
An Execution Backtracking Approach to Program Debugging�

Technical Report SERC-TR-22-P

Hiralal Agrawal
Richard A. DeMillo
Eugene H. Spafford y

Software Engineering Research Center
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907–1398

Abstract

An execution backtracking facility in interactive source debuggers allows users to mirror their thought
processes while debugging — working backwards from the location where an error is manifested and
determining the conditions under which the error occurred. Such a facility also allows a user to change
program characteristics and reexecute from arbitrary points within the program under examination — a
“what-if” capability.

This paper describes an experimental debugger that provides such a backtracking function. We
describe why the facility is useful, and why other current techniques are inadequate. We show how
execution backtracking can be efficiently implemented by saving only the latest values of variables
modified by a statement, and allowing backtracking only over complete program statements. We also
describe how this approach relates to our work on dynamic program slicing.

Keywords: debugging, backtracking, reverse execution.

1 Introduction

The importance of good debugging tools cannot be overemphasized. Programmers spend considerable

amounts of their program development time debugging. Several tools are available to help them in this

task, varying from hexadecimal dumps of program state at the time of failure to window and mouse-based

�An early version of this paper appeared as [1]; a revised, later version appeared as [2].
This research was supported, in part, by a grant from the Software Engineering Research Center at Purdue University, a

National Science Foundation Industry/University Cooperative Research Center (NSF Grant ECD–8913133), and by National
Science Foundation Grant CCR–8910306.

yAuthors’ e-mail addresses: fha,rad,spafg@cs.purdue.edu.

1



interactive debuggers using bit-mapped displays. Most interactive debuggers provide breakpoints and traces

as their main debugging aids. The work described in this paper involves the development of an execution

backtracking facility to be used in association with breakpoints and traces as an aid in debugging. We believe

that such a facility will be a significant addition to the debugging help provided by conventional debuggers

today. Systems that have provided similar facilities in the past (e.g., [3, 4, 5, 6]) have all used a technique

that, in general, may require an unbounded amount of storage. To overcome this space problem, some

systems restrict execution backtracking only over a fixed number of most recent operations (see Section 4).

In this paper, we also propose another approach to execution backtracking, called structured backtracking,

that alleviates this problem.

1.1 How Does One Debug?

Given that a program has failed to produce the desired output, how does one go about finding where it went

wrong? Other than the program source, the only important information usually available to the programmer

is the input data (if any), and the erroneous output produced by the program. If the program is sufficiently

simple, it can be analyzed manually on the given input.

However, for many programs, especially lengthy ones, such analysis is much too difficult to perform.

One logical way to proceed in such situations would be to think backwards — deduce the conditions under

which the program produces the (incorrect) output that it did[7].

Consider, for example, the following code segment:

2



S1: read (X);
S2: if (X < 0) then begin
S3: Y := f1(X);
S4: Z := f2(X);

end
S5: else if (X > 0) then begin
S6: Y := g1(X);
S7: Z := g2(X);

end
else begin (* X = 0 *)

S8: Y := h1(X);
S9: Z := h2(X);

end;
S10: write (Y);
S11: write (Z);

The above code reads a value forX , and depending on the value read, whetherX < 0, X > 0, orX = 0,

it computes two values Y and Z as some functions of X . The functions themselves (f1; f2; g1; g2; h1; h2)

are not relevant for the current discussion. Suppose this code is executed and we discover that the value

printed for the variable Z is incorrect. Debugging the above code for this error would mean asking the

following question: what caused the value of Z at statement S11 to be wrong?

Looking backwards from statement S11 we find that one of the three statements, S4, S7, or S9 last

assigned a value to Z. We would have to examine the value read forX for the current testcase to determine

which of these three statements actually assigned a value to Z. Suppose the value read for X was 3, so

statements S6 and S7 were executed. Now there are several possibilities: there could be an error in the code

for the function g2 used in statement S7; one of the predicates in statements S2 or S5 may be erroneous;

or there could be an error in reading the value ofX at statement S1. We may decide to set a breakpoint at

statement S7 to check if the execution indeed reached there, and whether the value ofX is correct before

statement S7 is executed. If the breakpoint at statement S7 is reached and we find the value of X to be

correct there, we may proceed to examine the code for the function g2.

