
Robust Security Mechanisms for Data Streams
Systems

Mohamed Ali, Mohamed ElTabakh, and Cristina Nita-Rotaru
{mhali, meltabak, crisn}@cs.purdue.edu

Department of Computer Science
Purdue University

Abstract— Stream database systems are designed to support
the fast on-line processing that characterizes many new emerging
applications such as pervasive computing, sensor-based environ-
ments, on-line business processing and network monitoring. The
sensitive nature of the data and the high-demands environment
where data can be lost or dropped because of limited buffer stor-
age or real-time constraints, require robust security mechanisms,
i.e. mechanisms that not only provide security services, but are
also fault-tolerant.

In this paper we identify the security requirements for data
stream systems, focusing on Nile a data stream management
system. We present a new method, FT-RC4, that provides
efficient and fault-tolerant data confidentiality. We demonstrate
its applicability to data streams by using it as building block in
the design of a security architecture for Nile and by presenting
results for a stream based application.

I. I NTRODUCTION

The Internet revolution, and more recently the wide-spread
use of wireless and sensor networks, created a paradigm shift
in the way information is accessed and processed, generat-
ing new applications such as real-time network monitoring,
surveillance, tracking, plant maintenance, telecommunications,
data management and environmental monitoring, to name
just a few. Such applications are fundamentally different in
the way they output data and perform queries [1]. Thus,
they continuously produce large volumes of data (streams)
obtained from the environment they operate in. Data streams
can be obtained from multiple sources at high-arrival (possibly
unpredictable) rates. They are continuous and unbounded. The
transitivecharacteristic of data makes the complete storage and
processing impossible. In turn, data may be summarized and
stored only temporarily for processing.

The queries applied on such data streams are also differ-
ent from traditional database queries. They are not snapshot
queries, but rather continuous queries in which the same query
is repeatedly evaluated each time new input arrives. Several
queries can be registered in the system and different levels
of priority can be defined for each query. As resources are
a concern, highest priority queries’ requirements are served
first, while low priority queries may receive answers that
are an approximation of the correct results. To overcome the
infinite nature of data streams, the processing is performedon
windows of data. Queries can specify the size of the windows
and the frequency of the result.

Several systems were designed to cope with the require-
ments of data stream databases. Examples include: STREAM

[2], Aurora [3] and Aurora* [4], and Nile [5], [6].

A. Security Requirements for Data Stream Systems

Many of the data stream applications operate over Internet
and/or wireless communication networks and are thus exposed
to numerous threats such as:

• Attacks on data integrity: data can be injected or modified
and it is not in the original form as intended by the sender,
or originally stored. Data corruption can be due to faults
as well as to malicious actions.

• Attacks on data confidentiality and privacy: by eavesdrop-
ping of communications channels, or bypassing the access
control and authorization mechanisms, or by inferring
information from data they have legitimate access to [7],
attackers can obtain either access to, or learn private
information.

• Attacks on data validity: malicious clients can inject or
update corrupted streams that can potentially compromise
the accuracy of query answers on a stream or set of
streams. Such attacks are extremely difficult to defend
against and potential solutions require corroborate in-
formation from multiple independent sources and often
depend on application semantics.

• Denial of service: attackers can exhaust either the avail-
able bandwidth or the database server resources, pre-
venting legitimate clients from obtaining service. At the
extreme, such attacks can render the system unavailable.

As data stream applications process sensitive data that is
often classified (military applications) or private (financial,
health applications, etc) there is an obvious need for providing
security services not only for the applications but for the data
stream systems themselves. A comprehensive survey of secu-
rity and privacy requirements and open issues for a particular
type of stream database (sensor databases) is presented in [8].
Below we present the main security services that any stream
data system concerned with security should consider:

• Authentication: authenticates a client when it requests
access to the system.

• Access control and authorization: checks if a given
client is authorized to register/update data streams or
perform queries on streams. Different streams can have
different access control and authorization mechanisms.
Authenticated clients can have different access control
and authorization credentials.

• Data confidentiality: guarantees that only intended parties
can understand the content of the stream, the query, or
the result.

• Data integrity: ensures that data is in the form as intended
by originator and was not corrupted unintentionally or
intentionally.

• Data non-repudiation: ensures that a party that performed
an operation can not deny that he did it. This service is
useful for audit purposes.

• Data privacy: defines what is the minimum information
that should be disclosed and provides ways of protecting
(personal) information even after it was disclosed to other
parties.

• Data validity: by this we mean that the data stream
generated provides meaningful information. This service
can be provided under a non-malicious model (like in
[9]), or under a malicious model.

