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Abstract

We searched the Cunningham tables for new algebraic factorizations similar to those
discovered by Aurifeuille. A naive search would have been too slow. We accelerated
it enough to make it feasible. Many interesting results were found.

Dedicated to the memory of John Selfridge, who loved the integers.

1. Introduction

The Cunningham Project, started more than a century ago by Cunningham and

Woodall, summarized in their 1925 book [7] and continued to this day by many

others [4], studies the factorization of numbers of the form bn±1 with small integers

b > 1. John Selfridge was one of the leaders of the Cunningham Project from the

1960s until his death in 2010.

Let Φd(x) ∈ Z[x] denote the dth cyclotomic polynomial, the monic, irreducible

polynomial whose roots are the primitive dth roots of unity. The degree of Φd(x)

is given by Euler’s totient function φ(d). Let n > 1 be an integer. An important

property of cyclotomic polynomials is the product xn−1 =
∏

d|n Φd(x). Substituting

x = b into this formula gives a (partial) factorization of the integer bn − 1. The

factorization is nontrivial except when b = 2 and n is prime. Likewise, xn + 1 can

be partially factored as
∏

Φd(x) where the product extends over integers d dividing

2n but not n (because xn + 1 = (x2n − 1)/(xn − 1)). This gives a factorization

of bn + 1 which is nontrivial when n is not a power of 2. We call these product

formulas the cyclotomic factorizations of bn − 1 and bn + 1.

Aurifeuillian factorizations are algebraic factorizations of bn±1 (or more generally

an ± bn) which go beyond the cyclotomic factorization of some of these numbers.

1The author was supported by the Center for Education and Research in Information Assurance

and Security at Purdue University.
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The simplest one is the identity

24k−2 + 1 = (22k−1 − 2k + 1)(22k−1 + 2k + 1), (1)

which factors the number 2n + 1, with n = 4k − 2, in a different way from the

cyclotomic factorization of this number. The number 33m + 1 always has the cyclo-

tomic factorization (3m + 1)(32m − 3m + 1), but the second factor could be prime.

However, when m = 2k − 1 is odd, the second factor splits into two nearly equal

parts:

36k−3 + 1 = (32k−1 + 1)(32k−1 − 3k + 1)(32k−1 + 3k + 1). (2)

In the Cunningham notation, the trinomial factor with −3k is called “L” while the

one with +3k is called “M”. Thus, “3,27L” is 39 − 35 + 1 = 19441 and “3,27M” is

39 + 35 + 1 = 19927.

A primitive factor of bn − 1 is one which does not divide bi − 1 for any i < n. A

primitive factor of bn + 1 is one which does not divide bi + 1 for any i < n. When

Aurifeuillian factorizations occur, they cut across the cyclotomic factorizations and

may be used to show that certain bn ± 1 have at least two primitive prime factors.

(For example, 327 + 1 has the two primitive prime factors 19441 and 19927.) A

corollary of this statement is that there are infinitely many composite pseudoprimes

to any base b > 1. (See Theorem 1 of [13].) Another important application of

Aurifeuillian factorizations is to assist in factoring Cunningham numbers. Knuth

[11], Section 4.5.4, page 376, gives an example of factoring 2214 + 1, a 65-digit

number easy with today’s factoring methods, but quite hard in 1981. His first step

was to use the formula (1). Wagstaff [20] factored

173173 − 1

173− 1
= 347 · 685081 · 161297590410850151 · P176 · P184,

where Pxxx denotes a prime with xxx decimal digits. If one began naively to

factor this number, it would be easy to discover the three small prime factors, but

no algorithm known at this time could split the product of the two large prime

factors. However, this number admits an Aurifeuillian factorization that breaks it

into two nearly equal pieces, each of which is easy to factor. See Table 24, page

455, of Riesel [14] for the coefficients of the Aurifeuillian factorization of 173173 − 1

(which were computed by Brent).

Aurifeuille (see Lucas [12]) proved Aurifeuillian factorizations exist for infinitely

many b. Schinzel [15] proved the existence of Aurifeuillian factorizations for an −

bn in many cases. See [4] for a description of the cyclotomic and Aurifeuillian

factorizations and their relation. See [16], [3], [2] and [14] for ways to compute

formulas for Aurifeuillian factorizations. Because of their beauty and usefulness,

some mathematicians have sought other algebraic identities similar to those Schinzel

found. See [9], [18], [17], [5], for example. Granville and Pleasants [8] showed that

Schinzel found all such identities, provided one accepts their (reasonable) definition
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of “such identities.” However, they noted that some numerical examples from the

Cunningham tables suggest that other such identities might exist. For example,

6106 + 1 = 37 · 26713 · 175436926004647658810244613736479118917

· 175787157418305877173455355755546870641,

with two nearly equal (prime) factors. The number 12193 − 1 has these two 77-digit
(prime) factors:

45217442809188335376258573027831301630813739280371078165650059881162723213257

46575681210815057292336472816642998460431175135914483032447698371111751624211.