There are three distinct tasks we performed above: 1) determining which statements in the code had

an influence on the value of Z at statement S11, 2) selecting one (or more) of these statements at which

3



to examine the program state, and then 3) restoring the program state at that statement. In this case, we

performed the first two tasks ourselves by examining the code, without any assistance from the debugger.

For the third task we had to set a breakpoint and reexecute the code until the control stopped at the breakpoint.

Our debugging job would become much easier if the debugger provided direct assistance in performing all

three tasks.

We have built a prototype debugging tool, named Spyder, to assist the user with all three of these tasks.

The first — given a variable and a program location, determining which statements in the program really

affected the value of that variable as observed at that location, when the program is executed for the given

testcase (particular input values) — is referred to as Dynamic Program Slicing [8]. Spyder can automatically

find dynamic slices for us. It is also possible for Spyder to help us make judicious decisions about which

statements within the slice we should examine first, based on, e.g., how the program has “behaved” on

other testcases. And last, it can also help us automatically restore the program state at any desired location

by backtracking the program execution to that location without having to reexecute the program from the

beginning. As it is not feasible to discuss all three of these functions in one paper, we discuss the last of the

above tasks here: building execution backtracking support into debuggers. The reader is referred to [8] for

a preliminary discussion of dynamic program slicing.

1.2 Why Backtrack While Debugging?

As we mentioned above, one logical way to go about debugging a program is to think backwards from

the statement where the error is first manifested. Conceptually, this backwards execution can be mentally

performed by analyzing the effect of each source statement, proceeding backwards one statement at a time.

For large programs, such analysis at the statement level would be too tedious to perform. What we seek is

to first narrow the user’s focus to a small region of the program that is likely to contain an error, and then

do statement level analysis within this region.

How can a user determine the small program region that is most likely to contain an error? If we consider

small regions of the program as “logically atomic” blocks, then this problem is analogous to locating an

4



erroneous statement in the program — only now the program is viewed as a sequence of logical blocks

instead of individual statements. One need only to think backwards at the program block level instead of

the statement level.

To perform such backward analysis using conventional interactive debuggers, one would first set a

breakpoint just before the last logical block. If the program state is found to be correct at this point, it

would imply that the error occurred within the last block. Otherwise another breakpoint would be set

before the second-last block, and the program reexecuted. If the program state is found to be correct

at that point, then we may conclude that the error resides within that second-last block. Otherwise this

process of setting breakpoints in backward order and reexecuting the program continues until the erroneous

block is discovered. If N is the number of blocks in the program, then clearly this method of setting

breakpoints successively in backwards order and reexecuting the program every time leads to an O(N 2)

cost for execution. Using an execution backtracking facility, the backward debugging strategy discussed

above would require only O(N) block executions. This is because, from the point an error is manifested,

program execution can be backtracked one block at a time, checking for errors in program state after each

backtrack. The program would not have to be repeatedly reexecuted from the beginning for each block

under examination.

The scenario presented above is obviously an idealized one. Most of the time, much more information

about the program behavior, internal and external, is known to the programmers. With that information, the

programmers do not always have to follow the rigid path outlined above. However, in large and complicated

programs, especially those developed by teams of programmers and maintained by people who were not

involved with the code development, strategies somewhat similar to the one mentioned above are often

employed to detect the lurking bugs most frustrating in real systems development.

A backtracking facility within a debugger is also valuable in other situations besides its use in the

debugging strategy outlined above. When debugging using conventional interactive debuggers, the user has

to determine the regions that are likely to contain errors and then set breakpoints in those regions. Often,

5



when the program execution is suspended at a breakpoint, the user discovers that the error occurred at an

earlier location. In such cases, there is no other choice but to set another breakpoint at an earlier location

and start the program execution again. With an execution backtracking facility, the program execution can

simply be backtracked to the earlier location, and there is no need to rerun the program from the beginning.

As yet another motivating example, consider a user single-stepping through a program, observing its

behavior or tracking down a bug. The user may “step over” a statement by mistake or by not realizing its

importance until some statements later in the execution. In the absence of a backtracking facility, the only

way to recover from this situation is to restart the program execution and take care that the same mistake is

not made again. With an execution backtracking facility, any single-step command could easily be undone

by simply backtracking the execution over the last statement executed.

If the debugger also allows the user to modify the program state, then the execution backtracking facility

could be used to do some what-if analysis over sections of the program. Starting from a particular program

state, the user could execute a section of the program, inspect the results of this execution, backtrack the

execution to the same earlier state, change this state, and reexecute over that program section. Different

execution paths taken by the program could be easily examined using this backtracking and state changing

facility.

