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ABSTRACT

It is well-known that the sum of reciprocals of twin primes converges or is a finite sum.

In the same spirit, Samuel Wagstaff proved in 2021 that the sum of reciprocals of primes p

such that ap + b is prime also converges or is a finite sum for any a, b where gcd(a, b) = 1

and 2 | ab. Wagstaff gave upper and lower bounds in the case that ab is a power of 2. Here,

we expand on his work and allow any a, b satisfying gcd(a, b) = 1 and 2 | ab. Let Πa,b be the

product of p−1
p−2 over the odd primes p dividing ab. We show that the upper bound of these

sums is Πa,b times the upper bound found by Wagstaff and provide evidence as to why we

cannot hope to do better than this. We also give several examples for specific pairs (a, b).

Next, we turn our attention to elliptic Carmichael numbers. In 1987, Dan Gordon defined

the notion of an elliptic Carmichael number as a composite integer n which satisfies a Fermat-

like criterion on elliptic curves with complex multiplication. More recently, in 2018, Thomas

Wright showed that there are infinitely such numbers. We build off the work of Wright to

prove that there are infinitely many elliptic Carmichael numbers of the form a (mod M) for

a certain M , using an improved lower bound due to Carl Pomerance. We then apply this

result to comment on the infinitude of strong pseudoprimes and strong Lucas pseudoprimes.

Finally, we consider the problem of classifying for which k does one have Φk(x) |Φn(x)−1,

where Φn(x) is the nth cyclotomic polynomial. We provide a motivating example as to how

this can be applied to primality proving. Then, we complete the case k = 8 and give

a partial characterization for the case k = 16. This leads us to conjecture necessary and

sufficient conditions for when Φk(x) |Φn(x)− 1 whenever k is a power of 2.
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1. INTRODUCTION

Mathematics is queen of the sciences and arithmetic the queen of mathematics.

She often condescends to render service to astronomy and other natural sciences,

but under all circumstances the first place is her due.

Carl Friedrich Gauss

The greatest endeavor of number theory is the study of prime numbers. Since the time

of Euclid c. 300 BC, we have known that there are infinitely many primes. And Euclid’s

proof, as it is translated into modern English, is so elementary that the non-mathematician

can easily follow it and be convinced of this fact. Yet, despite thousands of years of great

progress in studying prime numbers, we still know surprisingly little about them.

Given an integer N , there are three basic questions concerning primes that we can ask:

• How likely is it that N is prime?

• How can we determine whether N is prime?

• If N is composite, how can we determine its prime factorization?

Each of the problems that we address in this thesis is related to one of these questions. To

get a better idea of how it all fits together, we survey what is already known about these

three questions.

1.1 How rare are the prime numbers?

Given a random integer n less than x, how likely is it that n is prime? The prime number

theorem answers this. Let π(x) denote the number of primes less than or equal to x.

Theorem 1.1.1 (Prime number theorem). There is a positive constant c such that

π(x) = li(x) +O
(
x · exp(−c

√
log x)

)
,

where

li(x) =
∫ x

2

dt
log t .

12



is the logarithmic integral.

As with any estimate, one strives for the best possible bounds. In his only paper in the

field of number theory, Riemann [32 ] in 1859 used methods from complex analysis to connect

what we now call the Riemann zeta function and the distribution of prime numbers.

1.1.1 The Riemann hypothesis

Let s = σ + iτ , where σ, τ are real numbers with σ > 1. The Riemann zeta function is

defined by

ζ(s) =
∞∑
n=1

1
ns
.

The connection between this function and the prime numbers is far from obvious. But in

1737, Euler proved the identity
∞∑
n=1

1
ns

=
∏

p prime

1
1− p−s . (1.1)

The Riemann zeta function has a simple pole at s = 1, and thus has a unique analytic

continuation to a meromorphic function on the complex plane with a simple pole at s = 1.

That is, there exists a unique complex function that is analytic on C \ {1} and agrees with

ζ(s) for σ > 1. For 0 < σ < 1, ζ(s) satisfies the functional equation

ζ(s) = 2sπs−1 sin πs2 Γ(1− s)ζ(1− s).

From the functional equation, it is easy to see that there are so-called trivial zeros for

ζ(s) whenever s is a negative even integer, as the sine term evaluates to 0 in this case. The

Riemann hypothesis makes an assertion on the location of the nontrivial zeros of ζ(s):

Conjecture (Riemann Hypothesis). The zeros of ζ(s) in the strip 0 < σ < 1 satisfy s = 1
2 .

Using the ideas of Riemann, Hadamard and de la Vallée Poussin proved in 1896 that there

are no zeros to the Riemann zeta function on the line 1 + it. It turns out that this implies

a slightly weaker version of the prime number theorem than is stated in Theorem 1.1.1 .

Namely, we have

π(x) ∼ x

log x.

13



Though the error
∣∣π(x)− x/ log x

∣∣ is larger than the error
∣∣π(x)− li(x)

∣∣ , the prime number

theorem in this form gives a more intuitive notion of how often prime numbers occur. Given

a random integer N , the probability that N is prime is about 1
logN . Given how slowly logN

grows relative to N , we see that prime numbers are fairly common in some sense.

In 1901, von Koch [37 ] gave the best estimate on the error
∣∣π(x)− li(x)

∣∣ in terms of an

unspecified constant c as a consequence of the Riemann hypothesis. Schoenfeld [34 ] later

found that one can take the constant in the theorem to be c = 1/8π for x ≥ 2657.

Theorem 1.1.2. Assuming the Riemann hypothesis is true, for some positive constant c,

we have ∣∣π(x)− li(x)
∣∣ < c

√
x log x.

1.1.2 Sums of reciprocals of primes

In an introductory calculus course, the first example of a divergent series that students

learn is the harmonic series
∞∑
n=1

1
n
.

More precisely, one has ∑x
n=1

1
n

= log x + O(1). A natural question is whether the set of

primes is rare enough that the above sum converges when we restrict to summing over just

the primes. It turns out the answer is no. By Equation (1.1 ), we have

∑
n≤x

1
n
≤
∏
p≤x

(
1− 1

p

)−1

.

Taking the logarithm of both sides, we have

−
∑
p≤x

log
(

1− 1
p

)
≥ log log x+O

(
1

log x

)
.

The left hand side of the above inequality is

∑
p≤x

(
1
p

+ 1
2p2 + 1

3p3 + · · ·
)

=
∑
p≤x

1
p

+O(1).

14



From this we can conclude that

∑
p≤x

1
p
≥ log log x+O(1),

hence the sum of reciprocals of primes also diverges.

Although ∑p
1
p
diverges when the sum is taken over all primes p, we can consider subsets

S of primes where we do have convergence (or a finite sum). Most famously, Brun [8 ] proved

that the sum ∑
p∈S

(
1
p

+ 1
p+ 2

)
,

where S is the set of twin primes (Sequence A001359 in the OEIS [26 ]), converges or is finite.

It is worth noting that we still do not know whether the set of twin primes is infinite. It

is widely believed that there are infinitely many twin primes, and substantial progress has

been made in recent years. In 2013, Zhang [41 ] proved that there are infinitely many primes

differing by at most 70 million. Using different methods, Maynard [22 ] improved this bound

to 600, and the Polymath Project [29 ] improved this to 246.

There are many other possible sets S of interest. Wagstaff [38 ] considered the set of

Germain primes, that is, the set S = {p prime: 2p+ 1 is prime}. Such primes are named

after Sophie Germain, who proved the first case of Fermat’s last theorem is true for these

primes. As with twin primes, it is not known whether there are infinitely many Germain

primes. However, for fixed a, b with gcd(a, b) = 1 and 2 | ab, Theorem 1 of Wagstaff [38 ]

shows that the sum ∑
p∈Sa,b

1
p

either converges or is finite, where Sa,b = {p prime: ap+ b is prime}. Thus, the primes p

such that ap+ b is prime are rarer than all primes.

1.2 Primality testing

After determining the distribution of primes, we have a good estimate on how likely a

randomly chosen integer is prime. But given a random integer N , how do we determine

whether it is prime? The naïve approach would be to use the sieve of Eratosthenes to check

15

https://oeis.org/A001359


if any of the primes up to
√
N divide N . This is, of course, extremely impractical for large

values of N .

1.2.1 Pseudoprimes and Carmichael numbers

It is desirable to have an efficient test to determine whether a number is prime. The first

step toward this is Fermat’s little theorem:

Theorem (Fermat). If p is prime and a is an integer such that gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).

Unfortunately, the converse of Fermat’s little theorem is not true. In fact, 341 = 11 · 31,

yet 2340 ≡ 1 (mod 341). We call 341 a pseudoprime to base 2, and it is the smallest com-

posite number with this property. The pseudoprimes to base 2 are Sequence A001567 in the

OEIS [26 ]. A composite number n that satisfies the conclusion of Fermat’s little theorem for

every a coprime to n is called a Carmichael number. The Carmichael numbers are Sequence

A002997 in the OEIS, and the smallest such number is 561 = 3 · 11 · 17. Not only are there

infinitely many Carmichael numbers, but Wright [39 ] proved that for every positive integer

m, there are infinitely many Carmichael numbers of the form a+ km if gcd(a,m) = 1.

Let N be an odd positive integer. In 1927, Lehmer [20 ] proved an extra condition

needed to get the converse to Fermat’s little theorem provided that we know the complete

factorization of N − 1.

Theorem (Lehmer). Suppose N satisfies the conclusion of Fermat’s little theorem for some
integer a. If, moreover, a(N−1)/q 6≡ 1 (mod N) for every prime q dividing N − 1, then N is
prime.

Of course, it can be very difficult to completely factor N − 1. If replace the divisibility

condition in Lehmer’s theorem with a gcd condition, Pocklington [28 ] proved that only a

partial factorization of N − 1 is needed to prove that N is prime.

Theorem 1.2.1 (Pocklington). Suppose N − 1 = FR, where gcd(F,R) = 1, F ≥
√
N and

the complete factorization of F is known. If there exists an integer a such that for every

prime factor p of F , we have aN−1 ≡ 1 (mod N) and gcd(a(N−1)/p − 1, N) = 1, then N is

prime.