These two examples do not come from either cyclotomic or Aurifeuillian factor-

izations.

Whenever examples like these were discovered, John Selfridge would study them

for a long time, muttering to himself, “There is something algebraic going on here.”

In this note, we describe a systematic empirical search of the Cunningham tables

for new algebraic identities beyond those discovered by Schinzel.

2. How the Cunningham Tables Were Searched

It is easy to discover the cyclotomic factorizations in a table of numbers bn ± 1

in which each number is factored. Look for primes that appear in multiple lines.

Aurifeuillian factorizations are slightly harder to find by inspecting tables of factored

numbers. It helps if the factors of bn±1 are grouped to form nearly equal products.

Here is an example. We have

N := 535 − 1 = 2 · 2 · 11 · 71 · 211 · 631 · 4201 · 19531 · 85280581

= (2 · 2 · 19531) (71 · 85280581) (11 · 211 · 631 · 4201)

= 78124 · 6054921251 · 6152578751

= (57 − 1) · 6054921251 · 6152578751.

Note that 781242 = 6103359376, so that the three factors in the last line are close

to N1/5, N2/5, N2/5, respectively. The two 10-digit factors in the last line give the

Aurifeuillian factorization.

We will seek new algebraic identities by grouping primes to form nearly equal

products. (“Nearly equal” means that one product equals 1 + ε times the other

product for some small real number ε.) Suppose p1, . . ., pk are the prime factors in

one line of the Cunningham table, or perhaps all the prime factors of bn − 1 or of

bn + 1 for particular b and n. We seek subsets T ⊂ {1, . . . , k} so that
∏

i∈T

pi ≈
∏

i6∈T

pi.
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In the example of 535−1 above, the algebraic factor 57−1 would have to be have to be

removed first. Then we would partition the set of primes {71, 85280581, 11, 211, 631,

4201} into two subsets with nearly equal products. Later we will explain a way to

do this which does not require noticing that 57 − 1 must be removed.

The first observation is that one need not do much arithmetic with multiprecise

integers. Rather, it is easier to take logarithms of all the primes, say, ai = log pi,

and convert the problem to this one involving only sums of real numbers. Given

positive real numbers a1, . . ., ak, find subsets T ⊂ {1, . . . , k} so that
∑

i∈T

ai ≈
∑

i6∈T

ai.

Some cases are easy. If the largest prime pk is greater than the product of the

other prime factors, then there is at most one useful subset T . If the number k

of prime factors (or addends in the equivalent real number problem) is small, then

we can examine all 2k−1 subsets T containing 1. But in the interesting part of the

Cunningham tables, k may be more than 40, too large for a brute force search. For

example,

31155+1 = 2 ·2 ·7 ·7 ·31 ·43 ·61 ·67 ·211 ·271 ·331 ·463 ·547 ·661 ·991 · · ·P96 ·P100 (3)

has 44 prime factors, which may be seen at factordb.com.

We will actually solve a slightly more general problem. Let c =
∑k

i=1 ai. Let

α be a real number between 0 and 1. We will find subsets T ⊂ {1, . . . , k} so that∑
i∈T ai ≈ αc. The original problem had α = 1/2. If we set α = 1/3, then we will

be seeking a partition of the prime factors of bn±1 into two sets so that the product

of the primes in one set is approximately equal to the square of the product of the

primes in the other set. One might choose α = 2/5 to discover the Aurifeuillian

factorization of 535 − 1 in the example above. (Using this α, one need not remove

the factor 57 − 1.) With no loss of generality we may assume 0 < α ≤ 1/2. When

investigating possible factorizations of bn±1, one might use some α for which nα is

an integer. In the known Aurifeuillian factorizations of bn ± 1, the α = a/b, where

0 < a ≤ b/2 is an integer. We decided to examine these values of α and a few

others.

Our method for handling large k was to replace the real numbers by small positive

integers. Choose a positive integer K1 of convenient size. Define integers b1, . . .,

bk by bi = baiK1/c + 0.5c, that is, bi is aiK1/c rounded off to the nearest integer.