• Survivability: provides system recovery from either an
attack or failure and ensures that a service is available.

• Security policy: all the above security mechanisms must
be governed by a security policy.

Most of the security requirements listed above are not
necessarily specific to data streams systems. However, several
of them are more difficult to provide for data streams and
standard solutions can not be directly applied, they require
additional research.

One challenge is reconciling application specific require-
ments with security services, in a high-demand environment.
For example, many applications require privacy of data, but
also audit capability (for example medical applications [10]).
Some solutions proposed for this problem, relying on public
key encryption [11], [12], provide audit capabilities while pre-
serving privacy, but the associated cost makes them prohibitive
to real-time data stream systems.

Another challenge originates from the conflict between
security and real-time processing that can impact several ser-
vices. For access control and authorization the fine-granularity
can have a negative effect on the real-time processing. An-
other example is providing data confidentiality. For example,
good candidates to provide confidentiality are stream ciphers
[13] because they are highly efficient. However, data can be
dropped or lost either at thecommunication levelbecause
of the high-rate and data can not be recovered, or at the
application levelbecause of limited storage capability and
processing power. For stream ciphers, the impact will be the
de-synchronization between the key-stream and the encrypted
data and will result in incorrect decryption of the whole
stream, wasting bandwidth and processing power. We would
like to point out that block ciphers are not immune to this
problem either. They are recommended to be used in encryp-
tion modes that also require data reliability.

B. Our Focus

In this paper we investigate the relation between security
and fault-tolerance in the context on data streams, focusing
on data confidentiality. Our new contributions are:

• We identify security services for data streams systems and
propose a secure architecture for a data stream system,
Nile [5], [6].

• We focus on a particular service, data confidentiality. We
show why current mechanisms fail to address the require-
ments of real-time data streams and design a mechanism,
called FT-RC4, based on the RC4 stream cipher. We
evaluate its overhead and show how it performs in a lossy
environment.

• We discuss implementation issues of FT-RC4 in Nile
and show its performance over queries with different
requirements.

• We discuss applicability of FT-RC4 to other security
services, such as providing privacy through processing
of encrypted data.

The remainder of the paper is organized as follows. We
overview related work in Section II. We describe how the se-
curity services presented in Section I-A can be accommodated
in Nile, a stream database management system. We present the
design of FT-RC4 in Section IV. Section V shows how our
mechanisms performs within Nile. Finally, we conclude this
work and discuss several future work directions in VI.

II. RELATED WORK

In this section we overview related work in several areas
related to security for data streams in particular and database
in general.

a) Security for Stream Databases:To the best of our
knowledge there is very little work that focuses on the security
requirements and services for data streams. A significant work
in this direction is the work in [8] that overviews the main
research directions and challenges in security for database
sensor networks. The paper points out among other issues the
need for robust security mechanisms, i.e. mechanisms that not
only provide security services, but are also fault-tolerant.

b) Access Control for Database Systems:Significant
work was done in the area of providing access control to
database systems [14]. Some of the work focused on investi-
gating how several access control models can be applied to
databases (for example RBAC [15]). Another topic in this
area focuses on providing access control [16], protection and
administration to XML data sources [17]. More recent results
analyze what are the requirements and mechanisms that need
to be provided in query processing, in order to provide very
fine-grained access control (at the level of individual tuples)
[18].

c) Searching and Querying Encrypted Data:Another
topic of interest is privacy preservation. In this categorywork
was conducted in a model where the server is not trusted to
see the original data, in other words data is stored by servers
in encrypted form. In the case servers are not trusted also to
process the data, there is a need for algorithms able to process
encrypted data. Some of the security issues that are raised
when querying encrypted data are discussed in [19]. Methods
to execute queries are proposed in [20] and [21]. The first
shows how SQL queries can be performed over encrypted data

Stream Query Engine

Stream
Manager

Storage
Manager

Stream Type Interface

Stream Query InterfaceQuery Sources

Stream Sources

Fig. 1. Nile system architecture

where the query processing is partitioned such that most of the
processing happens at the server site, while the latter relies
on indexing information attached to the encrypted database
to balance the trade off between efficiency and protection re-
quirements. More recent work proposes encryption algorithms
that preserve order for numeric data [22].

We would like to point out other significant work addressing
the general problem of searching on encrypted data. Some
solutions proposed for this problem, rely on public key encryp-
tion [11], [12], while others rely on symmetric encryption to
achieve similar goals [23]. The work in [23] although efficient
because it relies on symmetric cryptography, has the drawback
that the search is linear with the size of the document. The
work in [24] improves over [23] by using tree structures to
avoid the linear scalability.

d) Digital Rights Management for Databases:Another
security service that was addressed in the context of databases
is rights protection. Work in this direction focused in providing
rights protection for relational database systems [25] andmore
recently on designing resilient schemes that achieve rights
protection for sensor streams [26].

