
A Software Architecture to support Misuse Intrusion Detection.�

Technical Report CSD{TR{95{009

Sandeep Kumar Eugene H. Spa�ord

The COAST Project

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

fkumar,spafg@cs.purdue.edu

March 17, 1995

Abstract

Misuse Intrusion Detection has traditionally been understood in the literature as the detec-
tion of speci�c, precisely representable techniques of computer system abuse. Pattern matching
is well disposed to the representation and detection of such abuse. Each speci�c method of abuse
can be represented as a pattern and many of these can be matched simultaneously against the
audit logs generated by the OS kernel. Using relatively high level patterns to specify computer
system abuse relieves the pattern writer from having to understand and encode the intricacies of
pattern matching into a misuse detector. Patterns represent a declarative way of specifying what
needs to be detected, instead of specifying how it should be detected. We have devised a model
of matching based on Colored Petri Nets speci�cally targeted for misuse intrusion detection.
In this paper we present a software architecture for structuring a pattern matching solution
to misuse intrusion detection. In the context of an object oriented prototype implementation
we describe the abstract classes encapsulating generic functionality and the inter-relationships
between the classes.

1 Introduction

Intrusion Detection is an important monitoring technique in computer security aimed at the de-
tection of security breaches that cannot be easily prevented by access and information ow control
techniques. These breaches can be a result of software bugs, failure of the authentication module,
improper computer system administration, etc. Intrusion detection has historically been studied
as two sub-topics: anomaly detection and misuse detection. Anomaly detection is based on the
premise that many intrusions appear as anomalies on ordinary or specially devised computer system
performance metrics such as I/O activity, CPU usage, etc. By maintaining pro�les of these metrics

�This work was funded by the Division of INFOSEC Computer Science, Department of Defense.

1

for di�erent subject classes, for example individual users, groups of users or programs and monitor-
ing for large variations on them, many intrusions can be detected. Misuse intrusion detection has
traditionally been understood in the literature as the detection of speci�c, precisely representable
techniques of computer system abuse. For example, the detection of the Internet worm attack by
monitoring for its exploitation of the fingerd and sendmail bugs [Spa89] would fall under misuse
detection.

Several approaches to misuse detection have been tried in the past. They include language based
approaches to represent and detect intrusions [HCMM92], developing an API1 for the same [Sma95],
expert systems [SSHW88, Sma88, BK88] and high level state machines to encode and match sig-
natures [Ilg92, PK92]. We proposed using a pattern matching approach to the representation and
detection of intrusion signatures [KS94c]. This approach resulted from a study of a large number of
common intrusions with the aim of representing them as signatures [KS94a]. The signatures were
then classi�ed into categories based on their theoretical tractability of detection. We consider the
following to be unique advantages speci�c to our model of pattern represention and matching.

Sequencing and partial order constraints on events can be represented in a direct declarative
manner. Systems that use expert system rules to encode misuse activity only do so indi-
rectly because it is hard or ine�cient to specify temporal relationships between facts in rule
antecedents. [Ilg92, PK92] permit the speci�cation of state transition diagrams to represent
misuse activity but their transition events are high level actions that do not directly cor-
respond to system generated events. ASAX [HCMM92] is the closest to our approach but
ASAX is less declarative. In specifying patterns in their rule based language RUSSELL one
must explicitly encode the order of rules that are triggered at every step. While [HCMM92]
tends to be a mechanism for general purpose audit trail analysis, our e�ort is a combination
of mechanism and policy. The features provided in our work are closely tied to the intrusion
characteristics we are trying to detect.

Our model provides for a �ne grained speci�cation of a successful match. The use of pattern
invariants (to be explained later) allows the pattern writer to encode patterns that do not
need to rely on primitives built into the matching procedure to manage the matching, for
example to clean up partial matches once it is determined that they will never match. This
frees the matching subsystem from having to provide a complete set of such primitives and,
in the process, tying the semantics of pattern matching with the semantics of the primitives.

Our method also has the following bene�ts but these are not necessarily a consequence of our
approach.

Portability. Intrusion signatures can be moved across sites without rewriting them to accom-
modate �ne di�erences in each vendor's implementation of the audit trail. Because pattern
speci�cations are declarative, a standardized representation of patterns enables them to be
exchanged between users running variants of the same avor of operating system, with varying
audit trail formats.