16
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1.2.2 Probabilistic tests for primality

Having even a partial factorization of N − 1 is not always an easy task. There are other

tests for special probable primes. One is Pepin’s test, which can be used for Fermat numbers,

that is, numbers of the form 22k + 1 for k ≥ 0. Another is the Lucas-Lehmer test, which can

be used to prove whether a Mersenne number is prime, that is, a number of the form 2p− 1,

where p is a prime number. These tests are also very limiting, but if we are willing to allow

for a small chance of error, there are many probabilistic tests for primality.

Miller-Rabin primality test

Suppose N > 2 is an odd integer, and write N − 1 = 2fd, where f, d are positive integers

and 2 - d. If either ad ≡ 1 (mod N) or ad·2e ≡ −1 (mod N) for some e with 0 ≤ e < f,

then we call N a strong probable prime to base a. If N is composite, then we call N a strong

pseudoprime to base a. There is no analogue of Carmichael numbers for strong pseudoprimes,

as the following theorem suggests:

Theorem (Monier [24 ], Rabin [31 ]). Let N > 9 be an odd integer. Then the number of bases
a to which N is a strong pseudoprime is at most φ(N)/4.

This provides the basis for the Miller-Rabin primality test. If we randomly choose a base

a with 1 ≤ a ≤ N and perform the strong probable prime test, then the above theorem shows

that if N is composite, the probability that a reveals the compositeness of N is at least 3/4.

Thus, the probability that a composite N is a strong probable prime for k randomly chosen

bases is less than 4−k.

Lucas probable prime test

Some of the basic definitions are revisited in Chapter 3 , but we review more of the

background information regarding Lucas probable primes. Let P,Q be integers. There are

two kinds of Lucas sequences, Un(P,Q), Vn(P,Q), with parameters P,Q that are recursively

defined as follows: put U0(P,Q) = 0, U1(P,Q) = 1, and

Un(P,Q) = P · Un−1(P,Q)−Q · Un−2(P,Q), n > 1;

17



Table 1.1. The first few terms of the Lucas sequences Un(P,Q) and Vn(P,Q)

n Un(P,Q) Vn(P,Q)
0 0 2
1 1 P
2 P P 2 − 2Q
3 P 2 −Q P 3 − 3PQ
4 P 3 − 2PQ P 4 − 4P 2Q+ 2Q2

5 P 4 − 3P 2Q+Q2 P 5 − 5P 3Q+ 5PQ2

and similarly, put V0(P,Q) = 2, V1(P,Q) = P , and

Vn(P,Q) = P · Vn−1(P,Q)−Q · Vn−2(P,Q), n > 1.

The Lucas sequences are a generalization of the Fibonacci sequence. If we take (P,Q) =

(1,−1), then Un(1,−1) gives the nth Fibonacci number. The first few terms of Un(P,Q)

and Vn(P,Q) are given in Table 1.1 .

Let P and Q be integers such that D = P 2 − 4Q 6= 0 and P > 0. For an odd positive

integer n, let ε(n) = (D |n) denote the Jacobi symbol, and write δ(n) = n− ε(n). If n is an

odd prime and gcd(n,Q) = 1, then the following congruences hold:

Uδ(n) ≡ 0 (mod n), (1.2)

Vδ(n) ≡ 2Q(1−ε(n))/2 (mod n) provided gcd(n,D) = 1, (1.3)

Un ≡ ε(n) (mod n), (1.4)

Vn ≡ V1 = P (mod n). (1.5)

Any of the congruences (1.2 )–(1.5 ) could be used as a probable prime test. An integer n

satisfying (1.2 ) is called a Lucas probable prime with parameters P and Q. If n is composite,

we call n a Lucas pseudoprime with parameters P and Q.

18



Baillie-Wagstaff [4 ] also defined the notion of a strong Lucas probable prime: for an odd

integer n, write n+ 1 = d · 2s, where d is odd. If n is prime and (D |n) = −1, then either

Ud ≡ 0 (mod n), or (1.6)

Vd·2r ≡ 0 (mod n), for some r with 0 ≤ r < s. (1.7)

A composite n satisfying (1.6 ) or (1.7 ) is called a strong Lucas pseudoprime.

Baillie-PSW primality test

In Baillie-Wagstaff [4 ], the authors combined a base 2 strong probable prime test with a

strong Lucas probable prime test to obtain a very effective test. The original Baillie-PSW

works in the following way:

1. If n is not a strong base-2 pseudoprime, then output composite.

2. Let D be the first element of the sequence 5,−7, 9,−11, 13,−15, . . . for which (D |n) =

−1. Let P = 1 and Q = (1 − D)/4. If Q = −1, change both P and Q to 5. If you

encounter D such that (D |n) = 0 with either |D| < n or |D| ≥ n but n - |D| , then

output composite.

3. If n does not satisfy either (1.6 ) or (1.7 ), then output composite. Otherwise, output

probably prime.

In Baillie-Fiori-Wagstaff [3 ], the authors give an enhanced test that adds a step to check

if (1.3 ) holds as well as a check for Euler’s criterion. The added steps require little extra

computation, but because so few composite n satisfy (1.3 ), this is a more powerful test. It is

worth noting that no composite n is known that passes steps 1 through 3 enumerated above.

Elliptic curves in primality testing

Elliptic curves have many number-theoretic applications. One such application is primal-

ity testing. As we will see in Chapter 3 , we can define an analogue of Carmichael numbers on

elliptic curves. There’s also an analogue of Pocklington’s theorem without the requirement
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of finding enough prime factors of N − 1 to obtain F ≥
√
N. The following theorem is due

to Goldwasser-Kilian [13 ]:

Theorem. Let N > 1 and let E be an elliptic curve mod N. Suppose there exist distinct
prime numbers `1, . . . , `k and finite points Pi ∈ E(ZN) such that

`iPi = O for 1 ≤ i ≤ k and
k∏
i=1

`i >
(
N1/4 + 1

)2
.

Then N is prime.

1.3 Factoring integers

Factoring integers is intimately related to determining which integers are prime, as it is

ill-advised to try to factor a prime number. As we discussed in Section 1.2 , one way to prove

that a number p is prime is by (at least partially) factoring p− 1. The main general-purpose

factoring methods are the quadratic sieve and the general number field sieve.

Two particular special-purpose factoring algorithms are worth mentioning: the elliptic

curve method (ECM), originally proposed by Hendrik Lenstra in 1987, which can reliably

find prime factors of less than 60 decimal digits, and Pollard’s p − 1 algorithm. If we are

trying to factor an integer N , ECM works by fixing a point P on an elliptic curve E modulo

N and computing kP for some integer k. If this computation fails, we have found a factor

of N . If p is a prime factor of N , Pollard’s algorithm leverages Fermat’s little theorem to

try to find a multiple of p− 1 by computing gcd(ak − 1, N).

1.4 Applications to cryptography

Two of the most widely used public key cryptosystems today are RSA and an elliptic

curve variant of the Diffie-Helman key exchange (ECDH). We recall the basics of each of

these cryptosystems and state the relevance of the results of Chapter 4 to each cryptosystem.

The typical players are Alice and Bob, who are trying to establish a secure connection over

an insecure channel.
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Let ζn be a primitive nth root of unity, and write

Φn(x) =
∏

1≤k<n
gcd(n,k)=1

(x− ζkn),

for the nth cyclotomic polynomial. In Section 4.2 , we give an example of how one can prove

that, for some integer b, p = Φn(b) is prime using the results of Chapter 4 .

1.4.1 RSA protocol

Let n = pq be the product of two large primes. Choose a random integer e coprime to

φ(n) = φ(pq) = (p− 1)(q − 1). Compute d such that ed ≡ 1 (mod φ(n)). Given a plaintext

message encoded as an integer M , where 0 < M < n, the ciphertext is C = M e (mod n).

To recover M , one computes

Cd ≡ (M e)d ≡M (mod n).

Thus, one could choose a prime p = Φn(b), provided that n = pq is large enough so that

the Number Field Sieve will not factor n in a reasonable amount of time, and p−1 = Φ(b)−1

should have large prime factors to prevent Pollard’s p − 1 algorithm from finding a factor.

Of course, the method in which p was obtained should be kept secret.

1.4.2 ECDH protocol

Let q = pe, where p is prime and e is an integer with e ≥ 1. The ECDH key exchange

has the following steps:

1. Alice and Bob agree on an elliptic curve E over a finite field Fq such that the discrete

log problem is hard for E(Fq). They also agree on a point P ∈ E(Fq) of large prime

order.

2. Alice chooses a secret integer a and computes aP. She sends this point to Bob.

3. Similarly, Bob chooses a secret integer b, computes bP and sends this point to Alice.

4. Alice computes a(bP ) = (ab)P and Bob computes b(aP ) = (ba)P = (ab)P.
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5. Alice and Bob use the shared secret abP to derive a shared secret key.

If we wanted to use the cyclotomic method to find a prime p to use for ECDH, we need
√
q to be large enough to ensure that the discrete log problem on the elliptic curve E(Fq)

cannot be solved in a reasonable amount of time from attacks such as the MOV attack,

Pollard’s rho method, or pairing attacks.

1.5 Outline of this work

In Chapter 2 , we expand on the work of Wagstaff [38 ] and give upper and lower bounds

on the sum Sa,b = ∑
p∈Sa,b 1/p, where Sa,b is the set of primes p such that ap + b is prime.

We obtain results similar to those of Wagstaff [38 ], but we allow for any positive integers a, b

with gcd(a, b) = 1 and 2 | ab.

The best-known lower bound for Sa,b is found by simply computing Sa,b(x0), which we

define to be the sum of 1/p, where p ∈ Sa,b and p ≤ x0. Then the best upper bound for Sa,b
is given by

Sa,b < Sa,b(x0)− πa,b(x0)
x0

+
∏
p>2
p | ab

p− 1
p− 2

∫ ∞
x0

πa,b(t)
t2

dt.