III. A S ECURITY ARCHITECTURE FORNILE DBMS

In this section we discuss how security services presented in
Section I-A can be accommodated in Nile, a stream database
management system. We first provide an overview of Nile,
then present the proposed security architecture.

A. Nile Architecture

Nile is a stream database management system designed and
developed at Purdue University. It is built over a relational
database management system called PREDATOR [27] and
provides support for processing of continuous and snap-shot
queries over data streams.

Nile is a centralized system using a client-server architec-
ture. Several clients can communicate with the system; each
client can send multiple input streams and receive one or more
output streams as a response to queries. Each output stream
from the server corresponds to a query requested by a client.
The same client can send input streams and receive output
streams, or one client is only sending data and another client
is querying the data and receiving the output stream.

Figure 1 shows the main architectural components of Nile.
TheStream Type Interfacecomponent is the interface between
the streams generators (i.e. sensors, retail stores, etc) and the
system. The definition and configuration of streams is done

through this interface. TheStream Managercomponent han-
dles multiple incoming streams and acts as a buffer between
the streams sources and theStream Query Engine. The main
function of theStream Manageris to register new stream-
access requests (queries), retrieve data from the registered
streams into local stream buffers, and supply data to the query
engine.

The Stream Query Interfacecomponent is used to register
new snap-shot or continuous queries. Snap-shot queries are
queries that are executed once over the current data, whereas
the continuous queries are queries that reside in the systemand
are continuously re-evaluated to produce stream of results. In
some situations theStream Source Interfaceand theStream
Query Interfacecan be the same.

TheStorage Manageris responsible for building and main-
taining summaries over data streams, allowing the system to
answer queries related to past data. Summaries are maintained
at different granularities such that most recent data will have
summaries built at a finer level whereas the old data will have
summaries built at a coarser level.

The Stream Query Enginecomponent is empowered with
certain capabilities and features that allow fast and efficient
processing of the stream. For example, new access methods
are defined such as StreamScan (SScan) to allow efficient non-
blocking pipeline execution. The engine also supports new
SQL operators such as Window operator (W-Exp) that allow
the user to limit his/her interest of the data to a specific period
of time. The W-Exp operator is the only operator that is aware
of the time and it keeps track of the new items that enter
the interesting window and of the expired items that leave
the current window. More details about the query processing
mechanisms of Nile can be found in [5].

B. Security Architecture

The current architecture of Nile does not provide any
security service. Taking into account the architecture and
functionality of Nile we reason about which of the security
services discussed in Section I-A are relevant and needed for
Nile and how can they be provided.

In Figure 2 we propose a generic security architecture for
Nile. Two new modules are added. The role of the first module
is to handle authentication, encryption, integrity and non-
repudiation services. The reason we grouped them together is
because sometimes well-known standards or protocols provide
all of them or a subset. This module is responsible for
authenticating clients, performing key management, integrity
and encryption/decryption operations.

The second module added is theAccess Control and Au-
thorization Managerthat is responsible for making sure that
input streams, queries or results are performed by authorized
clients.

One important aspect is how a decision is made with
respect to the security policy. Both server and client can define
their own policy in which case a trust negotiation must be
performed.

Stream Query Engine

Stream
Manager

Storage
Manager

Stream Type
Interface
Stream Query
Interface

Query
Sources

Stream
Sources Access

Control
& Auth.
Manager

Auth.
Integrity
Encryption
Non-Rep.

Fig. 2. A security architecture for Nile

Fig. 3. Effect of loss on RC4

In this work we chose to demonstrate how encryption can
be provided for systems operating in a lossy or high-rate
environment in which data is lost or dropped because of
limited buffer capability, or it can not be recovered because
the real-time constraints. We show how a well-known stream
cipher can be adapted to operate in such an environment.

IV. FT-RC4 DESIGN

First we will give a description for RC4 algorithm, and
demonstrate with an example what happens in case data is
lost. We then describe our modification to RC4 to make it
more resilient to loss.

A. Overview of RC4

RC4 is a stream cipher that is designed to encrypt and
decrypt stream of bits, so it processes the message as a stream
of bits. Stream ciphers are fast and have as central mechanism
the generation of a key-stream (based on a shared secret
key) that is then XOR-ed with the plaintext. The decryption
operation is similar with the encryption operation.