1Application Programming Interface, i.e. a set of library function calls employed for representing and detecting
intrusions.

2

Declarative Speci�cation. Patterns representing intrusion signatures can be speci�ed by de�n-
ing what needs to be matched, not how it is matched. That is, the pattern is not encoded by
the signature writer as code that explicity performs the matching. This cleanly separates the
matching from the speci�cation of what needs to be matched.

In this paper we describe our implementation of the model in [KS94c]. Although we have used
a popular object-oriented programming language (C++) for our e�ort, the technique does not
require it. Our implementation is directed at providing a set of integrated classes that can be used
in an application program to implement a generic misuse intrusion detector. Our implementation
also suggests a structure of classes encapsulating generic functionality and the inter-relationships
between the classes to design any misuse detector. The paper also describes that structure.

The implementation is ongoing and measurements of its speed and resource requirements will appear
in a later paper. Our choice of the language was dictated by the free availability of high quality
implementations of the language, our familiarity with it and the linguistic support provided in it
to write modular programs. The set of integrated classes we have developed can be programmed
in many other Object Oriented languages as well because no properties speci�c to C++ have been
assumed or used. We only exploit the language's encapsulation and data abstraction properties.
We use the word class in a generic sense and the corresponding notion from many other languages
can be substituted here.

2 Our Approach

The model of pattern representation and detection on which the implementation is based, and its
theoretical properties were �rst described in [KS94b] and later re�ned in [KS94c]. Briey, each
intrusion signature is represented as a specialized graph in this model. We have used the example
of detecting TCP connections using IP datagrams to illustrate the various elements of our approach
[see �g. 1]. The appendix outlines examples of system vulnerabilities and their representation in
this model that would be more suitable for detection using a C22 audit trail. These graphs are
an adaptation of Colored Petri Nets [Jen92] with guards de�ning the context in which signatures
are considered matched. Vertices in the graph represent system states. The pattern represents
the sequence of events and its context that forms the core of a successful intrusion or its attempt.
Patterns may have pre-conditions and post-actions associated with them. A pattern pre-condition
is a logical expression that is evaluated at the time the pattern springs into existence. It can also
be used to set up state that may be used later by the pattern. Post-actions are performed whenever
the pattern is matched successfully. For example, it might be desirable to raise the audit level of a
user if he fails a certain number of login attempts within a speci�ed time duration. This is easily
expressed as a post-action. Patterns may also include invariants to specify that another speci�ed
pattern speci�cation cannot appear in the input stream while the main pattern is being matched.
If a pattern is regarded as a set of event sequences P that it matches, and an invariant is regarded
as another set of event sequences I that the invariant matches, then a pattern with an invariant
speci�cation corresponds to the set P ^ I . A pattern can have more than one invariant. That

2A DoD security evaluation criteria class requiring auditing and unavailability of encrypted passwords [oDS85].

3

corresponds to P ^I1 ^� � �^ In. For example, a pattern that matches process startups and records
all �le accesses by the process may require an invariant that ensures that the process has not exited
while the principal pattern is being matched. From the practical viewpoint of specifying intrusion
patterns, invariants usually result in more e�cient matching rather than adding functionality to
the pattern speci�cation.

As a concrete example of a pattern, consider the monitoring of TCP connections on a fast gateway
by examining each packet that passes through it. The example highlights how stateful matching
involving a sequence of events can be represented in our model. The example is drawn from a
familiar domain and illustrates that the model is independent of the nature of the underlying
events.

A TCP connection setup between the initiator S and the recipient D involves a three-way handshake
[Com91]. The �rst segment of the handshake involves sending an IP datagram from S to D with
the SYN bit set in the code �eld. In response to this SYN packet D sends a datagram that
acknowledges the SYN packet and sets the SYN bit to continue the handshake. The �nal message
is the acknowledgement of the second SYN and is sent from S to D.

Thus, in order to detect simpli�ed TCP connections not involving retransmissions we can monitor
for the sequence:

1. A SYN packet, from a source S to a destination D.

2. A SYN+ACK, from D back to S.

3. An ACK, from S to D.

Pictorially this looks like:

S D D S S D
SYN SYN + ACK ACK

Initial State

token

Final State

TCP TCP TCP1 2 3

(start) (after_ack)(after_syn_ack)(after_syn)

Figure 1: Matching a TCP connection

Pre-condition: none
Guards:

TCP1: this[SYN] = 1 && (FROM PORT = this[FROM PORT]) && (this[TO PORT] = RLOGIN PORT)
&& (FROM HOST = this[FROM HOST]) && (TO HOST = this[TO HOST])

4

(If this packet is a SYN packet destined to the RLOGIN port, store its source and destination host and
source port in the token).

