the style, the size, the domain, and the
complexity of the programs that we control. Surprisingly, we have not yet found
any similar experiments that specify programs in the level of detail we do in Section
3.1.

3. Why use more than one fault?

By selecting fault types randomly from two frequently occurring fault categories
(logic and data definition/handling), we can generalize our findings to other fault
types in both categories.

4. Why cross program and fault?

A design with multiple programs, each of which contains different faults, con-
founds the effects of program and fault. A confounding problem occurs when we
cannot separate the effects of two (or more) factors [AM74]. When used wisely,
confounding helps create special design arrangements that require fewer program-
mers or divide the experiment to be carried out in different time periods [Hic73].
Such design generally confounds two-way or higher interactions between factors.
A design that confounds main effects, as in Figure 4, is a bad design.

To avoid this problem, we cross the program factor and fault factor. A cross
produces multiple versions of each program, one for each fault type.

5. Why does each programmer not see all program versions?

A learning effect from seeing the same program twice is the problem. Vessey
found that programmers cut their debugging time in half (despite the fault) when
they see the same program again [Ves85].
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By preventing advance study of the programs by experimental subjects, we
create a more artificial environment. In real debugging scenarios, the users often
are familiar with the software; in some cases, users are debugging software they
may have maintained for decades. We can simulate this by letting the programmers
fully learn about the programs before we begin our experiments, perhaps by letting
them debug the programs a few times. Unfortunately, to test every possible DOA
this way is too expensive. Once we find a promising DOA that deserve further
investigation, then we can redesign the experiment to test its effects over a period
of time.

6. Why include programmers as a factor?

A repeated measure design requires the subjects to become a factor. In our
case, if the subject (programmer) factor is left out, the programmer effect and the
interaction of programmers and other factors will confound with each other. The
experimental results may become misleading.

This fact makes us question the validity of a popular design in empirical stud-
ies of programmers called within-subjects factorial design. This design allows each
subject to see each level of each experimentally manipulated variableonce and only
once6 [SCML79]. For example, Sheppard et al. generate 81 treatment combina-
tions from their within-subject, 34 design. Each programmer sees three different
treatment combinations. Twenty-seven programmers exhaust all 81 conditions.
Nine other programmers repeat the tasks of nine previous participants [SCML79].

Though this design repeatedly measured programmers three times, it did not
include programmers as a factor. As a result, Sheppard et al. admit that they can-
not separate the variance attributed to individual programs from those attributed
to programmers.

Despite this problem, a within-subject factorial design is still popularly used
today. Many papers describe their models by words, as oppose to a mathematical
model or a layout as shown in Section 2. Word description does not always make it
clear whether the programmer factor is included. A within-subject factorial design
also has additional problems when the programmer factor is included (see page 16).

6. Why randomize things in the design?

Randomization is a mean of ensuring that a treatment will not be continually
favored or handicapped in successive replications by some extraneous source of
variation, known or unknown [CC57]. Random allocation of programmers helps
average out the effect of inhomogeneous experimental units (programmers). Ran-
dom order of programs assigned to each programmer guards against systematic
biases. In repeated measure design, the systematic biases may come from the
learning effect and the fatigue effect. The former makes the second measure better
than the first; the latter does the opposite [CC57]. Fault type selection and fault
locations are also randomly selected to avoid introducing bias.

7. Why not group programmers by expertise?

Grouping programmers by expertise is another means to control programmer
variability [Ves85]. We opt not to for two reasons. First, we are not interested
in novices because their performance does not always scale up [Cur80, Jef82].
Second, we do not have a cost-effective, accurate, and reliable method to measure
expertise. Vessey’s ex-post classification [Ves85] is promising but costly because

6This meaning is not consistent with the meaning of within-subject comparison for a repeated measure
design. See Section 3.4.1.

13



it requires analysis of verbal protocol during a debugging process. Biographical
data, like years of experience, do not always predict programmer performances.
Several studies [Ves85, LPLS86, SCML79] report that years of experience (beyond
three years [SCML79]) do not correlate to the programmers’ ability to understand,
modify, or debug programs.