RC4 uses an internal array S of size 256, and it stores values
in range0..255 with some swapping between the values. The
encryption continues shuffling the array S values and finally
sums two entries to get the desired key.

One of the disadvantages of stream ciphers when used in
lossy environments is that they are prone to de-synchronization
between the key-stream and the ciphertext. If such a de-
synchronization occurs, decryption of the whole stream fails
and bandwidth and processing power is wasted. To demon-
strate this behavior we run the following experiment, We
create a loss of 3 bytes (randomly) in a BMP file and try
to decipher the received data. Figure 3 presents the original

picture on the left, and the decrypted picture on the right.
As can be seen the effect is devastating. Because of only 3
bytes lost, almost the whole picture is lost. We performed the
same test over a JPG file (which is more compressed and less
resistant to byte changes) and we noticed that the decrypted
file was so significantly compromised that the picture could
not be displayed. Finally, we also performed several tests using
ASCII text. With only 1 byte lost, the result was that 80% of
the text was meaningless.

B. FT-RC4 Description

Fault tolerant RC4 (FT-RC4) is based on RC4 design, and it
uses the same stream key generation technique. RC4 can not
handle losing any data between the source and the destination,
and if some of the data is dropped then the whole stream
(after the first loss) will not be decrypted correctly due to
the shift in the key generation. Also the current RC4 can not
even detect that there is lost data, but relies on underlying
communication protocols to achieve this. Although appropriate
for other applications, the assumption is not correct for streams
for several reasons: data is gone and can not be recovered (or
is not relevant anymore), or data is dropped at the receiver
end because of limited buffer and processing capabilities.

The main idea of FT-RC4 is to synchronize the bytes in the
message by adding synchronization bits before the encryption
of the message. The decryption algorithm will then check on
these synchronization bits to detect any data loss and try to
recover from the loss (re-synchronize the keystream).

The description of FT-RC4 is presented in Algorithm 1. Let
us assume that our original message that we need to encrypt
is M , and the length ofM is L. FT-RC4 first expands the
message by padding a specific number of synchronization bits
n after every specific number of bits from the original message
M , so all transmitted units inM now carry synchronization
bits. The synchronization bits simply form a counter which
starts from 0 and reset whenever it reaches its maximum(2n−
1), wheren is the number of synchronization bits.

The expanded message will beM ’ and its length will be
L’, whereL’ > L. FT-RC4 then encryptsM ’ using the same
RC4 encryption technique, and sends the resulted cipher text
C to the destination. The destination then will decrypt the
messageC to getM ’, but after decrypting every transmitted

Algorithm 1 FT-RC4 description

Key Schedule:
for i = 0 to 255 do

S[i] = i
j = 0
for i = 0 to 255 do

j = (j + S[i] + k[i mod L])(mod 256)
swap (S[i], S[j])

Encryption:
i = j = 0
for each byte mi in message M

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
Ci = mi XOR S[t]

Decryption:
i = j = 0
for each byte ci in message C

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
mi = ci XOR S[t]
–check mi to see if it is the expected one?
if YES

remove synch. bits from this byte
else

figure out how many bits are lost, shift
the stream key, and inject zero-bits.

unit it must check whether that unit is the expected one, or
that unit arrived out of order and there was data loss. This
information can be obtained from the synchronization bits.
If there is no data loss and that was the expected unit, the
algorithm removes the synchronization bits, and continuesthe
decryption. If the decryption algorithm detects data loss,then
it has to detect how many bits are lost and start shifting the
key stream by the same value to resynchronize the message
bits with the stream key. In case the resynchronization does
not take place then the whole stream after the first loss will
be garbage.

We note that it is not enough to detect the loss and shift
the key stream; the algorithm also needs to recover from the
loss. The algorithm must also readjust bytes boundaries of the
original message M because the lost data may not be multiple
of bytes. In this case although the decryption is correct, most
applications reading the data in bytes or words will not be able
to read the data (i.e. text editors, audio and video applications,
images, etc). FT-RC4 handles this issue by injecting bits (set
to zero) instead of the lost ones, this way readjusting bytes
boundaries such that applications at the destination can read
the message normally.

To summarize, the encryption in FT-RC4 is modified over

Comparison between RC4 and FTRC4

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100 110 120 130
File Size (KB)

Tim
e (

ms
ec
)

RC4
FTRC4

Fig. 5. FT-RC4 Overhead

the one in RC4 by adding the expansion phase and padding the
synchronization bits before the encryption, and the decryption
in FT-RC4 is modified over the one in RC4 by adding
the checking and recovering phase. FT-RC4 uses the same
technique for the stream key schedule, which is efficient due
to its simplicity.