Since 0 < ai ≤ c we have 0 ≤ bi ≤ K1. Let K =
∑k

i=1 bi. Then

K =

k∑

i=1

bi ≈
k∑

i=1

aiK1/c =
K1

c

k∑

i=1

ai =
K1

c
c = K1.

Also, ∑

i∈T

bi ≈ αK ⇔
∑

i∈T

ai ≈ αc. (4)
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We handled the approximate equalities as percentage errors. For example, al-

lowing a 1% error means

0.99αc ≤
∑

i∈T

ai ≤ 1.01αc.

The problem for b1, . . ., bk with α = 1/2 is called the partition problem in

computer science. The general problem with arbitrary α is known as the subset

sum problem. Wikipedia has articles on both problems. See Section 37.3 of [6],

first edition, or Section 35.5 of the second edition of that book, for a discussion of

the subset sum problem. Both problems are NP-complete, but heuristics solve the

problems quickly in many cases.

We decided to use a variation of the polynomial time approximation algorithm in

the Wikipedia article on the subset sum problem. Our algorithm uses a k× (K +1)

matrix Xr,j of linked lists of pairs (i, b) of integers with i + b = j. The pairs

contain information needed to recursively express j as a sum of input numbers b.

The pair (0, b) in X0,b represents the number b in the input. When r > 0, the

pair (i, b) in Xr,(i+b) represents the sum of the input number b and the number i

whose representation as a sum of input numbers is given in the entry X(r−1),i in

the previous row. Here is the algorithm we used.

for r = 1 to k { insert (0, br) onto X1,br
}

for r = 2 to k {

for j = 0 to K {

if X(r−1),j 6= ∅ {

bn = least b of (·, b) on X(r−1),j

for ` = n + 1 to k − 1 { insert (j, b`) onto Xr,(j+b`) }

}
}

}

for r = 1 to k {

for j ≈ αK {

for each entry in Xr,j {

follow the pointers back to construct sets T

if
∑

i∈T bi ≈ αK, check whether
∑

i∈T ai ≈ αc and print T if so.

}

}
}

In the algorithm, the condition j ≈ αK means that j is one of the 1, 2 or 3 integers

within 1 of the real number αK, unless the percentage error is very large. We may

ignore the columns Xr,j of the matrix with j > αK (or j > αK + 1) because these

columns do not matter since their ordered pairs represent sums greater than αK of

input numbers.
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Here is an example of the algorithm. Suppose k = 5 and the input integers bi

are 2, 2, 6, 7, 9. Then K = 26. Assume that α = 0.5 and the percentage error is so
small that only the column with j = αK = 13 gives acceptable equal sums. Here is
the matrix of linked lists Xr,j . Rows 4 and 5 are not relevant.

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 (0, 2) (0, 6) (0, 7) (0, 9)
(0, 2)

2 (2, 2) (2, 6) (2, 7) (2, 9) (6, 7)

3 (4, 6) (4, 7) (4, 9)

The only linked list with more than one entry in the matrix is X1,2, with two

entries. The entry (4, 6) in X3,10 means that one can express 10 = 4 + 6, where

6 is an input number and 4 can be expressed by looking at an entry in X2,4. In

that linked list one finds the pair (2, 2), which means that one can express 4 as

the sum of the input number 2 plus a 2 from an entry of X1,2. There one finds an

entry (0, 2), meaning that 2 is an input number. By following these links we have

expressed 10 = 6 + 2 + 2, a sum of input numbers.

In the second part of the algorithm one searches the column with j = 13. The

entry (4, 9) in X3,13 leads to 13 = 2 + 2 + 9 and the entry (6, 7) in X2,13 leads to

13 = 6 + 7. The result is the partition of the set of input numbers into two equal

sums 2 + 2 + 9 = 6 + 7. In this case, there is only one partition.

Theorem 1 The algorithm takes O(k2K + S) steps, where S is the number of

solutions to the approximate equality (4).

Proof. The three nested for loops in the first part of the algorithm clearly take

O(k2K) steps. In the second part of the algorithm, the two for loops search through

all solutions to the approximate equality (4).

Sometimes there are many solutions to (4). The number 31155 + 1 in (3) has an

Aurifeuillian factorization given by (2) and there are many ways that primes can

be swapped between the L and M factors to produce other approximate equalities.