By explicit computation, we find that 1.2608 < S1,6 < 1.9760, 1.5952 < S2,3 < 2.3289,

1.5762 < S4,3 < 1.6737, 1.6779 < S2,15 < 2.6316, and 1.1580 < S1,210 < 2.3023.

In Chapter 3 , we combine the ideas of Wright [39 , 40 ] and Pomerance [30 ] to prove that

there are infinitely many elliptic Carmichael numbers in certain arithmetic progressions.

More specifically, let ρ = 8 · 3 · 7 · 11 · 19 · 43 · 67 · 163, let M be a positive integer, and let a

be such that gcd(a,M) = 1. Moreover, assume that either gcd(M,ρ) = 1 or gcd(M,ρ) > 1

and a ≡ −1 (mod gcd(M,ρ)). Then there are infinitely many elliptic Carmichael numbers

m such that m ≡ a (mod M). For a precise definition of an elliptic Carmichael number, see

Section 3.1.2 . By following Pomerance [30 ], we are able to say explicitly that the number

of elliptic Carmichael numbers up to some number X that are congruent to a modulo M is

bounded below by X1/6 log log logX .

We then use this result to make statements about strong pseudoprimes and Lucas pseu-

doprimes. More specifically, the same lower bound on the number of elliptic Carmichael
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numbers up to X congruent to a modulo M applies to the number of elliptic Carmichael

numbers that are also strong Lucas pseudoprimes.

In Chapter 4 , we are interested in determining all integers n for which Φk(x) divides

Φn(x)− 1, where Φn(x) is the nth cyclotomic polynomial and k is a power of 2. In the case

k = 8, we have Φn(ζ8) = 1 if and only if one of the following conditions holds:

• n = pen′ with p - n′, p ≡ 1 (mod 8) and n′ 6= 8;

• 8 |n and n 6= 8pe with p prime and e a nonnegative integer;

• n = pen′ with p - n′, p ≡ −1 (mod 8) and 8 |φ(n′);

• n = 4m, where m is odd but m 6= qe1
1 q

e2
2 , where qi ≡ 3 (mod 4) and ej > 0.

More generally, we have Φn(ζk) = 1 if

• n = pfn′ with p - n′, p ≡ 1 (mod k) and n′ 6= k;

• k |n and n 6= kpf with p prime and f a nonnegative integer;

• n = pfn′ with p - n′, p ≡ −1 (mod k) and k |φ(n′).

If m is odd and e ≥ 3, then Φ2e−1m(ζk) = Φ2m(ζ2e−2
k ). By repeatedly using this identity

to add conditions to the list above, we conjecture that this process finds all n such that

Φn(ζk) = 1.

This result has applications in primality proving: we show that if Φn(b) is a probable

prime and k is large enough relative to n, knowing whether Φk(b) divides Φn(b)− 1 can be

used to prove that Φn(b) is prime.
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2. SUMS OF RECIPROCALS OF CERTAIN PRIMES

2.1 Introduction

It is well-known that the sum ∑
p

1
p
taken over all primes p diverges. However, if we

restrict this sum to certain primes, we can say that it is either finite or converges. For

example, in 1919 Brun [8 ] proved that the sum

B = 1
3 + 1

5 + 1
5 + 1

7 + 1
11 + 1

13 + 1
17 + 1

19 + · · ·

of reciprocals of twin primes is finite or convergent. Twin primes are the primes p such that

p + 2 is also prime. Various authors have given estimates on the lower and upper bounds

for B. Klyve [18 ] showed that B < 2.347, and, using the number of twin primes up to 4 ·1018

computed by Oliveira e Silva [36 ], Platt and Trudgian [27 ] improved the bounds on B to

1.840503 < B < 2.288513.

Wagstaff [38 ] uses an idea of Klyve [38 ] to put bounds on the sum of reciprocals of

Germain primes. These are the primes p such that 2p + 1 is also prime. They are named

after Sophie Germain, who proved in the early 19th century that the first case of Fermat’s

last theorem is true for these primes. With little extra work, Wagstaff studies more generally

the primes p such that 2kp + 1 is also prime for k a positive integer. We will use the ideas

of Klyve and Wagstaff to study the primes p such that ap + b is also prime, where a, b are

positive integers such that gcd(a, b) = 1 and 2 | ab.

2.2 Notation

Throughout this chapter, p will always denote a prime number. Let

c2 =
∏
p>2

(
1− 1

(p− 1)2

)
≈ 0.6601618158468695739278121100

denote the twin prime constant. Since we will use it often, write Πa,b = ∏
p>2
p | ab

p−1
p−2 .
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Following the notation of Wagstaff [38 ], let a and b be positive integers with gcd(a, b) = 1

and 2 | ab. Let Sa,b = {p : ap+ b is prime}. For x > 0, let

Sa,b(x) =
∑
p∈Sa,b
p≤x

1
p

and Sa,b = lim
x→∞

Sa,b(x).

Theorem 1 of Wagstaff [38 ] shows that the limit defined above indeed exists. With this

notation, for example,

S1,6 = 1
5 + 1

7 + 1
11 + 1

13 + 1
17 + 1

23 + 1
31 + · · ·

Some values of Sa,b(x) are listed in Table 2.1 .

Hardy-Littlewood [16 ] gave the following heuristic estimate to πa,b(x) for fixed integers

a, b with gcd(a, b) = 1:

πa,b(x) ≈ 2c2

∫ x

2

dt
(log t)2 Πa,b.

Assuming this heuristic, we have

Sa,b − Sa,b(x0) ≈ 2c2

∫ ∞
x0

dt
t(log t)2 Πa,b = 2c2

log x0
Πa,b.

This tells us that the most probable value for Sa,b is Sa,b(x0) + 2c2Πa,b/ log x0, and these

values are shown in Table 2.2 . Though these values fall within the proved bounds for Sa,b,

there is no proof that they are close to the actual values.

2.3 Upper bound on Sa,b

The upper bound for Sa,b is a consequence of Lemma 5 of Riesel and Vaughan [33 ]. We

quote the lemma as it was stated in Wagstaff [38 ] and Klyve [18 ] using Inequality (3.20)

from the proof of the lemma.

Theorem 2.3.1. Let a and b be integers with a > 0, b 6= 0 and (a, b) = 1. Let

R(x, a, b) = sup
I

∑
p∈I

ap+b prime

1,
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Table 2.1. Some values of Sa,b(x)

x0 S1,6(x0) S2,3(x0) S4,3(x0) S2,15(x0) S1,210(x0)
102 0.804185874 1.179287658 1.193283754 1.118577288 0.461540610
103 0.980166932 1.335566331 1.326291712 1.324714081 0.714813987
104 1.077007694 1.419969395 1.408207973 1.442899187 0.863457788
105 1.133265114 1.472766204 1.458448578 1.515002978 0.953932023
106 1.171252493 1.509006595 1.492879361 1.562916841 1.014589034
107 1.198509361 1.535061658 1.517928733 1.597571402 1.058313024
108 1.218942074 1.554732337 1.536874048 1.623831797 1.091077663
109 1.234866106 1.570107346 1.551737985 1.644327983 1.116558352

1010 1.247606323 1.582456463 1.563720191 1.660794818 1.136945140
1011 1.258031457 1.592590215 1.573579054 1.674307435 1.153626418

2 · 1011 1.260808459 1.595294297 1.576213781 1.67791286 1.158069940

Table 2.2. Most probable values of Sa,b

x0 S1,6 S2,3 S4,3 S2,15 S1,210
102 1.377595141 1.752696925 1.766693022 1.883122978 1.378995438
103 1.362439777 1.717839176 1.708564557 1.834411208 1.326450539
104 1.363712328 1.706674028 1.694912607 1.825172032 1.322185202
105 1.362628821 1.702129911 1.687812285 1.820821254 1.320913954
106 1.362388916 1.700143017 1.684015784 1.817765404 1.320407310
107 1.362340581 1.698892878 1.681759952 1.816013028 1.320442975
108 1.362294391 1.698084654 1.680226365 1.81496822 1.320441370
109 1.362290387 1.697531628 1.679162267 1.814227025 1.320437203

1010 1.362288176 1.697138317 1.678402045 1.813703956 1.320436106
1011 1.362287687 1.696846445 1.677835284 1.813315742 1.320436387

2 · 1011 1.362287575 1.696773413 1.677692897 1.813218348 1.320436526
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Table 2.3. L and C from Theorem 2.3.1 

L C L C
24 0.97 48 8.2054
25 2.31 60 8.302
26 3.4 82 8.3503
27 4.28 100 8.3708
28 5.00 127 8.3905
29 5.58 147 8.404
31 6.45 174 8.4102
34 7.24 214 8.4201
36 7.56 278 8.4301
42 8.04 396 8.4404
44 8.11 690 8.45001

where the supremum is taken over all intervals of length x. Suppose that L and C = C(L)

are related by Table 2.3 . Then, whenever x ≥ eL, we have

R(x, a, b) <
(

16c2x

(log x)(C + log x) + 2
√
x

)
Πa,b.

In order to avoid the annoying “+2
√
x” in the upper bound of R(x, a, b), Klyve [18 ] gives

the following corollary. Note that the table that Klyve gives has a small typo for the entry

corresponding to L = 25. We have corrected this in Table 2.4 .

Corollary 2.3.2. Let a and b be positive integers with (a, b) = 1 and ab a power of 2.

Suppose that L and D are related by Table 2.4 . Then whenever x ≥ eL, we have

πa,b(x) < 16c2x

(log x)(D + log x) .