C. FT-RC4 Evaluation

We evaluate how resilient is FT-RC4 by comparing its
performance in a lossy environment with the standard RC4,
and measure how efficiently can FT-RC4 recover from the loss
of bytes between the source and the destination. The evaluation
is done over text and images.

Text: We compared both techniques over text data
streams. We set the loss rate to be a percent of the input
data size (i.e. 1% and 5%) and the lost bytes will be selected
uniformly form the input file. For a text of about 700 words,
with a 1% loss, RC4 fails to recover the text correctly after 1
byte is lost, while FT-RC4 recovers very quickly.

Image: We set the loss rate to be a percent of the input
data size (i.e. 1% and 5%) and the lost bytes were uniformly
selected from the input file. We protected the header part
untouched, because the header part of a file specifies its type,
so it can be opened by the correct application. If any loss
or damage occurs in the header part, the entire file will be
unreadable even if the remaining part is correct. Also if we
assume that the data loss occurs in the applications layer,
it is practical that these application handle the header parts
carefully since they are critical.

We compared the algorithms over JPEG files, which are
more compressed and less resistant to byte changes. Figure 4
presents an original picture compared with the results of its
encrypted/decrypted with RC4 and FT-RC4 for. As it can be
seen with only 1% loss, RC4 fails to recover the image, while
FT-RC4 is still able to show the image when loss is 5 %. At a
1% loss where RC4 fails, FT-RC4 recovers the picture almost
in its original quality. With a lost of higher than 1% RC4 fails.

FT-RC4 Overhead:We compared the performance of
the standard RC4 and our FT-RC4 with respect to the time
required by the algorithm to perform the encryption and
decryption operations. Figure 5 shows the performance results.
The figure shows that both techniques linearly increase with
the file size, but FT-RC4 has a higher slop. The measurements

Original FT-RC4: 1% loss FT-RC4: 5 % loss RC4: 1 % loss

Fig. 4. FT-RC4 Resilience

SELECT SUM(R1.txn.Price() * R1.txn.Quantity())
FROM Retail1 R1
WHERE R1.txn.ItemID = 15
WINDOW 00,00,05,00;

Fig. 6. Query Q1 description

show that FT-RC4 almost takes double the time taken by RC4.
The reason is that FT-RC4 performs two more operations over
the stream which are the expansion phase to augment the
synchronization bits in the encryption, and the compaction
phase to remove the synchronization bits in the decryption.

V. I NTEGRATION OFFT-RC4 IN NILE

In this section we present performance results and discuss
several aspects of the integration of FT-RC4 in Nile.

A. Experiments in Lossy Environments

We implemented RC4 and FT-RC4 protocols inside the Nile
system by adding a security layer (encryption and decryption)
between the clients and the server, such that both entities
either use the standard RC4 or use the FT-RC4. We evaluated
the performance of the system in a lossy environment by
demonstrating the performance of RC4 and FT-RC4 using a
retail store application [6] that sends a stream of transactions
generated from 5 retail stores, each transaction consisting of
< StoreID, ItemID, Price, Quantity, T imeStamp >.

First, FT-RC4 is evaluated over a simple query presented
in Figure 6. The meaning of the query is to select the sum
of the product of the price and the quantity from the stream
Retail1 where the itemitemID equals to 15 and the window
of interest is of size 5 seconds. The window operator has
syntax Window hh,mm,ss,uu; where h means hours, m means
minutes, s means seconds, and u means microseconds.

We executed the query under loss rates of 1%, 5% and 10%.
Figure 7 shows the results generated from the system for query
Q1, with Figures (a), (b) and (c) corresponding to the three
different loss rates, 1%, 5% and 10%, respectively. Figure 7
shows that the query result changes over time as new items
arrive inside the window of interest and old items expire from
the window. As it can be noticed, the RC4 protocol simply
fails to process the stream and after the first loss, it crashes the
system as it starts producing garbage. This is the reason why

the line representing the RC4 protocol in Figure 7, (a), (b) and
(c) stops after several readings. On the other hand, it can be
noticed that FT-RC4 is very resistant to losses, and although
it does not produce the optimal results due to replacing the
lost values with 0, it still preserves the stream’s behaviorand
produces acceptable results.