We instead post a restriction that our student programmers have three or more
years of experience. Soloway and Ehrlich call them advanced student program-
mers [SE84]. The use of covariance analysis will provide the “handicap” for the
programmers. No further grouping is required [Hic73].

8. Why use at least twelve programmers?

The answer lies in the degree of freedom of the estimate of error. A degree
of freedom (d.f.) associated with any component is the number of independent
parameters required to describe that component in the model [CC57]. When the
number of degrees of freedom for error becomes smaller, the probability of obtaining
a significant result decreases [CC57].

In our design, if we use eight programmers (for a sample size of two for each
assistance and fault combination), the between-subjects error degree of freedom is
four.7 The test of assumptions in analysis of covariance can reduce this degree of
freedom further. To remedy this problem, we increase the sample size to three. With
twelve programmers, the error degree of freedom before adjusting for covariates is
eight.

We are not claiming that twelve programmers are adequate. By adequate, we
mean �, the chance of not finding significant difference caused by experimental
treatment when it exists [MS81], is sufficiently low (e.g., like 5%). Twelve is what
we need for an initial pilot study. Measurements from an initial pilot study can
be used to estimate the actual number of programmers needed. Section 4 explains
this in more detail.

3.4.3 Possible problematic designs

One obvious design choice we decided against is to repeatedly measure program-
mers under both levels of assistance. Such choice leads to possible problematic
designs. To make the problems apparent, this section describes some of them.

The model in Figure 4 is the most intuitive, but incorrect. Every programmer
is measured twice. The first time they evaluate Program 1 with Fault 1 with
no assistance. The second time they evaluate the program 2 with Fault 2 with
assistance. This design confounds all the main effects. The observed improvement
may be caused by either the presence of the assistance, Program 2, Fault 2, or
familiarity with the experimental procedure.

The model in Figure 5 avoids the confounding problem by crossing assistance
with program factors and nested programmers under each program and fault com-
bination. Each programmer will evaluate one buggy program. The assistant is
provided for half of the hypothesized locations. This design would have been a
better design than the one in Figure 2 if no learning effect from the given assistance
is guaranteed. An example of such a learning effect is when the given assistance
improves the understanding of one hypothesized location, it may indirectly improve
the understanding of other locations as well.

7The computation of degree of freedom is explained in Montgomery [Mon91].
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The model in Figure 6 avoids the learning effect caused by mixing the locations
with and without assistance together in the same program. This is done by let-
ting each programmer see both buggy versions of the same program, the first one
without assistance, and the second one with assistance. Unfortunately, this design
is not applicable because it has a potential learning effect from seeing the same
program twice.

..

.

Programmers 1 2 5 6 7 8 9 10 11 123 4
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1 2

2

1
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P1 P2

P1P2

Pi = Program i

Figure 7: A 2x2 Latin square design with Assistance x Fault

The model in Figure 7 avoids a learning effect from both the assistance and the
program. Because a fault of the same type still takes different forms and locations
in different programs, we believe the learning effect is negligible. The first group
of programmers evaluates Program 1 containing Fault 1 with no assistance first,
then evaluates Program 2 containing Fault 1 with assistance. The program order
is reversed for the second group with Fault 2. No main effect is confounded. This
is called a 2x2 Latin Square design.8

A Latin square design is a design in which each level of each factor is combined
once and only once with each level of two other factors [Hic73]. According to Neter
and Wasserman [NW74], it has three advantages. First, its use of two blocking
variables (e.g., assistance and fault here) reduces experimental errors. Second,
it minimizes the experimental units required. Third, it allows repeated measure
design to take the order effect of treatments into account.