Thus, there are cases in which the algorithm runs for a long time because there are

so many answers to the problem it solves. Perhaps one of the answers is an instance

of a new algebraic factorization with infinitely many cases. This slowness cannot

be avoided.

3. The Results

We searched the Cunningham tables of June 21, 2011, for new algebraic factoriza-

tions. When we used a percentage error of 1% or 0.1%, the program found too

many approximate solutions to examine. Therefore, we processed the tables with
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a percentage error of 0.01%. However, this choice gave too many solutions in the

2LM table, so we sharpened the percentage error to 0.001% for this table.

We did the computations for the primitive parts only, for the full factorization

of bn ± 1, and for the L and M parts of Aurifeuillian factorizations separately. We

also combined the sides of the Aurifeuillian factorizations and rediscovered them as

a way of testing the program. It found all of them when n was large enough so that

the difference | log L − log M | was within the percentage error of log L.

Isolated approximate splits are interesting curiosities, but our goal was to find

new identities having infinitely many cases. Hence we searched for partitions of the

factors of bn±1 with fixed α, b and ± with exponents n in an arithmetic progression

or the start of another infinite series. We took special notice of identities in which

the approximation was much better than the allowed percentage error. One clue

that an approximate split is new was that the factors from an earlier referenced line

were not all on the same side of the partition. When all prime factors from each

earlier referenced line were on the same side of the partition, there was usually an

algebraic explanation.

Here are the results for each base. Some numbers, like 31155 + 1 mentioned in

(3), have many small factors that partition nicely in many ways for every α. We

offer an explanation for this phenomena in Section 3.9.

3.1. Base 2

We tried α = 1/4 and 1/2. The base 2 tables are longer than those of other bases

and contain many numbers with lots of factors. The numbers 21155±1 and 22310 +1

each gave tens of thousands of solutions. The numbers 23 + 1 = 3 · 3 and 2,10L

= 25 − 23 + 1 = 5 · 5 each had a perfect partition.

Many numbers in the 2LM table split in non-Aurifeuillian ways into two factors

nearly as close as their Aurifeuillian factorizations. As one example, consider 2534 +

1. The number 2,534L contains factors from 2,2M (written 2,2+ in the Cunningham

table) and 2,178M. The number 2,534M contains factors from 2,6M (written 2,6+ in

the Cunningham table) and 2,178L. Each of 2,534L, 2,534M also has three primitive

factors. However, the product of 2,178L and the three primitive factors of 2,534L

is almost as close to the product of 2,2+, 2,6+, 2,178M and the three primitive

factors of 2,534M as are the two factors of the Aurifeuillian factorization of 2534 +1.

Similar examples exist for 2n + 1 with n = 582, 594, 618, 678, 702, 714, 726, etc.

3.2. Base 3

We tried α = 1/4, 1/3 and 1/2. The primitive parts of 35 − 1 and 31 + 1 have

perfect partitions of 11 · 11 and 2 · 2, respectively.

With α = 1/2 there were good approximate splits for 3n−1 for n = 165, 225, 315,

375, 405, 525, 555, 585 and 615. These numbers all have many prime factors and
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the splits appeared to be coincidences even though these n are all ≡ 15 (mod 30).

There are many ways to swap L and M factors between the Aurifeuillian factors

of 36k−3 + 1 to produce good approximate splits different from the Aurifeuillian

factorizations.

3.3. Base 5

We tried α = 1/5, 1/4, 2/5 and 1/2. The number 5315 + 1, which has 27 prime

factors, including three 3s and two 7s, had many approximate solutions.

The number 51 − 1 = 2 · 2 has a perfect partition for α = 1/2.

With the value α = 1/2, we found an interesting split of the number 5,575M

into two nearly equal pieces. One piece included the 64-digit prime factor and the

factors 1069501 and 26135496851. The other piece contained the other five prime

factors, one of which comes from 5,25L.

Also with α = 1/2, we found splits of 5n − 1 with each n in the arithmetic

progression with first term 225 and common difference 30. All of these numbers have

Aurifeuillian factorizations, but the factorizations we found were not Aurifeuillian.

Many of these factorizations are just Aurifeuillian factorizations with a few factors

swapped between the L and M sides. For example, 5,375L includes 5,125M and

5,375M includes 5,125L. If one swaps the factors from 5,125M and 5,125L between

these two numbers, the new products are very close.

With α = 2/5, we found good approximate splits of 5n + 1 for each n in the

arithmetic progression with first term 105 and common difference 15. All were

cyclotomic factorizations. One example is (5120 − 1)2/5 ≈ 548 ≈ Φ24(5)Φ40(5).