For query Q1, the effect of the loss is limited only to items
with ItemID equals to 15, so any loss that occurs to values
related to other items will not affect the query result. To make
the query more sensitive to losses we modified the query
(described in Figure 8), by removing theWHERE clause
from Q1. This way, any loss over the selected columns in
the query will affect the query results. We executed the query
under loss rates of 1%, 5% and 10%. Figure 9 shows the results
generated from the system for query Q2, with Figures (a), (b)
and (c) corresponding to the three different loss rates, 1%,5%
and 10%, respectively. Figure 9 shows that RC4 has very poor
performance even under a low loss rate, while FT-RC4 has a
high resistance to losses and it produces meaningful results.

Finally, we evaluated the FT-RC4 protocol over a more
complex query involving two data streams. The query Q3
description is presented in Figure 10, while the results are
presented in Figure 11. In Figure 11 (a) it is assumed that
both streams have the same loss rate which is 10%, while in
Figure 11 (b) it is assumed that both streams have different
loss rates, 10% and 20% respectively. Figure 11, again shows
that RC4 fails immediately, while FT-RC4 behaves well in
both cases.

B. Adapting FT-RC4 to Stream Rates

It should be noted that FT-RC4 can also fail to decipher
data correctly if the stream looses one complete cycle. The
size of a cycle depends on the number of synchronization
bits used in the protocol. For example, if the protocol uses
n synchronization bits then the cycle size equals to2n. In
this case, if at any time the server losses one complete cycle
of contiguous units, then the FT-RC4 will fail to detect and
re-synchronize the keystream correctly.

In this section we propose an adaptive scheme by which the
FT-RC4 can change the number of synchronization bits such
that it minimizes the transmission overhead and at the same
time it will be able to cope with peak losses that may occur
from time to time over the stream. We will demonstrate the

Lose Rate 1%

0

1000

2000

3000

4000

5000

6000

7000

8000

0 7 15 23 28 33 37 40 43 46 49 53 58 62 69 73 77 80 84 89 94 99 10
5

11
0

11
5

Time

Qu
ery

 Re
su

lts

Exact Solution
FT-RC4
RC4

(a) 1% loss

Lose Percent 5%

0

1000

2000

3000

4000

5000

6000

7000

8000

0 7 15 23 28 33 37 40 43 46 49 53 58 62 69 73 77 80 84 89 94 10
0

10
6

11
2

11
7

Time

Qu
ery

 R
es
ult

Exact Solution
FT-RC4
RC4

(b) 5 % loss

Lose Percent 10%

0

1000

2000

3000

4000

5000

6000

7000

8000

0 7 15 23 28 33 37 40 43 46 49 53 58 62 69 73 77 80 84 89 94 99 10
5

11
0

11
5

Time

Qu
er
y R

es
ult

Exact Solution
FT-RC4
RC4

(c) 10 % loss

Fig. 7. Results for query Q1

SELECT SUM(R1.txn.Price() * R1.txn.Quantity())
FROM Retail1 R1
WINDOW 00,00,05,00;

Fig. 8. Query Q2 description

importance of the adaptation schema using a new query Q3,
over the same application as in previous section.

In some applications the transmission of the data is in the
form of packets, each packet consists of a payload that contains
the actual data and other additional header fields to hold
certain information necessary for the transmission. In such
applications adding one byte in each packet to be used (at
the application level) as synchronization bits in the FT-RC4 is
sufficient and the overhead is acceptable. But in many stream
applications such as sensor networks the transmission of the
data is unstructured, it can be a stream of integers, characters,
etc. Therefore for this type of applications it is clear thatusing
one byte or fixed number of bits with each transmitted unit
will involve a high and sometimes unacceptable overhead.

Lose Rate 1%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313
Time

Qu
ery

 Re
su

lts

Exact Solution
FT-RC4
RC4

(a) 1% loss

Lose Rate 5%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313
Time

Qu
ery

 Re
su

lts

Exact Solution
FT-RC4
RC4

(b) 5 % loss

Lose Rate 10%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313
Time

Qu
ery

 Re
su

lts
Exact Solution
FT-RC4
RC4

(c) 10 % loss

Fig. 9. Results for query Q2

SELECT R1.txn.Quantity()+R2.txn.Quantity()
FROM Retail1 R1, Retail2 R2
WHERE R1.txn.ItemID() = R2.txn.ItemID()
WINDOW 00,00,10,00;

Fig. 10. Query Q3 description

The purpose of the adaptation is to achieve two goals:
(1) use a minimal number of synchronization bits, (2) avoid
loosing one complete cycle of subsequent units. The proposed
method is as follows:

1) Initially when clientC registers with the server to start
sending data, the client informs the server about the
expected sending rateR.

2) The server calculates the overall transmission rate in the
system at the current moment, and based on the available
resources, the server estimates the overall lose rateS.