Besides the need for equal levels for all three effects (two levels in our case),
another disadvantage of a Latin square is the assumption of no interaction be-
tween any of the three main effects [NW74, Mon91]. This assumption is fre-
quently overlooked by researchers [OM88]. Several programmer-related studies
(e.g., [GO86, Bae88]) use Latin square without mentioning that they verify this
assumption.

Unfortunately, programs and faults do have a history of significant interaction.
Studies by Sheppard et al. [SCML79] and Atwood and Ramsey [AR78] observe
significant interaction between fault and program. If we risk using this design and
find that interaction exists, we cannot draw any conclusion from the study.

The model in Figure 8 shows what happens to the layout of the so-calledwithin-
subject 23 factorial design for our problem when the programmer factor is included.
We discussed within-subject factorial design earlier on page 13. The 23 represents
Assistance x Program x Fault. When programmers become a factor here, fault order

8The design in Figure 6 is also a Latin square design.
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and groups of programmers become additional factors. Each group of programmers
sees each fault and each program once. Every order of programs and faults is
considered.

A word description of this design hides one important fact. A closer look at its
layout reveals three Latin squares, one superimposed on the other two. On the top
layer, we have a 2x2 Latin square with fault order, assistance, and faults as the
main effects. On the next layer, we have two 2x2 Latin squares with program, group
of programmers, and assistance as the three main effects. Thus, this design cannot
tolerate interactions among fault order, assistance and faults and interactions
among program, group of programmers, and assistance.

The first session will test the programmers’ abilities to understand the seman-
tics of C programs. The programmers will also fill out a questionaire that inquires
about their academic background (e.g., number of computer science classes, number
of programming languages known) and academic performance (GPA).

The second session will measure the time and accuracy for judging the given
hypothesized locations. The programs used should contain faults from both logic
and data definition/handling categories. After we collect each program, we will
give the programmers a questionnaire. It will ask about the program functionality
and the causal relations among program components.

3.4.4 The experiment

We set up the experimental conditions to represent the part of a debugging phase
after the programmer already realizes the presence of faults (via code walkthrough
or testing). We divide the experiment into two phases for each program with a
break in between.

The actual procedure depends greatly on the nature of the DOA under test.
However, one should allow for time for the programmers to get familiar with the
program. Also, the programmers should not know about the number of faults in
the program. Suppose we give them five hypothesized fault locations. If we tell
them that the program contains only one bug, each programmer has 20% (= 1=5)
chance to get 100% AAC by guessing. If we do not, each has a 3% (= 1=25) chance.

Note that beside accuracy and time, we can also ask for other “free” information.
Information such as the confidence level of their answers and their comments may
provide insightful hints that may help us interpret experimental results.

4 Analysis

We need to analyze the data to (1) test our hypothesis, (2) verify assumptions behind
the analysis of variance, (3) verify assumptions behind the analysis of covariance,
and (4) estimate adequate sample size. To generalize our findings, we must define
the inference space also.

4.1 Test Hypotheses

Recall that our hypothesis is “the presence of an appropriate DOA will help pro-
grammers decide on the correctness status of hypothesized fault locations or pro-
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gram states significantly faster or more accurately.” To test this hypothesis, the
best method is the analysis of variance (ANOVA).

ANOVA is a method of estimating how much of the total variation in a set of data
can be attributed to certain assignable causes of variation (independent variables)
[Har82]. It uses the F-test to test the following hypotheses:

H0: Factor f causes no variation in the programmers’ performance.

Ha: Factor f causes the variation.

ANOVA can simultaneously test the significance of terms in the model in Figure
1: (1) the assistant, (2) programs, (3) faults, (4) interactions among assistance,
fault, and program, and (5) and interaction of program and programmers within
assistance and fault.