From these examples, it is apparent that having some form of backtracking function would be quite

useful in a debugger. At the least, users will feel more comfortable and confident if they know they can

undo their actions. At best, the presence of such a facility could make a significant difference in the time

spent debugging a large amount of code.

In the next section we outline two approaches to implement statement-level execution backtracking in

a simple language. Then in Section 3 we discuss how additional language features can be handled using

the approaches outlined earlier. In Section 4 we discuss related work and ideas and explain how they are

different or inappropriate for our purposes.

6



2 Execution Backtracking

At any time during the program execution, the state of the program consists of two things: values of all

variables in the program at the time, and the location of the program control. Executing a statement causes

one program state to be transformed into another. The type of the transformation depends on the type of

the statement. For simplicity, let us first consider a language that only includes assignment, conditional

(if-then-else), loop (while-do), and input-output (read, write) statements and their composition. Further let

us assume that expressions do not cause side-effects. An assignment statement modifies the program state

so that the new state is identical to the previous state except for two things: the value of the variable on the

left hand side of the assignment may be different, and the control location is modified to be the successor

statement. The if and the while predicates, on the other hand, only modify the control-location.

Thus execution of a statement essentially causes two kinds of effects on the program state: it modifies

control location, and it may alter values of one or more variables. Backtracking over a statement would

require some way of undoing these two effects. The first effect, modifying the control location, can easily be

undone if we simply record the execution history of control locations — the sequence in which statements are

visited during program execution. Then undoing the control-location effect would simply require traversing

this sequence in the opposite direction. The second effect — changing values of variables — can easily be

undone if before executing a statement we save the current values of variables modified by the statement.

Then undoing this effect would simply require restoring the previous values saved. In the following section

we discuss the execution history saving approach to backtracking. Then in section 2.2 we show that by

constraining backtracking in a particular way, it can be implemented much more efficiently.

2.1 The Execution History Approach

With each assignment statement we associate a change-set. The change-set consists of all variables whose

values are modified by the statement. For the simple language we mentioned above, the change-set of an

assignment statement consists of the single variable that appears on the left-hand-side of the assignment.

7



For languages that allow expressions with side-effects, the change-set of an assignment statement may have

more than one variable. The change-set of a read statement includes all variables read by the statement.

Henceforth, we also refer to read statements as assignment statements. A write statement has an empty

change-set. Similarly, change-sets of if and while predicates are empty-sets.

Consider, for example, the program fragment in Figure 1. This program reads two integers x and y

(x � 0; y > 0), and finds their quotient, q, and remainder, r (0 � r < y), so that x = q � y + r. The

change-set of statement S1 is fx, yg and that of S6 is ftempg. Statement S13, on the other hand, has an

empty change-set.

To be able to backtrack to any statement arbitrarily far back in execution, we need to record the complete

execution history of statements and the corresponding previous values of variables in their change-sets. Then

we can backtrack to any statement by restoring the previously saved values of change-set variables starting at

the current location and going backwards until that statement is encountered in the saved execution history.

For example, Figure 2 shows the execution history of the program in Figure 1 for the testcase (x = 7,

y = 3).

The program state at the end of the execution is x = 7, y = 3, r = 1, q = 2, and temp = 3. If we

wish to backtrack execution until just before the loop at statement S7 started execution, then we will have to

restore all values in the change-sets starting at the end of the execution history and going backwards up to

(and including) entry 10. The program state will now become x = 7, y = 3, r = 7, q = 0, and temp = 12,

just like it was when control first reached the while loop at statement S7.

Note that if a statement nested in a loop body is executed N times because of loop iteration, there will be

N corresponding entries for that statement in the execution history. Hence, for programs with long-running

loops, the execution history of the program can grow very long. Further, because the number of times a loop

iterates may depend on run-time input, the length of the execution history may not be bounded at compile

time. Thus, the space required to record the execution history and the corresponding change-set variable

values may not be allocated in advance. Besides having this space problem, the above approach is also time

8



S1: read (x, y);
S2: r := x;
S3: q := 0;
S4: temp := y;
S5: while (temp <= x) do
S6: temp := temp * 2;
S7: while (temp <> y) do begin
S8: q := q � 2;
S9: temp := temp div 2;
S10: if (temp <= r) then begin
S11: r := r � temp;
S12: q := q + 1;

end;
end;

S13: write (q, r);

Figure 1: Program to divide two integers.

inefficient. If we have to backtrack up to a statement before a loop, then we have to backtrack individually

over each iteration of the loop. In the next section we outline a different approach that does not have these

disadvantages.