Since Klyve is interested in twin primes and Wagstaff investigates primes such that 2kp+1

is prime, both restrict to the case when ab is a power of 2. If we lift this restriction, we can

obtain results similar to those in Wagstaff [38 ]. In order to obtain slightly better bounds,

we have slightly increased the values for D that Klyve found, where possible.
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Table 2.4. L and D from Corollary 2.3.2 

L D L D
24 0.95 48 8.20
25 2.296 60 8.30
26 3.39 82 8.35
27 4.27 100 8.37
28 4.99 127 8.39
29 5.57 147 8.40
31 6.44 174 8.41
34 7.23 214 8.42
36 7.55 278 8.43
42 8.03 396 8.44
44 8.10 690 8.45

Table 2.5. L and D from Corollary 2.3.3 

L D L D
24 0.9526 48 8.20539
25 2.29684 60 8.30199
26 3.39038 82 8.35029
27 4.27314 100 8.37079
28 4.99519 127 8.39049
29 5.57668 147 8.40399
31 6.44847 174 8.41019
34 7.23954 214 8.42009
36 7.5598 278 8.43009
42 8.03998 396 8.44003
44 8.10999 690 8.45
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Corollary 2.3.3. Let a and b be positive integers with (a, b) = 1. Suppose that L and D

are related by Table 2.5 . Then whenever x ≥ eL, we have

πa,b(x) < 16c2x

(log x)(D + log x)Πa,b.

Proof. We wish to find D = D(L) such that

16c2x

(log x)(D + log x)Πa,b <

(
16c2x

(log x)(C + log x) + 2
√
x

)
Πa,b.

We immediately see that we can cancel Πa,b from both sides and that the (L,D) pairs found

in Table 2.4 work. To get the (L,D) pairs in Table 2.5 , we just increased the values for D

as much as possible going out to 5 decimal places.

It’s worth noting that the inequality from Corollary 2.3.3 is as tight as we can make it.

Suppose there is some Θ = Θ(a, b) < Πa,b such that

16c2x

(log x)(D + log x)Θ <

(
16c2x

(log x)(C + log x) + 2
√
x

)
Πa,b.

After multiplying both sides of the above inequality by

(log x)(C + log x)(D + log x)
16c2xΠa,b

,

and after some rearranging, we obtain(
1− Θ

Πa,b

)
log x+ 2

√
x log x(C + log x)(D + log x) < ΘC −D. (2.1)

For Equation (2.1 ) to hold, we need the left hand side to be strictly decreasing for x ≥ eL.

Differentiating and clearing denominators yields(
1− Θ

Πa,b

)
√
x− (C +D − 6)(log x)2 + 4(D − C(D − 4)) log x+ 2CD − (log x)3 < 0.

However, if Θ < Πa,b, then(
1− Θ

Πa,b

)
√
x� (log x)3 + (C +D − 6)(log x)2 − 4(D − C(D − 4)) log x− 2CD.

29



Table 2.6. Some values of πa,b(x)

x0 π1,6(x0) π2,3(x0) π4,3(x0) π2,15(x0) π1,210(x0)
102 16 14 13 17 16
103 74 67 60 89 107
104 411 368 354 508 641
105 2447 2298 2172 3106 3928
106 16386 15592 14874 20698 26178
107 117207 112118 107705 149316 187731
108 879908 846341 815013 1128959 1409150
109 6849047 6613233 6392963 8815739 10958370

1010 54818296 53137080 51557968 70845558 87712009
1011 448725003 436212462 424416473 581648645 717976137

2 · 1011 848122150 825139331 803381324 1100215270 1357053226

Hence the left hand side of Equation (2.1 ) is eventually increasing.

Inconveniently, the upper bound in Corollary 2.3.3 depends on the prime divisors of ab

unlike the case treated in Wagstaff [38 ], where ab is a power of 2. We could put a crude

asymptotic bound on Πa,b. First note that

∏
p>2
p | ab

p− 1
p− 2 ≤

∏
2<p≤ab

p− 1
p− 2 =

∏
p>2
p | ab

(
p

p− 1

)(
1 + 1

p(p− 2)

)
= ab

2φ(ab)
∏
p>2
p | ab

(
1 + 1

p(p− 2)

)
.

It is also easy to see that

∏
p>2
p | ab

(
1 + 1

p(p− 2)

)
≤
( ∏
p>2

(
1− (p− 1)−2

))−1

≤
( ∏
p≥2

(
1− p−2

))
= 1/ζ(2).

Because ab
2φ(ab) � log log ab, we find that

∏
p>2
p | ab

p− 1
p− 2 �

3
π2 log log ab.

However, this is not helpful in our explicit computations.

Theorem 2.3.4. We have 1.2608 < S1,6 < 1.9760, 1.5952 < S2,3 < 2.3289, 1.5762 < S4,3 <

1.6737, 1.6779 < S2,15 < 2.6316, and 1.1580 < S1,210 < 2.3023.
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Proof. The lower bound comes from Table 2.1 with x0 = 1011. To obtain the upper bounds,

we follow the methods of Wagstaff [38 ]. Note that

Sa,b = Sa,b(x0) +
∑
p≥x0
p∈Sa,b

1
p

= Sa,b(x0) +
∞∑
t=x0

πa,b(t)− πa,b(t− 1)
t

. (2.2)

To estimate the tail sum, we will leverage the values given in Table 2.5 by partitioning the

interval [x0,∞) into subintervals [M,N) = [eL, eL′) and bound the sums for eL ≤ t < eL
′ .

Let 0 < M < N. Then Stieltjes integration by parts gives

N∑
t=M

πa,b(t)− πa,b(t− 1)
t

= πa,b(N)
N

− πa,b(M)
M

+
∫ N

M

πa,b(t)
t2

dt. (2.3)

We can then bound the integral in Equation (2.3 ) using Corollary 2.3.3 : let L, L′ be consec-

utive entries in Table 2.5 . Then

1
Πa,b

∫ eL
′

eL

πa,b(t)
t2

dt ≤
∫ eL

′

eL

16c2t

t2(log t)(D(L) + log t) dt

= 16c2

∫ L′

L

ds
s(s+D(L)) (s = log t)

= 16c2

D(L)(log s− log(s+D(L)))
∣∣∣∣∣
L′

L

= 16c2

D(L) log
(
L′(L+D(L))
L(L′ +D(L))

)
.

As one would expect from Corollary 2.3.3 , our bound is just Πa,b times the bound found in

Wagstaff [38 ]. With L = 26, L′ = 27 and x0 = 2 · 1011, we have log x0 ≈ 26.02158320, so

that L ≤ log x0 < L′. Thus 1
Πa,b

∫ eL′
x0

πa,b(t)/t2 dt is bounded by

16c2

D(L) log
(
L′(log x0 +D(L))

(log x0)(L′ +D(L))

)
≈ 0.012667060.

For the final integral, observe that

log
(
L′(L+D(L))
L(L′ +D(L))

)
→ log

(
(L+D(L))

L

)
as L′ →∞.
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Hence, 1
Πa,b

∫∞
e690 πa,b(t)/t2 dt is bounded by

16c2

8.45 log
(

8.45 + 690
690

)
≈ 0.015216.

The values for the upper bounds for each interval [eL, eL′) is found in Table 2.7 . Summing

over all the values in the table gives

1
Πa,b

∫ ∞
x0

πa,b(t)
t2

dt < 0.359690542.

This is slightly higher than the upper bound given in Wagstaff [38 ] because we have only

computed Sa,b(x0) up to x0 = 1011. Let a, b, c, d be positive integers. When summing Equa-

tion (2.3 ) over all intervals [eL, eL′), the first two terms telescope, and we are left with

−πa,b(x0)
x0

+
∫ ∞
x0

πa,b(t)
t2

dt.

Thus, for any (a, b) with gcd(a, b) = 1 and 2 | ab, we have

Sa,b < Sa,b(x0)− πa,b(x0)
x0

+ 0.359690542Πa,b. (2.4)

Observe that for ab = 6, 12, 30, 210, we have Πa,b = 2, 2, 8
3 ,

16
5 , respectively. Then using the

values computed in Table 2.1 and Table 2.6 , we explicitly compute Equation (2.4 ):

S1,6 < 1.260808459− 0.004240610750 + 0.719381084 = 1.975948932

S2,3 < 1.595294297− 0.004125696655 + 0.719381084 = 2.310549684

S4,3 < 1.576213781− 0.004016906620 + 0.719381084 = 1.67367599

S2,15 < 1.677912860− 0.005501076350 + 0.959174778 = 2.631586562

S1,210 < 1.158069940− 0.006785266130 + 1.151009734 = 2.302294408
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Table 2.7. M , N and the upper bound for 1
Πa,b

∫N
M πa,b(t)t−2 dt

M N Upper Bound M N Upper Bound
x0 e27 0.012667060032356922 e60 e82 0.042181811595529330
e27 e28 0.012089516054081605 e82 e100 0.021220275174530828
e28 e29 0.011066121746457940 e100 e127 0.020893379303998833
e29 e31 0.019809987725398367 e127 e147 0.010659386897618544
e31 e34 0.025077365824123524 e147 e174 0.010591349409301834
e34 e36 0.014299003124370907 e174 e214 0.010870401831116214
e36 e42 0.035077186206136810 e214 e278 0.010980722705107563
e42 e44 0.009629885625463509 e278 e396 0.011036971804937732
e44 e48 0.017001986354427920 e396 e690 0.011177701187286296
e48 e60 0.038145305248693340 e690 ∞ 0.015215124007049930
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3. ON ELLIPTIC CARMICHAEL NUMBERS IN
ARITHMETIC PROGRESSIONS

3.0.1 Carmichael numbers

The Fermat primality test is one of the simplest primality tests. It is derived from

Fermat’s little theorem, which states that for a prime p and an integer a with gcd(a, p) = 1,

one has ap−1 ≡ 1 (mod p). It is well-known that the converse of Fermat’s little theorem is

false. A composite number n satisfying an−1 ≡ 1 (mod n) is called a pseudoprime to base a,

or psp(a).

More generally, a Carmichael number is a composite number n which satisfies the con-

clusion to Fermat’s little theorem for every integer a coprime to n. That is,

an−1 ≡ 1 (mod n)

for all a with gcd(a, n) = 1. In 1899 Korselt gave an equivalent characterization of Carmichael

numbers that can be more easily tested.

Theorem 3.0.1 (Korselt’s criterion). A composite number n is a Carmichael number if and

only if n is squarefree and for each prime divisor p of n one has p− 1 |n− 1.