TCP2: this[SYN] = 1 && (this[FROM PORT] = RLOGIN PORT) && (this[TO PORT] = FROM PORT)
&& (this[FROM HOST] = TO HOST) && (this[TO HOST] = FROM HOST)

(If this packet is a SYN packet from the RLOGIN port of a host whose name matches that stored in the
token, destined to the host and port corresponding to this token's variables FROM HOST and FROM PORT
then �re the transition).

TCP3: this[SYN] = 0 && (this[FROM PORT] = FROM PORT) && (this[TO PORT] = RLOGIN PORT)
&& (this[FROM HOST] = FROM HOST) && (this[TO HOST] = TO HOST)

(Any non SYN packet ows from (FROM HOST, FROM PORT) to (TO HOST, TO PORT)).

Invariant: No RESET ows from D ! S.
Post Action: Print that a TCP connection has been established between S & D.

Transitions are labeled by event types, in �g. 1 all transitions are labeled with the type TCP.
This means that the transition can potentially be triggered by a TCP packet. Tokens have state
associated with them, often used to store data from events. In the example these are FROM_PORT,
TO_PORT, FROM_HOST and TO_HOST. The pattern is considered matched when a token reaches the
�nal state. In order for a transition to trigger there must be a token in its input state that
satis�es the guard at the transition. The guards placed at each transition are shown above. Guard
expressions permit the extraction of data from events for later use or allow the constraining of
events that can match a transition. Expressions involving this use the array indexing operator []
found in many programming languages to refer to data from the current packet for the transition.
Each packet is converted into an object and its public member functions can be called using the
this[pub_mem_fun] syntax to extract data from it. In our example, the pattern guards make use of
the member functions SYN() to test whether the TCP packet has the SYN bit set, FROM PORT()
to retrieve the source port from the packet etc. RLOGIN_PORT is a global variable de�ned outside the
pattern de�nition. For a more detailed description of the syntax and use of expressions see [KS94b].
This paper assumes the suitability of the model to misuse intrusion detection. That justi�cation
was done in [KS95].

Given the premise that patterns conforming to the model need to be represented and matched by
applications, the implementation of this model can be broken down into the following sub-problems:

1. The external representation of patterns. That is, how does the pattern writer encode patterns
for use in matching.

2. The interface to the event source. In our example it would be the interface to IP datagrams.

3. Dispatching the events to the patterns and the matching algorithms used for matching.

These issues are discussed in the next section. In addition to solving these requirements, our
implementation is designed to simplify the incorporation of the following:

The ability to create patterns and to destroy them dynamically, as matching proceeds.

The ability to partition and distribute patterns across di�erent machines for improving per-

5

formance.

The ability to prioritize matching of some patterns over others.

The ability to handle multiple event streams within the same detector without the need to
coalesce the event streams into a single event stream.

We describe our design in the next section and show how the library classes implement the design.

3 Overall Architecture

The library consists of several classes, each encapsulating a logically di�erent functionality. An
application program that uses the library includes appropriate header �les and links in the library.

The external representation of patterns (sub-problem 1) is done using a straightforward representa-
tion syntax that directly reects the structure of their graph. These speci�cations can be stored in
a �le or maintained as program strings. When a pattern is needed to be matched in an application,
a library provided routine (a class member function) is called that compiles the pattern description
to generate code that realizes the pattern. This code is then dynamically linked to the application
program and the pattern matching for that pattern is initiated. The application also instantiates a
server for each type of event stream used for matching. Events are totally encapsulated inside the
server object (sub-problem 2) and are only used inside pattern descriptions. As pattern descrip-
tions are compiled they are added to the relevant server queue. The server accesses and dispatches
events to the patterns on its queue in some policy speci�able order (sub-problem 3).

The application structure is explained below which gives an overall view of the application. Section
3.2 looks at the structure of events. Section 3.3 explains the structure of the server itself in detail
and its relationship to the patterns that are instantiated by the application.