2.2 The Structured Backtracking Approach

In the previous section we associated change-sets with assignment statements. We may also define the

change-set of a composite statements like if or while to be the set of all those variables whose values could

be modified during the execution of that statement. For example, the change-set of a while loop will consist

of all variables that could be modified if the loop body is executed one or more times.

Change-sets of composite statements can be computed from the change-sets of their constituent assign-

ment statements. If we denote the function computing the change-set of a statement byC, source statements

by S, S1, and S2, and a boolean expression by cond, then the change-sets of some composite statements

may be computed as follows:

C(S1;S2) = C(S1)[ C(S2)

9



1: S1, [x:?, y:?]
2: S2, [r:?]
3: S3, [q:?]
4: S4, [temp:?]
5: S5, [ ]
6: S6, [temp:3]
7: S5, [ ]
8: S6, [temp:6]
9: S5, [ ]
10: S7, [ ]
11: S8, [q:0]
12: S9, [temp:12]
13: S10, [ ]
14: S11, [r:7]
15: S12, [q:0]
16: S7, [ ]
17: S8, [q:1]
18: S9, [temp:6]
19: S10, [ ]
20: S7, [ ]
21: S13, [ ]

Figure 2: Execution history of the program in Figure 1 for the testcase X = 7, Y = 3, along with the saved
change-set values.

C(if cond then S) = C(S)

C(if cond then S1 else S2) = C(S1) [ C(S2)

C(while cond do S) = C(S)

For example, the change-set of the while loop beginning at statement S7 in Figure 1 is fq, temp, rg, and

that of the if statement at statement S10 is fr, qg.

Like assignment statements, we can also save values of all variables in the change-set of a composite

statement just before executing that statement. To backtrack over a while statement, we simply need to

restore previous values of variables in its change-set instead of undoing the effect of each iteration of the

loop in the reverse order. If we also restrict backtracking such that one may not backtrack from a statement

outside a composite statement to a statement nested inside it, then we can avoid both the space and time

10



inefficiency problems of the execution history approach outlined above. Under the new approach, for each

statement — simple or composite — the debugger allocates space to save just one instance of values of all

variables in its change-set. Any time control reaches that statement, the debugger saves the current values

of variables in its change-set in the same space. So every time a statement in a loop body gets executed,

the current values of variables in its change-set overwrite the previously saved values. Thus, it is possible

to backtrack from a statement in a loop body to an earlier statement in the loop body for the same iteration,

but it is not possible to backtrack to a previous iteration of that loop.

To illustrate how backtracking is constrained, consider the following program segment:

S1: ....
S2: while cond do begin
S3: ....
S4: ....
S5: ....

end;
S6: ....
S7: if cond then begin
S8: ....
S9: ....

end else begin
S10: ....
S11: ....

end;
S12: ....
S13: ....

All of the following instances of backtracking are not allowed under this scheme:

from S6 to S5

from S12 to S9

from S9 to S3

from S3 in iteration i to S5 in iteration i� 1

Following are valid instances of backtracking:

from S2 to S1

11



from S5 to S3 within the same iteration

from S6 to S2

from S4 to S1

from S9 to S8

from S13 to S7

Note that one can backtrack from a statement inside a loop to a statement outside it. These restrictions

are analogous to those followed in structured programming and included in most modern language standards

— disallowing jumps to a statement inside a loop from outside it, but allowing breaks from inside a loop

to outside.

The restriction on backtracking over only complete statements is not an unduly constraining one. In a

sense, it is similar to encouraging structured execution in the backward direction. As such, analyzing the

effects of statements in reverse order should be much easier and logical because the user needs to consider

only one complete statement at a time. If one needs to backtrack to a statement inside a composite statement

from a statement outside it, one can always backtrack first to the beginning of the composite statement, and

then execute forward to the desired statement.

Note that the use of change-set restoration puts all involved variables back into their prior state. It is

then possible to forward execute from that point, possibly after the user changes some data values. This

provides the what-if capability referred to earlier.