In their famous 1994 paper, Alford, Granville and Pomerance [2 ] used this characteriza-

tion to show that there are infinitely many Carmichael numbers. A natural next question is

to ask whether there are infinitely many Carmichael numbers in various arithmetic progres-

sions. Wright [39 ] proved this to be the case in 2013 after progress had been made on this

problem by Banks and Pomerance [6 ] and Matomäki [21 ].

An analogous story can be told in the case of so-called elliptic Carmichael numbers. Dan

Gordon [14 ] defined the notion of an elliptic Carmichael number in 1987 when he devised

a primality test in the spirit of the Fermat test using the arithmetic of elliptic curves with

complex multiplication. Following his earlier paper, Wright [40 ] proved in 2018 that there

are infinitely many elliptic Carmichael numbers. We finish the story in proving the following

assertion. Here, ρ is a constant, which we define in (3.1 ).
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Theorem 3.0.2. Let M be a positive integer, and let a be such that gcd(a,M) = 1. More-

over, assume that either gcd(M,ρ) = 1, or that gcd(M,ρ) > 1 and a ≡ −1 (mod gcd(M,ρ)).

Then there are infinitely many elliptic Carmichael numbers m such that m ≡ a (mod M).

3.0.2 Organization of this chapter

In Section 3.1 , we give the basic background material on elliptic curves with complex

multiplication and elliptic Carmichael numbers. We then recall the definitions of pseudo-

primes related to Lucas sequences first given in Baillie and Wagstaff [4 , 3 ]. In Section 3.2 , we

modify the arguments of Wright [39 , 40 ] and Pomerance [30 ], and then apply them to show

that there are infinitely many elliptic Carmichael numbers in some arithmetic progressions.

Finally, in Section 3.3 , we show that there are infinitely many elliptic Carmichael numbers

which are also (strong) Lucas pseudoprimes.

3.1 Preliminaries

3.1.1 Elliptic curves

We recall some basic theory of elliptic curves needed for this discussion. The standard

reference here is Silverman [35 ]. For our purposes, an elliptic curve E over Q is a smooth

projective curve that satisfies the short Weierstrass equation

E : Y 2 = X3 + aX + b,

with a, b ∈ Q and nonzero discriminant ∆ = 4a3 + 27b2. The set of rational points of E plus

the point at infinity O form an additive group E(Q).

Wemay then consider the endomorphism ring of E(Q). Using the group law, for an integer

n and a point P ∈ E, one clearly has nP ∈ E, so that Z ⊂ EndE. If EndE is strictly larger

than Z, then we say that E has complex multiplication (CM), or that E is a CM-elliptic

curve. In this case, EndE is isomorphic to an order in an imaginary quadratic field Q(
√
−d)

with class number 1, and we say that E has complex multiplication by Q(
√
−d). By the

Stark-Heegner theorem, the values of d for which Q(
√
−d) has class number 1 are precisely

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} .
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3.1.2 Elliptic Carmichael numbers

With this, we can consider the following primality test due to Dan Gordon [14 ]. For an

elliptic curve E with complex multiplication by Q(
√
−d), let P ∈ E(Q) be a rational point

of infinite order on E. Moreover, let n be a natural number such that gcd(n, 6∆) = 1 and

(−d |n) = −1, where (−d |n) denotes the Jacobi symbol. If n is prime, then

[n+ 1]P ≡ O (mod n).

If the primality of n is not known, and n satisfies the above congruence, then n is a probable

prime by Gordon’s primality test. The setup here is analogous to that of Carmichael numbers.

In this way, we can define elliptic Carmichael numbers.

Definition 3.1.1. Let n be a composite natural number. Given a CM-elliptic curve E, if n

satisfies the Gordon primality test then n is called an elliptic Carmichael number for E. If n

is an E-elliptic Carmichael number for every CM-elliptic curve with complex multiplication

by Q(
√
−d) where d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} , then n is an elliptic Carmichael number.

Note that such numbers exist, although they are relatively rare. Ekstrom et al. [11 ] give

the smallest known example of an elliptic Carmichael number:

617 730 918 224 831 720 922 772 642 603 971 311 = p(2p+ 1)(3p+ 2),

where p = 468 686 771 783.

We wish to use a Korselt-like criterion for elliptic Carmichael numbers first proved in

Ekstrom et al. [11 ]. Consider the condition (−d |n) = −1 in Gordon’s primality test. In

the case d ∈ {1, 2}, then n ≡ −1 (mod 8) satisfies this condition. For the other values of d

listed in Definition 3.1.1 , note that each of these d’s is congruent to −1 (mod 4). Thus one

has (−d |n) = (n | d) and (n | d) = −1 whenever n ≡ −1 (mod d). So put

ρ = 8 · 3 · 7 · 11 · 19 · 43 · 67 · 163, (3.1)
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and note that n ≡ −1 (mod ρ) satisfies the condition (−d |n) = −1 for all d listed in

Definition 3.1.1 . Now we have the following elliptic Carmichael condition due to Ekstrom et

al. [11 ].

Theorem 3.1.1 (Elliptic Carmichael condition). Let n be a squarefree, composite positive

integer with an odd number of prime factors. Then n is an elliptic Carmichael number if for

each prime p dividing n, one has ρ | p+ 1 and p+ 1 |n+ 1.

3.1.3 Lucas sequences and pseudoprimes

We will later show that there are infinitely many elliptic Carmichael numbers that are

also (strong) Lucas pseudoprimes. To this end, we summarize some basic definitions. For

integers D,P,Q with P > 0 and D = P 2 − 4Q 6= 0, define U0 = 0, U1 = 1, V0 = 2 and

V1 = P. Then the Lucas sequences Uk, Vk with parameters P,Q are defined for k ≥ 2 by the

recursive equations

Uk = PUk−1 −QUk−2 and Vk = PVk−1 −QVk−2.

Let α and β be the distinct roots of the polynomial f(x) = x2 − Px + Q. Then αβ = Q,

α + β = P, and for k ≥ 0, we have

Uk = αk − βk

α− β
and Vk = αk + βk.

If n > 1 is an odd integer and D,P,Q are chosen so that (D |n) = −1, and if n is prime

and gcd(n,Q) = 1, then by Theorem 8 of Brillhart-Lehmer-Selfridge [7 ]

Un+1 ≡ 0 (mod n), (3.2)

Vn+1 ≡ 2Q (mod n). (3.3)

In Baillie-Wagstaff [4 ], they first defined a Lucas pseudoprime with parameters P and Q,

denoted lpsp(P,Q), to be a composite integer n satisfying Equation (3.2 ). If n satisfies

Equation (3.2 ), but it is not known whether n is prime or composite, then n is said to be a

probable Lucas pseudoprime with parameters P and Q, or lprp(P,Q). Then in Baillie-Fiori-

Wagstaff[3 ] they give the following definition.
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Definition 3.1.2. If n satisfies Equation (3.3 ), we call n a Lucas-V probable prime with

parameters P and Q, or vprp(P,Q). If n is composite and satisfies Equation (3.3 ) with

parameters P and Q, we call n a Lucas-V pseudoprime, or vpsp(P,Q).

We further have the notion of strong Lucas pseudoprimes as defined in Brillhart-Lehmer-

Selfridge [7 ]. For n odd, we can write n+ 1 = d · 2s with d odd for some s > 0. If n is prime

and (D |n) = −1, then either

Ud ≡ 0 (mod n), or (3.4)

Vd·2r ≡ 0 (mod n), for some r with 0 ≤ r < s. (3.5)

Definition 3.1.3. If (D |n) = −1 and n satisfies Equation (3.4 ) or Equation (3.5 ), then n

is called a strong Lucas probable prime with parameters P and Q, or slprp(P,Q). If n is also

composite, then n is called a strong Lucas pseudoprime, or slpsp(P,Q).

3.2 Elliptic Carmichael numbers in arithmetic progressions

In proving Theorem 3.0.2 , the main idea is to construct a number L which has many

factors d yielding many primes of the form dk − 1 for some k relatively prime to L. We

find a particular k that gives sufficiently many primes of this form and combine subsets of

these primes to form elliptic Carmichael numbers. As in Wright [40 ], we will additionally

require that these primes be quadratic nonresidues modulo L. Unlike Wright, though, we

will require that L has an even number of prime factors. We supplement the ideas of Wright

[39 , 40 ] with those of Pomerance [30 ] in order to utilize the better lower bound obtained in

Pomerance [30 ].

Throughout the rest of this discussion, we assume M ≥ 2 and let µ = 4φ(M) so that

4 |µ. Let P (q − 1) denote the largest prime divisor of q − 1. We define the following set:

Q0 := Q0(y) = {q prime : y < q ≤ y log2 y, q ≡ −1 (mod µ), P (q − 1) ≤ y}.

Note that this deviates from the set Q that Wright defines, where he considers the primes q

not dividing M on the interval [ yθ

log y , y
θ] with q ≡ −1 (mod µ) and P (q − 1) ≤ y for θ fixed

between 1 and 2.
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As noted in Pomerance [30 ], if q ≤ y log2 y and P (q − 1) > y, then q = mr + 1, where

m < log2 y and r is prime. Then by Brun’s sieve, the number of such primes q is at most

∑
m<log2 y

∑
r prime

mr≤y log2 y
rm+1 prime

1�
∑

m<log2 y

y log2 y

φ(m) log2 y
� y log log y. (3.6)

And by the prime number theorem for arithmetic progressions, the number of primes

q ≤ y log2 y with q ≡ −1 (mod µ) is asymptotic to 1
φ(µ)y log y. This, together with Equa-

tion (3.6 ) gives

#Q0 ∼
1

φ(µ)y log y and
∏
q∈Q0

q = exp
(

1 + o(1)
φ(µ) y log2 y

)
, y →∞. (3.7)

We will also make use of the following fact:

∑
q∈Q0

1
q
<

∑
y<q≤y log2 y
q prime

1
q

= o(1), y →∞. (3.8)

We fix B such that 0 < B < 5
12 ; later, we will choose B to be near 5

12 . Let π(z; d, a)

denote the number of primes up to z which are congruent to a modulo d. Then we have the

following theorem due to Alford et al. [2 ].