3.1 Application Structure

As an example application structure consider matching the pattern described in �g. 1. This may
look as shown below. The function dotted_decimal_addr takes an integer (32 bits) and prints it
as four integers corresponding to each octet of the integer, separated by a dot. This is a common
way of writing internet host addresses.

//file application.C

1 #include "IP_Server.h"

2
3 int RLOGIN_PORT = 513;

4
5 int print_tcp_conn(int from_HOST, int to_HOST) //callback function

6 {

7 cerr << "A TCP connection has been established between "

8 << dotted_decimal_addr(from_HOST) << " and "

9 << dotted_decimal_addr(to_HOST) << endl;

10 return 1;

11 }

6

12
13 int main()

14 {

15 IP_Server S;

16 IP_Pattern *p1 = S.parse_file("patterns-ip"); //read pattern from "patterns-ip"

17
18 /* duplicate a thread of control if necessary because run() doesn't return */

19 S.run();

20
21 return(1);

22 }

The application program makes use of an IP_Server object. The server object understands the
layout of events and the event types that can be legally used in a pattern de�nition. IP_Server also
knows how to access events, in this case from the machine's network interface, and how to dispatch
them to the patterns that are registered with it. The server is also responsible for parsing pattern
descriptions and can type-check the pattern speci�cation because it understands the data format
of the events. The call to the server member function parse_file reads, compiles and registers a
new pattern with the server object. When the server object is started with a call to S.run() it
starts reading events and dispatching them. This consumes one thread of control as S.run() never
returns. The server is responsible for implementing concurrency control methods to ensure that
calls to its public member functions do not corrupt its internal state. Our implementation uses the
idea of monitors [Hoa74] to ensure this. The pattern description contained in �le patterns-ip looks
like:

//file patterns-ip

1 extern int RLOGIN_PORT_CLIENT, RLOGIN_PORT_SERV, print_tcp_conn(int, int);

2
3 pattern TCP_Conn_Mon "Monitor rlogin connections" priority 10

4 int FROM_PORT, FROM_HOST;

5 int TO_PORT, TO_HOST;

The variable declarations de�ne the color of the tokens in the pattern. Each token has four integers that
can be accessed through the syntax this[FROM_PORT], this[FROM_HOST] etc.

6 state start;

7 nodup state after_syn, after_syn_ack;

8 state after_ack;

These are the states of the pattern. after_syn signi�es the state after the initial SYN is observed,
after_syn_ack signi�es the observation of the initial SYN followed by a response SYN. nodup indicates
that tokens in this state will not be duplicated to other states, rather they will be moved to other states
when the transition �res.

9 post_action { print_tcp_conn(FROM_HOST, TO_HOST); }

print_tcp_conn is called with token values corresponding to the token in the �nal state of the pattern.

10 neg invariant first_inv

11 state inv_start, inv_final;

12

7

13 trans rst(TCP)

14 <- inv_start;

15 -> inv_final;

16 |_ { this[RST] = 1 && TO_HOST = this[FROM_HOST] && this[TO_HOST] = FROM_HOST; }

17 end rst;

18 end first_inv

The invariant speci�es that no reset should be received during connection formation. An invariant speci-
�cation can itself be a graph. Whenever a token is moved from the start state of the pattern, its copy is
placed in the start state of the invariant. This token can have part of its color de�ned because the �ring of
a transition may change a token color.

19 trans tcp_1(TCP) /* TCP is the event type of the transition */

20 <- start;

21 -> after_syn;

22 |_ { this[SYN] = 1 && this[ACK] = 0 &&

23 FROM_PORT = this[FROM_PORT] && this[TO_PORT] = RLOGIN_PORT_SERV &&

24 FROM_HOST = this[FROM_HOST] && TO_HOST = this[TO_HOST];

25 }

26 end tcp_1;

27
28 trans tcp_2(TCP)

29 <- after_syn;

30 -> after_syn_ack;

31 |_ { this[SYN] = 1 && this[ACK] = 1 &&

32 (this[FROM_PORT] = RLOGIN_PORT_SERV) && (this[TO_PORT] = FROM_PORT) &&

33 (this[FROM_HOST] = TO_HOST) && (this[TO_HOST] = FROM_HOST);

34 }

35 end tcp_2;

36
37 trans tcp_3(TCP)

38 <- after_syn_ack;

39 -> after_ack;

40 |_ { this[SYN] = 0 && this[ACK] = 1 &&

41 (this[FROM_PORT] = FROM_PORT) && (this[TO_PORT] = RLOGIN_PORT_SERV) &&

42 (this[FROM_HOST] = FROM_HOST) && (this[TO_HOST] = TO_HOST);

43 }

44 end tcp_3;

This de�nes the structure of the pattern graph.