3) The server dividesS over the streams according to their
sending rate ratios. Let’s assume that clientC is going to
suffer a loss rate (number of packets per second) equal
to L. In this case, the server sends a message to clientC

Lose Rate 10% from Stream I and Stream II

0

20

40

60

80

100

120

0 2 3 5 6 7 8 9 10 11 12 13 14 15 17 17 19 20 22 22 23 24 26 27 28 29 31 32 34Time

Qu
ery

 R
es
ult

s

Exact

FT-RC4
RC4

(a) Stream 1 and Stream 2 10% loss

Lose Rate 10% form Stream I and 20% form Stream II

0

20

40

60

80

100

120

0 2 3 5 6 7 8 9 10 11 12 13 14 15 17 17 19 20 22 22 23 24 26 27 28 29 31 32 34
Time

Qu
ery

 R
es
ult

s

Exact
FT-RC4

RC4

(b) Stream 1 10% loss and Stream 2 20% loss

Fig. 11. Results for query Q3

Lose Rate 10% from Stream I and 40% from Stream II

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187 193 199
Time

Qu
er
y
Re

su
lts

Exact
FT_RC4 (3 syn. bits)
FT-RC4 (2 syn. bits)

Fig. 12. Effect of adapting FT-RC4 to stream rate

to set the number of synchronization bits tolog(L) + 1
such that no cycle can occur without the server detecting
the loss.

4) Since the stream rate can change over time; burst, normal
or low, then the server periodically performs steps (2)
and (3) to adapt the number of the synchronization bits
to the currect state of the stream.

5) To avoid transit periods, the server will not assume that
the client is using the new value for the synchronization
bits until the client sends back a message to confirm the
change.

To show the importance of the adaptation scheme we
performed the following experiment using query Q3 described
in Figure 10. In the experiment it is assumed thatStream I
(Retail I) has a moderate arrival rate and loss rate set to 10%,
while Stream II (Retail II)has a very high arrival rate and

loss rate set to 40%, and we forcedStream II to loss from
time to time 5 subsequent bytes. Figure 12 shows the result of
query Q3 under two scenarios. In the first scenario there is no
adaptation, and all clients use fixed number of synchronization
bits (set to 2). In the second scenario the adaptation will allow
the server to ask the client sendingStream II to use more
synchronization bits (set to 3) as the server knows that it
may loose more than 4 subsequent bytes. The results show
that before the loss of any 5 subsequent bytes both scenarios
produce exactly the same results. However, after the first loss
of 5 subsequent bytes, FT-RC4 fails in the first scenario as it
looses the synchronization and starts producing garbage, while
the FT-RC4 in the second scenario performs well and is able
to cope the loss.

C. Using FT-RC4 for Other Security Services for Streams

There are other security services that we believe can benefit
from FT-RC4. One such service is providing data privacy,
while maintaining audit capabilities. In such a service the
servers are not trusted, so clients will input data in encrypted
form. However, there is a need to be able to do search on the
encrypted data, and sometimes to be able to delegate certain
keyword search capabilities to authorized parties.

Recent results [11], [12] addressing the problem of search-
ing on encrypted data provides rely on public key encryp-
tion. Although appropriate for off-line logging and traditional
databases, their cost is prohibitive for data streams. More
appropriate schemes for data streams are schemes that use
symmetric encryption, in particular stream ciphers. In fact a
scheme like that was proposed in the past [23], having in focus
email as the target application. The scheme proposed in [23]
can be adapted for data streams, particularly because of the
reduced complexity of both data and operations that can be
performed on streams. When used in lossy environments, the
scheme will suffer from the same problems as RC4. Therefore,
we believe that the same synchronization technique we used
for data confidentiality, can be applied to make symmetric-
based searching on encrypted streams robust to faults. We
would like to explore the topic in the future and apply it to
several stream applications with different environments and
security requirements.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we focused on security services for data
streams. More precisely, we focused on data confidentiality
based on stream ciphers and on the interaction between fault-
tolerance and security. We show how current stream schemes
fail to decipher correctly when de-synchronization between
the ciphertext and the keystream happens because of lossy
environments or inability of the application to process the
incoming streams. We proposed a modification to a well-
known stream cipher RC4, to cope with the problem. We
showed how the modified scheme, referred as FT-RC4 ad-
dresses the problem, how can be used as a building block
for a security architecture for Nile, a data stream database
system and presented results for several queries with different

requirements and loss rates. Finally we discuss how other
security services such as privacy can benefit from FT-RC4.