4.2 Verify ANOVA assumptions

According to Hicks [Hic73], three assumptions for ANOVA should be checked:

1. The process is controlled, that is, it is repeatable.

2. The population distribution being sampled is normal.

3. The error variances are homogeneous.

Our design already meets assumption 1. The experiment is repeatable because
we can let more programmers work on the same set of programs. To check for
assumption (2), a normality plot and normality test can be used. To check for
assumption (3), Bartlett’s test of homogeneity of variances can be used. More
discussion of these tests can be found in [Mon91, NW74]. If either one of the last
two assumptions is not true originally, suitable transformations on the response
variableY may make it true [Hic73]. When the normality assumption is unjustified,
alternatives include the Kruskal-Wallis test and the Chi-square test [Mon91].

4.3 Verify ANCOVA assumptions

Because ANCOVA is an extension of ANOVA, it inherits all ANOVA assumptions.
Presuming that they are met, we can test if a variableM is a suitable covariate.
To verify the assumption in Section 3.3, we can add into the model M and a
term representing the interaction between M and treatments to the group. The
significant effect of M on a response variable Y indicates that M correlated to
a response variable Y linearly with non-zero slope. The nonsignificant effect of
the interaction betweenM and the treatment assures that the treatment does not
affect M .

If we find a good covariate, ANCOVA should make the treatment effects more
apparent than ANOVA.

4.4 Estimate sample size

We still have to check if the sample size of twelve programmers is adequate. Based
on (1) the expected difference in magnitude of the effects of experimental treatment,
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(2) an estimate of variance, and (3) the size of risks we are willing to take9 [MS81,
Hic73], we can find out if �, the chance of not finding a significant difference caused
by experimental treatment when it exists (or the chance of type II error) [MS81],
is too high. If so, we need to use either a power table, a power curve, or Operating
Characteristics curve [Hic73, Mon91] to estimate the required sample size. We need
to replicate our experiment accordingly. We cannot readily estimate the sample size
beforehand because we need the estimates of (1) and (2) from this initial pilot study.

4.5 Define inference space

From the result of our analysis, we can extend our findings to:

1. Programs that have the same size, domain, style, structure, and complexity
as those that we use in the experiment.

2. Logic and data definition/handling faults.

3. Student programmers with at least three years of experience.

4. A set of hypothesized fault locations and the method that generates them.

5 Conclusions

The design of a seemingly simple experiment in this paper is complicated by sev-
eral factors. These include (1) programmer variability, (2) interaction between
programmer and program effects, (3) interaction between program and fault ef-
fects, (4) possible confounding experimental factors, (5) the learning effect from
the assistance, (6) the learning effect from the programs, and (7) the difficulty in
finding experienced programmers for the experiments.

To deal with factor (1), recent empirical studies of programmers found in [SI86,
OSS87, KBMR91] still focus on grouping programmers by expertise rather than
using the covariance alternative. Several studies overlook factors (2) and (3) when
they use their within-subject design or a Latin square design. Combinations of
factors (2), (3), (4) and (5) limit us to type of design applicable for our problem.
Factor (7) leads many studies to focus on novice programmers abundant in the
university. Many researchers do experiments with few programmers (like eight)
without checking if the sample size is adequate.

Though our design is not fancy, it guards against all seven complicating factors.
A literature review of experimental studies of programmers leads us to identify
aspects of programs, faults, and programmers that need to be controlled. We point
out the assumptions that must be verified before drawing any conclusion. Our
inference space may be limited, but it is more realistic than infering the result to
all programs.

Once our studies under this design suggest a DOA that deserves further inves-
tigation, a good follow-up study is to test its effectiveness over a period of time.
Because this requires the programmers to see the same program repeatedly, we
have to create a new design to handle the learning factor. This can be done by
either taking the learning factor into account or by letting programmers become
familiar with the programs prior to the experiments.

9For instance, � = the chance of falsely rejecting the null hypothesis = the chance of type I error = 5%.
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According to Mitchell and Welty [MW88], computer science ranks almost the
lowest among scientific disciplines in publishing experimental studies. This is
not because this field does not need them. Mitchell and Welty suspect that many
computer science researchers do not really know how to do experiments nor are
they willing to spend time on it. We hope that this document of a design and
analysis process can guide and encourage more experimental studies in computer
science.
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