Theorem 3.2.1. For any x, there exists a set DB(x) of at most DB integers, all of which

exceed log x, such that if d is not divisible by an element in DB(x) and d ≤ min
{
xB, z/x1−B

}
then

π(z; d, a) ≥ π(z)
2φ(d)

for any a with gcd(a, d) = 1.

With Q0 as defined above, let L′ = ∏
q∈Q0 q, and let

x = (MρL′)1/B.

Then by Theorem 3.2.1 if n ≤ xB, n is not divisible by any element of D(x), gcd(b, n) = 1,

and z ≥ nx1−B, then

π(z;n, b) ≥ π(z)
2φ(n) .
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We can construct a set of primes PB(x) with #PB(x) ≤ DB in the following way: for each

number d in DB(x), choose a prime factor of d and add it to PB(x) if it is not already in

there. Thus any element of DB(x) is divisible by at least one of the primes in PB(x). With

this, we define Q = Q0 \ PB(x). We will assume that #Q is even. Then put

L =
∏
q∈Q

q (3.9)

so that no factor of L is divisible by any element inDB(x).One also has that gcd(q,M) = 1 for

all q ∈ Q, and hence gcd(M,L) = 1. Notice that we still have that Q satisfies Equation (3.7 )

and Equation (3.8 ). In terms of L, this means

L = exp
(

1 + o(1)
φ(µ) y log2 y

)
, (3.10)

ω(L) ∼ 1
φ(µ)y log y, and

∑
q |L

1
q

= o(1) as y →∞, (3.11)

where ω(L) is the number of distinct prime divisors of L.

Analogous to Pomerance [30 ], for each d |L and each quadratic nonresidue b (mod L/d)

we consider the primes p such that

• p ≤ dx1−B

• p ≡ −1 (mod d),

• p ≡ a (mod M) and

• p ≡ b (mod L/d).

Note that for y sufficiently large relative to M , DB(x) contains no factors of M , and by

construction L has no factors in DB(x), hence ML has no factors in DB(x). Moreover, since

gcd(M,L) = 1, we can combine the above congruences to obtain a single congruence modulo

ML and apply Theorem 3.2.1 to reduced residue classes modulo ML. Consequently, we

have the following analogue of Lemma 2.2 of Wright [39 ].
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Lemma 3.2.2. Let L be as in (3.9 ), and let gcd(a,M) = 1. Then for each d |L and each

quadratic nonresidue b (mod L/d), the number of primes p satisfying p ≤ dx1−B, p ≡ −1

(mod d), p ≡ a (mod M) and p ≡ b (mod L/d) is greater than

dx1−B2ω(d)

3 · 2ω(L)φ(Md) log x.

Proof. The absolute number of congruence classes that are quadratic nonresidues modulo

each q |L is q−1
2 of the q− 1 classes which can contain more than one prime number. By the

Chinese Remainder Theorem, we get that for a given divisor d, the number of congruence

classes modulo L/d which are quadratic nonresidues for every q is

∏
q |L/d

q − 1
2 = φ(L/d)

2ω(L/d) of the
∏
q |L/d

(q − 1) = φ(L/d)

congruence classes which contain more than one prime. Now, there are φ(ML) congruence

classes modulo ML which can contain more than one prime, and by Theorem 3.2.1 , the

number of primes in such a class is at least

π(dx1−B)
2φ(ML) >

dx1−B

3φ(ML) log x,

and thus the number of classes which are quadratic nonresidues modulo L/d and congruent

to a (mod M) is at least

π(dx1−B)2ω(d)

3 · 2ω(L)φ(Md) >
dx1−B2ω(d)

3 · 2ω(L)φ(Md) log x.

For a given divisor d of L and our fixed B, we want to count the number of primes p ≡ −1

(mod d) that also satisfy gcd((p+ 1)/d, L) = 1. Analogous to Alford et al. [2 ], note that for

our chosen x, we have 1 ≤ d ≤ xB for any d |L. We find the following lower bound on primes

satisfying the above conditions. Here, and throughout the rest of this section, ρ is as defined

in (3.1 ). We will also abbreviate quadratic nonresidue as QNR.
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Lemma 3.2.3. Let B < 5/12, L as above. Let M > 2 be such that gcd(M,ρ) = 1 or

γ := gcd(M,ρ) > 1 with a ≡ −1 (mod γ). Then there exists an integer k ≤ x1−B with

gcd(k, L) = 1 such that

#{d |L : p = dk − 1 is prime, p a QNR mod q for every q |L,

ρ | p+ 1, p ≡ a mod M, p ≤ dx1−B}

>
(3/2)ω(L)

4φ(M)φ(ρ) log x.

Proof. In Lemma 3.2.2 we showed that for a given divisor d of L, the number of primes

p ≤ dx1−B that are both quadratic nonresidues modulo L/d and congruent to a (mod M)

is greater than
dx1−B2ω(d)

3 · 2ω(L)φ(M) log x.

We want to add the additional requirement that the primes p be congruent to −1 (mod ρ).

That is, we are looking to satisfy

p ≡ a (mod M)

p ≡ −1 (mod ρ).
(3.12)

We claim that the number of such primes is greater than

dx1−B2ω(d)

3 · 2ω(L)φ(Md)φ(ρ) log x. (3.13)

To see this, first consider the case gcd(ρ,M) = 1. Then tρ + sM = 1 for some integers

t, s. Then a solution to Equation (3.12 ) is given by p = atρ− sM, so

p ≡ atρ− sM (mod Mρ). (3.14)

Then we can replace a by atρ− sM and M by Mρ in Lemma 3.2.2 to obtain the inequality

in Equation (3.13 ).
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Next consider the case when gcd(ρ,M) > 1. Let γ = gcd(ρ,M), and write γ = tρ+sM. If

a ≡ −1 (mod γ), then Equation (3.12 ) has a unique solution modulo [ρ,M ] = ρM/γ given

by

p = atρ− sM
γ

.

Otherwise, no solution exists. So in the case a ≡ −1 (mod γ), we can replace a by (atρ −

sM)/γ and M by ρM/γ in Lemma 3.2.2 to obtain the inequality in Equation (3.13 ).

We further want to constrain to have p ≡ −1 (mod d) for a given divisor d of L. We

claim that there are more than

dx1−B2ω(d)

2ω(L)+2φ(M)φ(ρ) log x. (3.15)

such primes. In counting the number of primes in various residue classes, allow us to abuse

intersection notation, and let π(d, q, a)∩ π(d, r, b) denote the number of primes up to d that

are both congruent to a modulo q and congruent to b modulo r. Then in the case that

gcd(M,ρ) = 1, we have

π(dx1−B,M, a) ∩ π(dx1−B, ρ,−1) = π(dx1−B,Mρ, atρ− sM),

where t, s are as in Equation (3.14 ). The claim then follows immediately from proof of

Lemma 6.2 of Wright [40 ]. Next, in the case that gcd(ρ,M) > 1 with a ≡ −1 (mod Mρ),

we have

π(dx1−B,M, a) ∩ π(dx1−B, ρ,−1) = π

(
dx1−B,

M

γ
ρ,
atρ− sM

γ

)
,

and then Equation (3.15 ) follows in the same way as in the first case.

We wish to determine how many of these primes satisfy gcd
(
p+1
d
, L
)

= 1. Using the

notation of Wright [40 ], let π(x, L,QNR) denote the number of primes up to x which are
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quadratic nonresidues modulo every divisor of L. Now, for any prime q |L, we have by the

Brun-Titchmarsh inequality (see Montgomery and Vaughan [25 ]) that

π(dx1−B, dq,−1) ∩ π(dx1−B, L,QNR) ∩ π(dx1−B,M, a) ∩ π(dx1−B, ρ,−1)

� dx1−B2ω(d)

2ω(L)qφ(Md)φ(ρ) log(x/(qML))

� dx1−B2ω(d)

2ω(L)qφ(Md)φ(ρ) log x. (3.16)

Now combining Equation (3.13 ) and Equation (3.16 ), one has

π(dx1−B, d,−1) ∩ π(dx1−B, L,QNR) ∩ π(dx1−B,M, a) ∩ π(dx1−B, ρ,−1)

−
∑
q |L

q prime

π(dx1−B, dq,−1) ∩ π(dx1−B, L/d,QNR) ∩ π(dx1−B,M, a) ∩ π(dx1−B, ρ,−1)

>
dx1−B2ω(d)

3 · 2ω(L)φ(Md)φ(ρ) log x −
∑
q |L

q prime

dx1−B2ω(d)

2ω(L)qφ(Md)φ(ρ) log x

>
x1−B2ω(d)

4 · 2ω(L)φ(M)φ(ρ) log x, (3.17)

where the last inequality uses the fact that ∑q |L
1
q

= o(1) and that d > φ(d).

Summing over all divisors d of L, the inequality in Equation (3.17 ) implies that we have

at least ∑
d |L

x1−B2ω(d)

4 · 2ω(L)φ(M)φ(ρ) log x

pairs (p, d) such that all of the following requirements hold: p ≤ dx1−B is prime, d divides L,
p+1
d

is coprime to L, p ≡ −1 (mod ρ), p ≡ a (mod M), p is a quadratic nonresidue modulo

L, and d ≤ xB. Now since the number of distinct values of p+1
d

is bounded by x1−B, there

must be some k coprime to L having at least

∑
d |L

2ω(d)

4 · 2ω(L)φ(M)φ(ρ) log x (3.18)
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representations as p+1
d

for p, d as above. For the numerator in Equation (3.18 ), one has

∑
d |L

2ω(d) =
ω(L)∑
i=0

(
ω(L)
i

)
2ω(L)−i = (2 + 1)ω(L) = 3ω(L),

which gives ∑
d |L

2ω(L)

4 · 2ω(L)φ(M)φ(ρ) log x =

(
3
2

)ω(L)

4 · φ(M)φ(ρ) log x,

and this completes the proof.

Let k0 be the k found by the above lemma and define

P =
{
p prime: p = dk0 − 1 for some d |L, p is a QNR mod q for every q |L,

p ≡ a mod M,ρ | p+ 1, p ≤ x
}
. (3.19)

We will generate pseudoprimes by taking products of elements of P . Note that Lemma 3.2.3 

gives a lower bound on the size of P . We will make use of this in the proof of Theorem 3.2.6 .