3.4. Base 6

We tried α = 1/6, 1/4, 1/3 and 1/2. The number 6315 − 1, which has 28 prime

factors, including two 5s, had many approximate solutions.

The value α = 1/3 found the cyclotomic factorization 63k + 1 = (6k + 1)(62k −
6k + 1) for 3k = 36, 48, 108, 192, 240, 288 and 336.

3.5. Base 7

We tried α = 1/7, 2/7, 3/7, 1/2 and 1/4. The number 7330 +1, which has 26 prime

factors, including three 5s, had many approximate solutions.

Several striking approximate solutions had α = 2/7. All were cyclotomic factor-

izations. Here are two examples:

(7105 − 1)2/7 ≈ 730 ≈ Φ7(7)Φ35(7)

and

(7147 − 1)2/7 ≈ 742 ≈ Φ49(7).
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These occur because 2
7 · 105 = 30 = φ(7) + φ(35) and 2

7 · 147 = 42 = φ(49). Other

examples like these occur with n = 189, 231, 245, 273, 315, 357 and 385.

These examples lead me to the following question. Given a rational number α,

which positive integers n have one or more distinct divisors di so that
∑

i φ(di) =

αn? For α = 2/7, there are solutions for n = 105 (d1 = 7, d2 = 35) and n = 147

(d1 = 49). The program found no solutions for α = 1/7 or 3/7.

Similar examples were found for α = 2/7 and 7n +1 with n = 126, 168, 210, 252,

280, 294, 336, 350, 378 and 441.

3.6. Base 10

We tried α = 1/10, 1/5, 3/10, 2/5, 1/2 and 1/4. The number 10315 − 1, which has

31 prime factors, counting four 3s, had many approximate solutions.

The number 101 − 1 = 3 · 3 has a perfect partition for α = 1/2.

With α = 1/2 there were many non-Aurifeuillian factorizations of 10n + 1 for

n = 330, 390, 450, 510, 570, 630, 690 and 750. Note that these exponents form

an arithmetic progression. Some of these factorizations are just Aurifeuillian fac-

torizations with a few factors swapped between the L and M sides. For example,

10,750L includes 10,250L and 10,750M includes 10,250M. If one swaps the pieces

from 10,250L and 10,250M between these two numbers, the new products are even

closer than the Aurifeuillian factorizations.

With α = 0.4, we found cyclotomic factorizations similar to those for 7105 − 1.

Here is an example:

(1075 − 1)0.4 ≈ 1030 ≈ Φ3(10)Φ15(10)Φ25(10).

There are other similar examples for 10n − 1 with n in the arithmetic progression

105, 135, 165, . . . and for 10n + 1 with n = 120, 135, 180, 225, 300, 315 and 360.

The other values of α that we tried did not give such examples in base 10.

3.7. Base 11

We tried α = 1/11, 2/11, 3/11, 4/11, 5/11, 1/2 and 1/4. We found this inter-

esting example with α = 1/4 and only 18 prime factors. The product of the nine

prime factors 73, 2521, 7321, 10657, 20113, 40177, 3262393, 77001139434480073 and

139032641114575020289 of 11252 + 1 is approximately 405233 · 1060 and 11252/4 =

1163 ≈ 405265 · 1060.

3.8. Base 12

We tried α = 1/12, 1/6, 1/4, 1/3, 5/12 and 1/2. The number 12231 − 1 has 21

prime factors (counting two 11s). The product of the prime factors 157, 4621,

793717, 886381, 661269577, 191199728567, 50565974802015289 and P71 is very
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close to the product of the other 13 prime factors. Furthermore, the product of

the prime factors 11, 23, 4621, 5999137, 379101493, 191199728567, 8177824843189

and 50565974802015289 is very close to 12231/4 while the product of the other 13

prime factors is very close to 123·231/4. The number 12255 − 1 also has 21 prime

factors. The product of the prime factors 61, 661, 1021, 22621, 79561, 31144681,

5383015065849288291601 and 50540765443957214580241 is very close to 12255/4

while the product of the other 13 prime factors is very close to 123·255/4. These are

the only two examples of such a split in the 12− table.

There is one remarkable example in the 12+ table. The number 12369 + 1 has

eleven primitive prime factors. The Aurifeuillian factorization of this number splits

these factors into two groups whose products are near 12120, since φ(369)/2 =

120. However, the product of 1423355095922941, 105843637766088877609 and

374072153370327840457698722983, namely 56355 · 1060, is very close to 1260 =

56347 · 1060, while the product of the other eight factors is very close to 12180. This

is the only example of a good approximate split with α = 1/4 in the 12+ table.