45 end TCP_Conn_Mon;

Listing 1: A Sample Pattern Description

Similarly, if an application needed to match patterns against a C2 audit trail it might have used a
C2_Server instead of IP_Server or concurrently with it within the same application program.

8

3.2 Event Structure

Each event in the event stream is converted to an instance of an event class. For handling IP
datagrams this class might be named IP_event. This class encapsulates all the attributes common
to IP datagrams. Derived classes of IP_event can be used for specifying more specialized types
of IP datagrams. For example, TCP_event and UDP_event can be derived to represent TCP and
UDP datagrams. Each event object can identify its type through its type() member function.
This is used by the server to dispatch the event to the appropriate patterns. All the data belonging
to the event is made available through its member functions. This mechanism encapsulates the
organization of data in the event which may be system dependent in general. The description of
all the event classes is what constitutes the backend of the system and is one of the few system
dependent layers.

3.3 Server Structure

For each event, the server looks at its type and consults a dynamically maintained table of patterns
that have requested events of that type. It then calls the Patproc procedure of each such pattern.
Patproc is a procedure associated with every pattern (its member function) that handles events
for it. This approach to handling events is similar to the approach taken in Microsoft Windows
[Pet92]. Events of interest are requested by patterns when they are instantiated by the server.

Events are dispatched to patterns based on the priority of the pattern. Patterns are placed in queues
at the appropriate priority level, and patterns are serviced in each queue in a round robin fashion.
This ordering of patterns by priority assumes that on the average, an event can be dispatched to
all the patterns requesting it in a time less than the average time of generation of an event. If
this requirement is not met, patterns up to a certain level in priority may be perpetually starved.
We have not provided for any aging of patterns in this design, such mechanisms can be added.
Pictorially this looks like

events

C
o
n
s
t
r
u
c
t

O
b
j
e
c
t
s Audit T

rail

Clock

Network Packets

Application Trails

Highest Priority Patterns

Lowest Priority Patterns

ROUND ROBIN

ROUND ROBIN

3.4 Summary

The use of an event stream requires the creation of two classes. An event class that is the root
class of all events provided in the event stream and a server class that parses pattern descriptions,
instantiates them and manages them on its data structures. The server class interacts with the
event class by converting raw events into objects of this class and dispatching them. The inter-

9

relationship between the various classes is shown in �g. 2. Class names bounded by dotted boxes
are abstract classes. The functions identi�ed within these boxes are the pure virtual functions of
these classes.

SERVER

IP_SERVER C2_SERVER

EVENT

IP_EVENTS C2_EVENTS

Event_TCP Event_UDP C2event_EXEC C2event_CHMOD

IP_PATTERN C2_PATTERNIP
_P

A
T

T
E

R
N

C
2_

P
A

T
T

E
R

N

int type()

PATTERN
void PatProc(Event *)

Figure 2: Inter-relationship between the various classes in the detector.

Use of pattern and application global variables discourages parallelism in exercising several tokens
simultaneously when several multi-processor threads are available. Several available threads, can,
however, simultaneously exercise tokens in di�erent patterns. Application and pattern global vari-
ables should ideally become read-only once matching begins so that concurrency of access to these
variables is possible.

4 Implementing the Server

This section describes how a server class (e.g. IP Server) is implemented in our library. The event
class associated with the server class is completely encapsulated in the server class and is not
visible to the application. The heart of the server class is the member function that translates a
pattern description into C++ code that implements the pattern [sec. 4.1]. Because our language
for describing patterns is a straightforward representation of the pattern structure, translation into
an automaton is direct. Syntactic structures introduced in the language often translates directly
into functions that are invoked to perform the operation. Sec. 4.2 describes what the translated
automaton looks like, particularly the procedure that accepts incoming events from the server and
exercises the automaton with it.

4.1 Server::parse()

The server class associated with each event stream is responsible for translating patterns speci�c
to the event stream. For each pattern (each pattern name is unique), the translation performs the

10

following actions:

1. It generates a C++ class representing the pattern (IP TCP Conn Mon in our example) with all
the pattern global variables as static data members of the class (none in our example).