Under this approach we no longer need to save the execution history. Also, for each statement the

amount of space required to save values of variables in its change-set is fixed, so all the space required may

be allocated in advance. In the next section we derive bounds on space requirements of this approach.

2.3 Bounds on Space Requirements

If an assignment statement is nested N levels deep, then the variables modified by it would belong to

change-sets of N statements — N � 1 composite statements in which it is nested and the assignment

12



statement itself (an assignment statement not nested in any composite statement is assumed to be at level

one). Let A be the total number of assignment statements in the program, si be the size of the change-set

of the ith assignment statement, ni be the nesting level of the ith assignment statement, and S be the sum

of sizes of change-sets of all statements in the program. Then we have:

S =
AX

i=1

(ni � si)

Here,� represents the maximum nesting level in the program, and � represents the size of the largest

change-set among all assignment statements in the program. Then, we have:

S � A� �� �

Let L be the length of the program in number of source lines. Then, because there are A assignment

statements in the program, there can be at most L � A composite statements in the program. As only

composite statements increase nesting levels of statements, the maximum nesting level of any assignment

statement in the program can be L � A + 1. This means, S � A� (L�A + 1)� �. For a given L, the

right-hand side of this equation is a function of A. The maximum of this function occurs at A = dL=2e.

For this value of A, we get S � c1 � L2 for some constant c1, giving us S = O(L2).

But this is only a theoretical worst-case upper bound. In practice, both � and � are usually small

constants. Thus, usually S � c2 � A for some small constant c2, giving us S = O(A). As the number

of assignment statements in the program is also bounded by the program length, we also have S = O(L).

Thus, in the usual case, the sum of the sizes of the change-sets of all statements in the program is of the order

of the length of the program. In particular, this size is independent of the length of the execution history, or

the running time of the program.

3 Extensions

In the previous section we used a simple programming language to describe two approaches to implement

execution backtracking. In this section we examine how other language features like records, arrays,

13



pointers, and procedures are handled. Records are easy to handle: We simply need to treat each field of a

record as a separate variable!

Assignment to an array element, like A[i] := : : :, or an indirect assignment through a pointer, like

pointer" := : : :, differs from an assignment to a scalar variable, like var := : : :, in that the exact address

of the memory location modified by the assignment in the latter case is fixed and known at compile time,

whereas that in the former case is not. We can, however, easily overcome this problem by recording both

the address and the contents of the memory location modified by the assignment just before it is executed.

Then the execution can be backtracked over the assignment by restoring the contents at the address saved.

When such an assignment statement appears within a loop, the address of the memory location assigned

may vary from one iteration to another. In this case, the precise change-set of the loop cannot be determined

at compile time. Thus it is constructed at run-time: each time around the loop, the address and the contents

of the memory location assigned are added to the change-set of the loop. The size of the change-set of the

loop, in this case, may not be bounded at compile time. But the space bounds derived in Section 2.3 would

still hold if, in the case of an indirect assignment, we treat si to be the size of the complex data-structure

modified incrementally by multiple occurrences of the same statement during the loop execution.

Backtracking into a procedure call from outside it, in the execution history approach, requires recreating

the stack frame of the call. In the structured backtracking approach, however, procedure calls are treated just

like composite statements: one may not backtrack into a procedure call from outside it. The side-effects of

the procedure call constitute the change-set of the call. Like a loop, when an indirect assignment is executed

inside a procedure, the change-set of the procedure call is updated appropriately. Recursion is handled by

saving change-sets of all statements inside a procedure on the current stack frame of the procedure.

Backtracking over I/O operations poses special problems. Any system can at most undo things that are

directly under its control. If any of its actions have effects outside the boundary of the system, then the

system, in general, cannot always retract them. For instance, we have no way to save the “state” of a line-

printer to allow us to later backup to that state. One possible approach to handling I/O operations involves

14



use of buffering along with pushback operations, similar to the “ungetc” operation in the C programming

language standard library. Another way to handle file I/O is to record the current offset of the file pointer

from the start of the file just before executing the file I/O statement. Then, backtracking over a read from a

file also entails restoring the file pointer to the saved offset. Spyder, our prototype debugging tool, employs

the latter technique using the “lseek” system call in Unix.