When the program was run with α = 1/3, many cyclotomic factorizations, like

1248 + 1 = (1216 + 1)(1232 − 1216 + 1), were discovered. Here is an example of

an approximate split with α = 1/3 that was not cyclotomic. The number N =

(12183+1)/(1261+1) has 14 prime factors. The product of the factors 367, 1278439,

13154655247, 563215815517 and 22163333263957 is very close to N 1/3 while the

product of the other nine factors is very close to N 2/3.

The other values of α (1/12, 1/6 and 5/12) produced no interesting results. The

number 12525 + 1 has 28 prime factors, and they can be arranged to fit all of the

αs we tried.

3.9. Are these results just coincidences?

Any real number 0 < α < 1 may be approximated within 2−k by a sum of distinct

powers of 2: 2−i with 0 ≤ i < k using the binary representation of α. Likewise, if

we are given k positive real numbers a1, . . ., ak, with ai ≤ ai+1 ≤ 2ai for 1 ≤ i < k,

then any positive real number less than their sum c =
∑k

i=1 ai may be approximated

within a1 by a sum of ai with distinct i. Even when the inequalities are not satisfied

for every i < k, many real numbers less than c can be approximated. When ai and

ai+1 are even closer together than ai ≤ ai+1 ≤ 2ai for many i, there will be many

approximations of some real numbers less than c.

When the real numbers ai are the logarithms of the prime factors of a typical

integer N , they might satisfy the inequality ai ≤ ai+1 ≤ 2ai for several i. See Bach

[1] for an algorithm to construct random factored integers N . For a typical random

N , the ai will roughly form a geometric progression. When N has many prime

factors, the average common ratio will be smaller than 2, so that ai ≤ ai+1 ≤ 2ai for

many i. A more precise statement is given in Theorem 3 of Vershik [19], which says

that the ratios log q/ log p of logarithms of consecutive large prime divisors q < p of
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large random integers are asymptotically independent and uniformly distributed in

the unit interval (0, 1). Of course, Cunningham numbers bn ± 1 are not random.

A typical random integer N has about ln ln N prime factors. (See Hardy and Ra-

manujan [10].) Cunningham numbers have more than the typical number of prime

factors due to the cyclotomic and Aurifeuillian factorizations. If a Cunningham

number N = bn ± 1 has j prime factors, then it will be possible to find subsets of

the set of prime factors whose product is within a factor of 1 +2−j of Nα for many

0 < α < 1.

Some Cunningham numbers have more than fifteen prime factors. For these

numbers and for any 0 < α < 1, there are many partitions of the set of prime

factors in which the product of the primes in one piece is within a factor of 1+2−15

of Nα. These partitions produced many splits within 0.01% that were coincidences.

4. Conclusion

This research has been a treasure hunt. As I read through the lists of approximate

products, many times I thought I had found a new algebraic factorization. In all

cases where there was any sort of regularity, as with exponents in an arithmetic

progression, it always turned out that the approximate equality could be explained

by known cyclotomic or Aurifeuillian factorization formulas. I believe now that

Schinzel [15] really did find all algebraic factorizations of the Cunningham num-

bers and that Granville and Pleasants [8] adequately captured the notion of “such

identities” and showed that there are no others.

The Cunningham Project has been in existence for more than a century. It now

lists the factorizations of thousands of integers bn±1. It has spurred the development

of many new factoring algorithms. Millions of hours of computer time have been

devoted to the project. But there has been surprisingly little analysis of the results.

The present paper is one of the few studies of the tables. In it we have “data-

mined” the Cunningham tables for algebraic factorizations like those discovered by

Aurifeuille and generalized by Schinzel. One might argue that this search was futile

because Granville and Pleasants proved there are no more identities beyond those

given by Schinzel. However, it is possible that their definition of “such identities”

somehow missed some actual identities. In this paper, we searched for and found

no new ones having infinitely many cases. We have made an empirical confirmation

of the conclusions of Granville and Pleasants. We hope this paper inspires others

to analyze the Cunningham tables in different ways and discover new truths.

All of the lists of approximate equalities are available on the web site

http://homes.cerias.purdue.edu/~ssw/cun/aurifeuillian/index.html

so that readers may learn more details of the approximate equalities reported above

and make their own search for treasure.
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