2. It generates a token class (IP_TCP_Conn_Mon_Tok) that represents tokens associated with
that pattern). The token class has private data members corresponding to each pattern
local variable and corresponding public functions to access them. In our example these are
FROM_PORT, FROM_HOST, TO_PORT and TO_HOST. These were declared in lines 4 and 5 of listing
1.

3. Each guard expression associated with a transition is re-written with several syntactic changes:
Pattern local variable references are substituted by calls to token member functions.

Certain operations are syntactically changed to library calls, for example, the pattern
matching operator =~ is changed to a call to a regular expression matching routine.

Calls of the form this[...] are changed to member function calls to the appropriate
event object. See for example line 22 of listing 1.

Pattern global variable references are changed to Pattern static references.

4. A PatProc procedure is generated for the pattern to handle events for the pattern, in our
example its signature would be IP_TCP_Conn_Mon::PatProc(IP_Event *).

4.2 Pseudo code for the generated PatProc

The heart of a pattern is its PatProc which exercises its automaton on each event that the pattern
has requested. Fig. 3 shows the pseudo code of a sample PatProc. For each incoming event, all
transitions labeled with that type are tested to see if they �re, i.e. whether the event and the uni�ed
token formed by unifying tokens drawn from each input state of the transition satisfy the guard at
the transition. All tokens residing in nodup states that comprise the uni�ed token are marked for
later deletion. Tokens that are added to output states of a transition as a result of its successful
�ring wait to be added to the states until all transitions have been tried. Then the tokens are
added into all the states. When an invariant is satis�ed, i.e. a token reaches the �nal state of the
invariant, all the tokens related to the token are destroyed.

11

IP_TCP_Conn_Mon::PatProc(Event *e)

f
for (all transitions in pattern and invariants of type e->type())

f
for (all token sets formed by taking one token from each input of this transition)

f
if (the token set does not unify) continue;

if (the token set fails the guard) continue;

mark all tokens in this set belonging to nodup states for later deletion;

put a copy of this token in each successor of this transition;

if (one of the input states of this transition is a pattern start state)

put a copy of this token in the start state of each invariant;

g
g

clock the states to merge tokens at its input with tokens already in the state;

eval post actions for all tokens in the final state and free them;

delete all marked tokens from all nodup states;

process all invariant final states;

g

Figure 3: Pseudo code of a sample PatProc.

5 Design Choices

By far the most signi�cant consideration guiding the design was the run-time e�ciency of the
detector. For misuse detection using a C2 generated audit trail one might reasonably expect
to process events (audit records) at the rate of 50K-500K/user/day [Sma95]. Furthermore, any
computer resource required for matching patterns reduces the availability of these resources for
general use. We therefore decided not to interpret the pattern automata by using table lookups to
determine the pattern structure but instead to compile the pattern description into an automaton.
This also has the bene�t of compile time optimizations of guard expressions present in the pattern.
As the generated code realizing the automaton did not need to be \user friendly", we tried to make
it more e�cient by using functions as little as possible to avoid function call overhead in cases
where functions could not be inlined. This often meant that data structures manipulated by the
various pieces of the generated automaton were not encapsulated and were manipulated directly
by these pieces. This has not proved to be a problem as the routines that generate this \program"
are structured and the generated program logic can be deciphered by following the structure and
logic of the generating routine.

The overriding constraint of e�ciency combined with the requirement to dynamically create and
destroy patterns meant that automaton descriptions be compiled and dynamically linked for the
purpose of matching. An additional bene�t of the dynamic creation of patterns is that new patterns
can be created within an executing program based on its logic and execution ow. For example,
it might be desirable to instantiate speci�c patterns for matching based on the type and degree of

12

suspicious activity observed. Such patterns may depend on the particular user and other speci�cs
of the suspicious activity.

Our design, which is based on the model of dispatching events to patterns lends itself naturally
for distribution. In a distributed design, the event sources (audit trails) may be generated on
di�erent machines and their processing on another machine. That is, the patterns, the server and
the event sources may all reside on physically di�erent machines. The server can then retrieve
events by using any of several well known techniques [BN84, Par90] and dispatch them to patterns.
Although our current implementation is single host based, a distributed implementation should be
straightforward.