We require the use of Lemma 6 from Matomäki [21 ]. Here, Ω(n) denotes the number of

prime factors of n, counted with multiplicity. For a multiplicative abelian group G, λ(G)

denotes the largest order of an element in G, and n(G) is Davenport’s constant—the smallest

number such that a collection of at least n(G) elements must contain some subset whose

product is the identity. Then we have

λ(G) ≤ n(G) ≤ λ(G)
(

1 + log(#G)
λ(G)

)
.

The first inequality is clear, and the second is due to van Emde Boas–Kruyswijk [12 ] and

Meshulam [23 ]. For a simplified proof of this result, see Theorem 1.1 of Alford et al. [2 ].

As noted in Matomäki [21 ], the following lemma is a consequence of Proposition 1.2 of

Alford et al. [2 ] and Proposition 1 of Baker [5 ].

Lemma 3.2.4 ([21 ]). For any multiplicative abelian group G, write

s(G) = d5λ(G)2Ω(λ(G)) log(3λ(G)Ω(#G))e.
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Let A be a sequence of length n consisting of non-identity elements of G. Then there

exists a nontrivial subgroup H ⊂ G such that the following conditions are satisfied:

i. If n ≥ s(G), then for every h ∈ H, A ∩H has a subsequence whose product is h.

ii. If t is an integer such that s(G) < t < n− n(G), then for every h ∈ H, A has at least(
n−n(G)
t−n(G)

)
/
(

n
n(G)

)
distinct subsequences of length at most t and at least t− n(G) whose

product is h.

Lemma 3.2.5. Let H be the subgroup of (Z/kMLZ)∗ of residues congruent to −1 (mod k).

Let G = H × {−1, 1}. For n(G) and s(G) as above, we have n(G) ≤ e2y and s(G) ≤ e3y.

Proof. First note that #G ≤ 2ML. Denoting λ((Z/LZ)∗) by λ(L), this is the lcm of q − 1

for the primes q |L. By assumption the largest prime dividing q − 1 is less than or equal to

y. Thus if qe is the largest prime power dividing λ(L), then qe ≤ y log2 y; hence

λ(L) ≤ (y log2 y)π(y).

On noting that λ(G) ≤ 2Mλ(L) and using Equation (3.10 ), we obtain

n(G) ≤ 2M(y log2 y)π(y) log(ML) ≤ e2y.

Finally, the estimate on s(G) follows from Lemma 3.2.4 and our estimate on λ(G).

With this, we can state the key theorem which combines the ideas of Wright [39 , Theorem

5.1] and [40 , Theorem 8.1].

Theorem 3.2.6. Let P be the set of primes defined in Equation (3.19 ). Let G be the group

defined in Lemma 3.2.5 and let s(G) be as in Lemma 3.2.4 . Then #P > s(G). If H is the

subgroup of G guaranteed by Lemma 3.2.4 , then there exists an element h ∈ H such that

h = (ζ,−1),
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with

ζ ≡ −1 mod L

ζ ≡ a mod M.
(3.20)

Equivalently, there exists a subset of P whose product multiplies to a number m for which

m ≡ a (mod M) and p |m implies p+ 1 |m+ 1.

Proof. First note that we have s(G) < #P . Let A =
{
(p,−1) : p ∈ P

}
be the sequence

referenced in Lemma 3.2.4 . Then clearly #A = #P > s(G). Then in particular, it follows

from part (i) of Lemma 3.2.4 that A∩H 6= ∅. So let p̂ be a prime such that (p̂,−1) ∈ A∩H.

Since p̂ ∈ P , p̂ is a quadratic nonresidue modulo each q dividing L. Put

j =
∏
q |L

q − 1
2 ,

and note that j is necessarily odd since each q ≡ 3 (mod 4). Consequently, we have

p̂j ≡
(
p̂
q−1

2

)j/( q−1
2 )
≡ (−1)j/(

q−1
2 ) ≡ −1 (mod q)

for each q |L, and (−1)j ≡ −1 (mod q). Also note that by assumption we have q ≡ −1

(mod 4φ(M)). But this gives

q − 1
2 ≡ −1 (mod 2φ(M))

so that q−1
2 ≡ −1 mod φ(M). Then since by assumption L has an even number of factors,

we obtain

j ≡ 1 (mod φ(M)),

giving

p̂j ≡ a (mod M).

So putting h = (p̂,−1)j = (p̂j, (−1)j) gives the desired congruences in Equation (3.20 ),

proving the first half of the theorem.
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For the second half, by Lemma 3.2.4 , there exists a sequence {p1, . . . , ps} ⊂ P such that

(p1,−1) · · · (ps,−1) = h.

Put m = p1 · · · ps. Since each pi ∈ P is −1 mod k0 and s is odd (being that (−1)s = −1), it

must be that m ≡ −1 (mod k0). Hence modulo L, one has

m ≡ p1 · · · ps ≡ −1 (mod L).

Note also that we still have m ≡ a (mod M), so m satisfies Equation (3.20 ). Putting this

all together, for any prime pi dividing m, one has ρ | pi + 1 and

pi + 1 | dk |Lk |m+ 1.

In the next theorem, we give an explicit lower bound on the number of elliptic Carmichael

numbers up to X. The proof appears in Pomerance [30 ] for the case of Carmichael numbers.

It still applies to the present case, so we include it here.

Theorem 3.2.7. Let NM,a(X) be the number of elliptic Carmichael numbers up to X

congruent to a modulo M . Then NM,a(X) ≥ X1/(6 log log logX) for all sufficiently large X

depending on the choice of M .

Proof. We define t = de3ye so that t ≥ s(G). Then, by Lemma 3.2.4 , P has at least

N :=
(

#P − n(G)
t− n(G)

)/(
#P
n(G)

)

distinct products of at most t primes which are congruent to −1 mod L. Moreover, it follows

from Lemma 3.2.5 that for y large enough, one has n(G) > (#P )2e. This, combined with

the standard bounds (
α

β

)β
≤
(
α

β

)
≤
(
αe

β

)β
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gives the following string of inequalities:

N >

(
#P − n(G)
t− n(G)

)t−n(G)

(#P)−n(G)

>

(
#P
t

)t−n(G)

(#P)−n(G) > (#P)t−2n(G)t−t.

Now, define X := xt. Note that each p ∈ P satisfies p ≤ x. Hence, all of the elliptic

Carmichael numbers constructed in Theorem 3.2.6 are at mostX. Then using Equation (3.7 ),

Lemma 3.2.5 and the definition of x, we obtain

X = exp
(

1/B + o(1)
φ(µ) ty log2 y

)
.

Moreover, using Equation (3.10 ) and the lower bound on #P obtained in Lemma 3.2.3 , we

have

N ≥ exp
(

log(3/2) + o(1)
φ(µ) ty log y − t log t

)

= exp
(

log(3/2) + o(1)
φ(µ) ty log y

)
,

giving N ≥ X(B log(3/2)+o(1))/ log y. Now, logX is asymptotic to

1
Bφ(µ)ty log2 y,

and using the definition of t, we see

log logX = 3y +O(log y), log log logX = log y +O(1).

Hence N ≥ X(B log(3/2)+o(1))/ log log logX . Because B < 5/12 can be chosen to be arbitrarily

close to 5/12 and (5/12) log(3/2) > 1/6, this completes the proof.
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3.3 Elliptic Carmichael numbers and (strong) Lucas pseudoprimes

We prove an analogue of Theorem 2 of Baillie-Fiori-Wagstaff [3 ]. This requires the

following lemma from the same paper. The number a constructed in the proof is used in

Theorem 3.3.2 ; consequently, we must modify the proof given in Baillie et al. [3 ] to be able

to use it.

Lemma 3.3.1. For every positive integer r, there exists an integer a ≡ 3 (mod 4) such

that for every odd prime p, if p ≡ a (mod 4r), then r is a quadratic residue modulo p, i.e.,

(r | p) = +1.

Proof. Write r = 2st with t odd. If s is even, let a = 4t− 1, and if s is odd, let a = 8t− 1.

Then clearly a ≡ 3 (mod 4). Suppose p is an odd prime with p ≡ a (mod 4r). In particular,

we have p ≡ 3 (mod 4).

If t = 1, we have two possibilities: r is a power of 4, or r is twice a power of 4. In

the first case, s is even, a = 3 and (r | p) = (1 | p) = +1. In the second case, s is odd, so

(r | p) = (2 | p) = +1 by the supplement to the law of quadratic reciprocity since p ≡ 7

(mod 8).

Now suppose t > 1 and s is even; then a = 4t− 1. If t ≡ 1 (mod 4), then

(
r

p

)
=
(

2st
p

)
=
(
t

p

)
=
(
p

t

)
=
(

4t− 1
t

)
=
(
−1
t

)
= +1.

And if t ≡ 3 (mod 4), then

(
r

p

)
=
(

2st
p

)
=
(
t

p

)
= −

(
p

t

)
= −

(
4t− 1
t

)
= −

(
−1
t

)
= +1.

Finally suppose t > 1 and s is odd. Then a = 8t− 1. If t ≡ 1 (mod 4), then

(
r

p

)
=
(

2t
p

)
=
(

2
p

)(
t

p

)
=
(
p

t

)
=
(

8t− 1
t

)
=
(
−1
t

)
= +1.

And if t ≡ 3 (mod 4), then

(
r

p

)
=
(

2t
p

)
=
(

2
p

)(
t

p

)
= −

(
p

t

)
= −

(
8t− 1
t

)
= −

(
−1
t

)
= +1.
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We can now prove the following theorem. Unlike the analogous theorem in Baillie-Fiori-

Wagstaff [3 ], we must take special care in the case that gcd(r, ρ) > 1.

Theorem 3.3.2. If r > 1 is an integer, there are infinitely many elliptic Carmichael numbers

m ≡ 3 (mod 4) that are also strong pseudoprimes to base r. Moreover, the number of such

m < X is at least X1/(6 log log logX) for all sufficiently large X.