4 Related Work

Many systems have used variations of the execution history approach, outlined in Section 2.1, to provide

some form of execution backtracking, and thus all have suffered from the same space problem. EXDAMS[3],

an interactive debugging tool developed for FORTRAN in the late 60’s, provided an execution replay facility

where the program to be debugged is first executed in entirety and the complete execution history is saved.

Then the program is “reexecuted” through a “playback” of this tape. This reexecution can be backtracked

any time using the information saved on the tape. The user, however, cannot change values of variables

before resuming forward execution because EXDAMS simply replays the program behavior recorded earlier.

Zelkowitz incorporated a backtracking facility within the programming language PL/1 by adding a

RETRACE statement to the language[4]. With this statement, execution can be backtracked over a desired

number of statements, up to a statement with a given label, or until the program state matched a certain

condition. Incorporating backtracking facility within a programming language, however, does not provide

interactive control over backtracking required during debugging, as the user must program the RETRACE

statements along with the code in advance. INTERLISP[5] and the Cornell Program Synthesizer[6] also

provide facilities to undo operations. All these systems maintain a history list of operations while recording

their side effects. Thus they too suffer from the same space problem discussed in Section 2.1. To overcome

this problem, they all use bounded history lists: as new events occur, the existing events on the list are aged,

with oldest events “forgotten.” Thus returning to points arbitrarily far back in the execution may not be

possible in these systems.

15



IGOR[9] and COPE[10] also provide execution backtracking by performing periodic checkpointing of

memory pages or file blocks modified during program execution. This approach, while suitable for undoing

effects of whole programs, would be highly space-inefficient for performing statement-level backtracking.

5 Conclusions

An execution backtracking facility in interactive debuggers would be of significant help to programmers.

With this facility, they would be able to match the debugging mechanism with their thought process of

working backwards from the location where an error is manifested and determining conditions under which

the error could occur. Previous systems that provided facilities for execution backtracking have all suffered

from a space problem: they either had to maintain arbitrarily long execution histories, or had to restrict

backtracking only over a fixed number of most recent events. We have proposed a new approach to execution

backtracking called structured backtracking that alleviates these problems.

We have a prototype debugging tool, named Spyder, that incorporates backtracking as well as dynamic

program slicing techniques. Figure 3 shows the main window panel of the tool in operation. The buttons

labeled “backup” and “stepback” provide the reverse analogues of continuing forward execution and single-

stepping (functions provided by buttons labeled “continue” and “step”), respectively. The current prototype

works for the C programming language and has been implemented on a SUN SPARCstation 1 running

SunOS 4 and the X Window System (version 11, release 4). Readers interested in more information or a

copy of the prototype should contact E. Spafford.

References

[1] Hiralal Agrawal and Eugene H. Spafford. An execution backtracking approach to program debugging.

In Proceedings of the Sixth Annual Pacific Northwest Software Quality Conference, pages 283–299,

Portland, Oregon, September 1988.

16



Figure 3: Main window panel of Spyder

[2] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution backtracking approach

to program debugging. IEEE Software, pages 21–26, May 1991.

[3] R. M. Balzer. Exdams: Extendible debugging and monitoring system. In AFIPS Proceedings, Spring

Joint Computer Conference, volume 34, pages 567–580, Montvale, New Jersey, 1969. AFIPS Press.

17



[4] M. V. Zelkowitz. Reversible Execution As a Diagnostic Tool. PhD thesis, Dept. of Computer Science,

Cornell University, January 1971.

[5] Warren Teitelman and Larry Masinter. The Interlisp programming environment. IEEE Computer,

pages 25–33, April 1981.

[6] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: a syntax-directed programming

environment. Communications of the ACM, 24(9):563–573, September 1981.

[7] J. D. Gould. Some psychological evidence on how people debug computer programs. International

Journal of Man-Machine Studies, 7(1):151–182, January 1975.

[8] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the SIGPLAN’90

Conference on Programming Language Design and Implementation, White Plains, New York, June

1990. ACM SIGPLAN. SIGPLAN Notices, 25(6):246–256, June 1990.

[9] Stuart I. Feldman and Channing B. Brown. Igor: a system for program debugging via reversible

execution. In Proceedings of the Workshop on Parallel and Distributed Debugging, Madison, WI,

May 1988. ACM SIGPLAN/SIGOPS. SIGPLAN Notices, 24(1):112–123, January 1989.

[10] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery and reversal in interactive

systems. ACM Transactions on Programming Languages and Systems, 6(1):1–19, January 1984.

18