Our current implementation precludes concurrency of exercising a pattern with several events si-
multaneously because of order of execution guarantees that can be made in a single threaded
architecture. We do not consider that to be a hard limitation on the design because concurrency
can be exploited by exercising more than one pattern on the same event. In a system where the
expected number of patterns are in the order of a hundred, this does not seem to be a stringent
limitation.

A limitation of the current design is that patterns cannot directly use more than one event source.
In order to use more than one event source, the disparate sources would have to be canonicalized to
one event stream and used in the patterns. Many modern audit trails, for example the SUN BSM,
allow the creation of user de�ned event types and applications can generate their own speci�c audit
records through an API.

6 Performance

We have built and tested a prototype IP_Server that puts the network interface of a machine
running Solaris 2.3 into promiscuous mode and dispatches IP datagrams to its patterns. We are
currently in the �nal stages of the implementation of a C2_Server that dispatches C2 audit trail
events on a Solaris 2.3 machine running the Basic Security Module. Signatures will be written for
vulnerability data drawn from COPS [FS91], CERT advisories [CER] and the bugtraq and 8lgm3

electronic mailing lists. Performance �gures for that will be reported in a subsequent paper.

7 Summary

This paper described a possible architecture for structuring a misuse intrusion detector based on
pattern matching. The structure is client-server based in which the server obtains events and
dispatches them to clients (patterns) which implement the matching procedure speci�c to their
structure. Implementing this structure as a library permits embedding this type of matching within
application programs. Our prototype allows the dynamic creation of patterns. These patterns are
translated from a description language into C++ code that implements the pattern and dynamically

3Both lists discuss computer security vulnerabilities, their exploitation and steps for prevention and
detection. Bugtraq is issued from bugtraq@crimelab.com and 8lgm advisories can be retrieved from
fileserv@bagpuss.demon.co.uk.

13

links that code into the application.

8 Acknowledgements

We would like to thank all members of the COAST laboratory for their valuable comments on this
paper, in particular Christoph Schuba for his extra e�ort and help with the paper.

References

[BK88] David S. Bauer and Michael E. Koblentz. NIDX { An Expert System for Real-Time
Network Intrusion Detection. In Proceedings { Computer Networking Symposium, pages
98{106. IEEE, New York, NY, April 1988.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39{59, February 1984.

[CER] Available by anonymous ftp from cert.sei.cmu.edu:/pub/cert advisories.

[Com91] Douglas E. Comer. Internetworking with TCP/IP, volume I. Prentice Hall, 2nd edition,
1991.

[FS91] Daniel Farmer and Eugene Spa�ord. The COPS Security Checker System. Technical
Report CSD-TR-993, Purdue University, Department of Computer Sciences, Septem-
ber 1991.

[HCMM92] Naji Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Software Architec-
ture and Rule-based Language for Universal Audit Trail Analysis. In Proceedings of
ESORICS 92, Toulouse, France, November 1992.

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communica-
tions of the ACM, 17(10):549{557, 1974.

[Ilg92] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX. Master's
thesis, Computer Science Department, University of California, Santa Barbara, July
1992.

[Jen92] Kurt Jensen. Coloured Petri Nets { Basic Concepts I. Springer Verlag, 1992.

[KS94a] Sandeep Kumar and Eugene Spa�ord. A Taxonomy of Common Computer Security
Vulnerabilities based on their Method of Detection. (unpublished), June 1994.

[KS94b] Sandeep Kumar and Eugene Spa�ord. An Application of Pattern Matching in Intrusion
Detection. Technical Report 94-013, Purdue University, Department of Computer
Sciences, March 1994.

[KS94c] Sandeep Kumar and Eugene H. Spa�ord. A Pattern Matching Model for Misuse In-
trusion Detection. In Proceedings of the 17th National Computer Security Conference,
pages 11{21, October 1994.

14

[KS95] Sandeep Kumar and Eugene H. Spa�ord. Misuse Intrusion Detection Viewed as a
Pattern Matching Problem. Journal of Computer Security (to be submitted), 1995.

[oDS85] Department of Defense Standard. Department of Defense Trusted Computer System
Evaluation Criteria. Number DOD 5200.28-STD. U.S. Government Printing O�ce,
December 1985.

[Par90] Graham D. Parrington. Reliable Distributed Programming in C++: The Arjuna Ap-
proach. In USENIX 1990 C++ Conference Proceedings, pages 37{50, 1990.