We also discussed how our scheme can be made adaptive.
Although the scheme we proposed is not very complex,
the results we presented indicate the benefits that can be
obtained. We would like in the future to design more so-
phisticated adaptive algorithms that are robust to faults while
still providing the security service they were designed for. In
addition, we would like to explore symmetric-based privacy
preserving schemes, in the same context of data streams, and
experiment with several stream applications operating under
different environment constraints and having different security
requirements.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” inACM Symp. on Principles of
Database Systems (PODS 2002), June 2002.

[2] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma, “Query processing,
resource management, and approximation in a data stream management
system,” in First Conference on Innovative Data Systems Research
(CIDR), January 2003.

[3] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model
and architecture for data stream management,”VLDB Journal, vol. 2,
pp. 120–139, August 2003.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik, “Scalable distributed stream
processing,” in First Biennial Conference on Innovative Database
Systems (CIDR’03), January 2003.

[5] M. Hammad, W. Aref, M. Franklin, M. Mokbel, and A. Elmagarmid,
“Efficient execution of sliding window queries over data streams,”
Tech. Rep. CSD TR 03-035, Department of Computer Science, Purdue
University, December 2003.

[6] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin,
A. K. Elmagarmid, M. Eltabakh, M. G. Elfeky, T. Ghanem, R. G.
andIhab F. Ilyas, M. Marzouk, and X. Xiong, “Nile: A query processing
engine for data streams,” inProceedings of the20th IEEE International
Conference on Data Engineering, ICDE, 2004.

[7] C. Farkas and S. Jajodia, “The inference problem: A survey,” SIGKDD
Explorations, Special Issue on Privacy and Security, vol. 4, pp. 6–12,
December 2002.

[8] B. Thuraisingham, “Security and privacy for sensor databases,”Sensor
Letters, 2004.

[9] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani, “The price of
validity in dynamic networks,” inSIGMOD 2004, 2004.

[10] C. Farkas, M. Valtorta, and S. Fenner, “Medical privacyversus data
mining,” in 5th World Multiconference on Systemics, Cybernetics and
Informatics, pp. 194–200, July 2001.

[11] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Searchable
public key encryption,” inEurocrypt 2004, 2004.

[12] B. R. Waters, D. Balfanz, G. Durfee, and D. Smetters, “Building an
encrypted and searchable audit log,” inNetwork and Distributed Systems
Security Symposium 2004, 2004.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of
Applied CryptographyL Chapter 6. CRC Press, october 2001.

[14] S. De, C. Eastman, , and C. Farkas, “Secure access control in a multi-
user database,” inESRI User Conference, 2002.

[15] S. Osborn, “Database security integration using role-based access con-
trol,” in IFIP WG11.3 Working Conference on Database Security,
August 2000.

[16] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati,
“A fine-grained access control system for XML documents,”ACM
Transactions on Information and System Security (TISSEC), vol. 5,
pp. 169–202, May 2002.

[17] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti, “Protection and
administration of XML data sources,”Data Knowl. Eng., vol. 43, no. 3,
pp. 237–260, 2002.

[18] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” inSIGMOD 2004,
2004.

[19] M. Kantarcioglu and C. Clifton, “Security issues in querying encrypted
data,” Tech. Rep. CSD TR 04-013, Purdue University, Computer Sci-
ences Department, 2004.

[20] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proceedings
of the 2002 ACM SIGMOD International Conference on Management
of Data, pp. 216 – 227, 2002.

[21] E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati, “Balancing confidentiality and efficiency in untrusted relational
DBMSs,” in Proceedings of the 10th ACM conference on Computer
and communication security, pp. 93–102, ACM Press, 2003.

[22] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-preserving
encryption for numeric data,” inSIGMOD 2004, SIGMOD 2004.

[23] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” inIEEE Symposium on Research in Security and
Privacy, 2000.

[24] R. Brinkman, L. Feng, J. Doumen, P. Hartel, and W. Jonker, “Efficient
Tree Search in Encrypted Data,” inProc. of the 2nd Intl. Workshop on
Security in Information Systems, April 2004.

[25] R. Sion, M. Atallah, and S. Prabhakar, “Protecting rights over relational
data using watermarking,”IEEE Journal of Transactions on Knowledge
and Data Engineering (TKDE), vol. 16, June 2004.

[26] R. Sion, M. Atallah, and S. Prabhakar, “Resilient rights protection for
sensor streams,” inVery Large Databases Conference (VLDB), 2004. To
appear.

[27] P. Seshadri, “Predator: A resource for database research,” SIGMOD
Record, vol. 27, no. 1, pp. 16–20, 1998.