[Pet92] Charles Petzold. Programming Windows 3.1. Microsoft Press, 1992.

[PK92] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transition Analysis {
A Rule-Based Intrusion Detection Approach. In Eighth Annual Computer Security Ap-
plications Conference, pages 220{229. IEEE Computer Society press, IEEE Computer
Society press, November 30 { December 4 1992.

[Sma88] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth Aerospace
Computer Security Applications Conference, pages 37{44, Tracor Applied Science Inc.,
Austin, TX, Dec 1988.

[Sma95] Steve Smaha. Talk given at the third Computer Misuse and Anomaly Detection Work-
shop (CMAD III) in Sonoma, CA, January 1995.

[Spa89] Eugene Spa�ord. Crisis and Aftermath. Communications of the ACM, 32(6):678{687,
June 1989.

[SSHW88] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in Intrusion
Detection: A Case Study. In Proceedings of the 11th National Computer Security
Conference, October 1988.

9 Appendix

We give here an example signature pattern that can be used to detect a common vulnerability. This
is a possible encoding of the 8lgm advisory of 5/11/94. The advisory deals with a vulnerability
in the passwd program supplied with the SunOS 4.1.x operating system. This version of passwd
allowed any user to specify the password �le to be used by it. passwd updates the �le as root.
Using a program which changes the absolute path of the supplied �le at carefully selected points
during the execution of passwd, changes can be written at arbitrary places in the �le system.

This signature monitors for a process opening a path name twice, once for reading, then for writing
in which the object pointed to by the pathname changes. That is:

open for read link (link1)
open for write link (link2)
link1 6= link2

15

1 extern int inode(str);

2
3 pattern passwd_attack "passwd -F" priority 7

4 state start;

5 nodup state after_read;

6 state after_write;

7 int PID, INODE;

8 str FILE;

9
10 post_action {

11 printf("Pid %d opened different links (same path) for reading & writing %s\n", PID, FILE);

12 }

13
14 neg invariant inv /* negative invariant */

15 state start_inv, final_inv;

16
17 trans proc_exit(EXIT)

18 <- start_inv;

19 -> final_inv;

20 |_ { this[PID] = PID; }

21 end proc_exit;

22 end inv;

The invariant garbage collects all tokens related to partial matches for a particular process once the process
has exited.

23 /* pattern description follows */

24 trans read(OPEN_R)

25 <- start;

26 -> after_read;

27 |_ { this[ERR] = 0 && PID = this[PID] && islink(this[OBJ]) &&

28 INODE = inode(this[OBJ]) && FILE = this[OBJ]; }

29 end read;

Whenever the process successfully opens a path which is a link, its inode is stored. Link may be a symbolic
link or a link to a �le object with a reference count > 1.

30 trans write1(OPEN_W)

31 <- after_read;

32 -> after_write;

33 |_ { this[ERR] = 0 && PID = this[PID] && islink(this[OBJ]) &&

34 INODE = inode(this[OBJ]) && FILE = this[OBJ];

35 }

36 end write1;

The SUN BSM auditing mechanism generates an event for each option combination of the open system call.
This transition detects the case when an open for read is followed by an open for write with create. The
other write transitions following this one detect the case when the open for read is followed by other kinds
of open for write. Pictorially this looks like:

16

R

W

WT

WC

WTC

37 trans write2(OPEN_WC)

38 <- after_read;

39 -> after_write;

40 |_ { this[ERR] = 0 && PID = this[PID] && islink(this[OBJ]) &&

41 INODE = inode(this[OBJ]) && FILE = this[OBJ];

42 }

43 end write2;

44
45 trans write3(OPEN_WT)

46 <- after_read;

47 -> after_write;

48 |_ { this[ERR] = 0 && PID = this[PID] && islink(this[OBJ]) &&

49 INODE = inode(this[OBJ]) && FILE = this[OBJ];

50 }

51 end write3;

52
53 trans write4(OPEN_WTC)

54 <- after_read;

55 -> after_write;

56 |_ { this[ERR] = 0 && PID = this[PID] && islink(this[OBJ]) &&

57 INODE = inode(this[OBJ]) && FILE = this[OBJ];

58 }

59 end write4;

Whenever the process later opens the same path for writing and the object represented by the path has
changed the pattern is triggered and the post_action executed.

60 end passwd_attack;

17