Proof. Write r = 2st, with t odd. If s = 0, let M = 4r; if s = 1, take M = 2r; if

s ≥ 2, let M = r, and choose a according to Lemma 3.3.1 . Then in any case, a ≡ −1

(mod M), which implies that a ≡ −1 (mod gcd(M,ρ)). Thus by Theorem 3.2.7 , we have

NM,a(X) � X1/(6 log log logX). Note also that since a ≡ 3 (mod 4) and 4 |M, one has m ≡ 3

(mod 4). By construction each p dividing m is odd and congruent to a modulo M , and

congruent to 3 modulo 4. Hence by Lemma 3.3.1 for each p |M we have (r | p) = +1. By

Corollary 1.2 of Alford et al. [1 ], since for each p dividing M , (r | p) takes the same value, m

is a strong pseudoprime to base r.

In light of Theorem 3.3.2 , we can actually say that there are infinitely many elliptic

Carmichael numbers that are also strong lpsp’s and vpsp’s for certain parameters P and Q.

Corollary 3.3.3. Let k be a positive integer. Let P = 2k and Q = 22k−1. Then there exist

infinitely many elliptic Carmichael numbers m ≡ 3 (mod 4) that are strong pseudoprimes

to base 2, strong lpsp(P,Q) and vpsp(P,Q). Moreover, the number of such m < X is at

least X1/(6 log log logX) for all sufficiently large X.

Corollary 3.3.4. Let k be a positive integer. Let P = 4 ·rk and Q = 8 ·r2k. Then there exist

infinitely many elliptic Carmichael numbers m ≡ 3 (mod 4) that are strong pseudoprimes to

base r and strong lpsp(P,Q).Moreover, the number of suchm < X is at least X1/(6 log log logX)

for all sufficiently large X.

These corollaries immediately follow from Theorem 3.3.2 and the following two theorems.

The first is due to Baillie-Fiori-Wagstaff [3 ], and the second is analogous, which we prove.

Theorem 3.3.5. [3 , Theorem 1] Let n ≡ 3 (mod 4) be a strong pseudoprime base 2. Let

k ≥ 0 be an integer. Set P = 2k and Q = 22k−1. Then n is also a strong lpsp(P,Q) and a

vpsp(P,Q).
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Theorem 3.3.6. Let n ≡ 3 (mod 4) be a strong pseudoprime base r. Let k ≥ 0 be an

integer. Set P = 4 · rk and Q = 8 · r2k. Then n is also a strong lpsp(P,Q).

Proof. Note that D = P 2− 4Q = 16 · r2k− 4 · 8 · r2k = −16(rk)2. Then since n ≡ 3 (mod 4),

one has (
D

n

)
=
(
−1
n

)(
42

n

)(
(rk)2

n

)
= −1.

Now write n + 1 = d · 2s where 2 - d. Then s > 1 and n+1
2 . We want to prove that V2d ≡ 0

(mod n) since then the congruence in Equation (3.5 ) will imply that n is a slpsp(P,Q).

Let α, β be the roots of the equation x2 − Px+Q = 0. Then we have

α = P +
√
D

2 = 4 · rk +
√
−16 · r2k

2 = 2 · rk(1 + i)

β = P −
√
D

2 = 4 · rk − 2
√
−16 · r2k

2 = 2 · rk(1− i),

and after observing that (1 + i)2 = 2i and (1− i)2 = −2i, we see that

α2d = (2 · rk)2d(1 + i)2d = 23d · r2kd · id

β2d = (2 · rk)2d(1− i)2d = 23d · r2kd · (−i)d.

Whence,

V2d = α2d + β2d = 23d · r2kd
(
id + (−i)d

)
= 0.

Thus, by Equation (3.5 ) n is a slpsp(P,Q).

Note that the key in the proof of Theorem 3.3.6 is that 42 = 2 · 8 when obtaining the

values for α and β. Therefore the proof works exactly the same for any even integer A where

P = A · rk and Q = A2

2 · r
2k.

We also have an analogue to the second part of Theorem 3.3.5 . However, we need

to further assume that the number n ≡ 3 (mod 4) is an Euler pseudoprime to base 2 in
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addition to being a strong pseudoprime to base r. By an Euler pseudoprime we mean an

odd composite integer n that satisfies Euler’s criterion:

2(n−1)/2 ≡
(

2
n

)
(mod n).

Theorem 3.3.7. Let n ≡ 3 (mod 4) be a strong pseudoprime base r that is also an Euler

pseudoprime base 2. Let k ≥ 0 be an integer. Set P = rk and Q = 2r2k. Then n is also a

vpsp(P,Q).

Proof. We will prove that Vn+1 ≡ 2Q (mod n) as this will show that n is a vpsp(P,Q) by

Equation (3.3 ). As in the proof of Theorem 3.3.6 , let α, β be the roots of the equation

x2 − Px+Q = 0. In this case we have

α = rk(1 + i) and β = rk(1− i).

Write n+ 1 = 4M, and note that (1 + i)4 = (1− i)4 = −4, hence

αn+1 = βn+1 =
(
rk
)n+1

(−1)M · 4M ,

and so

Vn+1 = αn+1 + βn+1 = 2 ·
(
rk
)n+1

(−1)M · 4M

= 2 ·
(
r2rn−1

)k
(−1)M · 4M

= 2 · r2k
(
rk
)n−1

(−1)M · 22M

= 2Q
(
rk
)n−1

(−1)M · 22M−1

= 2Q
(
rk
)n−1

(−1)M · 2(n−1)/2. (3.21)

Now since n is spsp(r), one has 2n−1 ≡ 1 (mod n). Moreover, by assumption n is also an

Euler pseudoprime base 2, which gives that 2(n−1)/2 ≡ (2 |n) (mod n). This gives rise to two

possible cases for Equation (3.21 ). Suppose n ≡ 3 (mod 8). Then M is odd, which forces
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(−1)M = −1 and (2 |n) = −1. On the other hand suppose n ≡ 7 (mod 8). Then M is even,

and in this case (−1)M = 1 and (2 |n) = 1. In either case, this simplifies Equation (3.21 ) to

Vn+1 = 2Q(rk)n−1(−1)M · 2(n−1)/2 ≡ 2 · 1 · (−1)M · (2 |n) ≡ 2Q (mod n).

54



4. CYCLOTOMIC POLYNOMIALS AT ROOTS OF UNITY

4.1 Introduction

The nth cyclotomic polynomial can be defined in the following way:

Φn(x) =
∏

1≤k<n
gcd(n,k)=1

(x− ζkn),

where ζn denotes a primitive nth root of unity. We recall that cyclotomic polynomials are

irreducible over Q and satisfy the relation

xn − 1 =
∏
d |n

Φn(x). (4.1)

For n > 1 we have Φn(0) = 1, so that the polynomial Φn(x) − 1 is reducible. We want to

know for what values k does Φk(x) divide Φn(x)− 1. Since the roots of Φk(x) are precisely

the primitive kth roots of unity, it is equivalent to determine for which values k does one

have Φn(ζk) = 1.

There are two natural ways of addressing this question—to fix n, then find which values k

satisfy Φn(ζk) = 1, or to fix k, then find the corresponding values of n for this k. Caldwell [10 ]

took the former approach in searching for unique period primes. He found several sufficient

criteria for k, given n. Bzdęga et al. [9 ] instead started with k and evaluated cyclotomic

polynomials at roots of unity for all n for k ≤ 6.

In this paper, we make incremental progress by restricting ourselves to k a power of 2.

We prove that Bzdęga et al. [9 ] found all values n such that Φn(ζk) = 1 in the case k = 8.

We make some progress on the case k = 16 and conjecture more generally that Bzdęga et

al. [9 ] found all n for k = 2e. It would be nice to have similar characterizations when k is an

odd prime power, and more generally for any composite k.

4.2 A motivating example

One practical application for having an efficient method of determining which k satisfy

Φk(x) |Φn(x)−1 is in proving primality of integers of the form Φn(b). Take n = 102 = 2 ·3 ·17
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and b = 4500000000000420, and let N = Φ102(b). Then N is a 501-digit integer, and, as we

will see in Section 4.4.2 , Φk(b) divides Φ102(b)− 1 for k ∈ {1, 2, 4, 8, 16}:

N − 1 = b · Φ1(b)Φ2(b)Φ4(b)Φ8(b)Φ16(b)

· (b15 + b14 − b12 − b11 + b9 + b8 − b6 − b5 + b3 + b2 − 1).

Thus, we were able to find a 267-digit (composite and completely factored) factor of N − 1

using our knowledge of the factorization of Φ102(b)− 1. Write

F = b · Φ1(b)Φ2(b)Φ4(b)Φ8(b)Φ16(b)

and R = (N − 1)/F. Then F is 267 decimal digits and R is 235 decimal digits. The first five

factors of F are all small, so their prime factorizations are easy to find. Searching small prime

factors of Φ16(b), we find 97 as a factor. The cofactor Φ16(b)/97 is a 124-digit composite

number which can be split in a few minutes using the general number field sieve. With this,

we can completely factor F :

F = 22 · 3 · 5 · 7 · 17 · 192 · 37 · 79 · 97 · 181 · 373 · 2521 · 2801·

· 22901 · 29921 · 42457 · 220939 · 628997 · 4191599·

· 60307757 · 1341640373 · 17841327819089·

· 8611682802363716529810782313724090135903849129512569693953·

· 28924876127991751377374504318364186875465010728139464929066673·

· 59931737437293016614567930699198100171879663785233449880539121.

Using Pocklington’s theorem (Theorem 1.2.1 ), we can prove that N is prime. First, note

that gcd(F,R) = 1. It is also easy to verify that 6N−1 ≡ 1 (mod N), and that, for every

prime p dividing F , we have

gcd
(
6(N−1)/p − 1, N

)
= 1.

Then, since F >
√
N, we conclude that N is prime. If we had not known that Φ16(b) divides

N − 1, and had tried to factor N − 1 directly using trial division and ECM, we would not
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have found enough factors for F to satisfy F >
√
N , so we could not have proved N to be

prime in this simple way.

4.3 Background

As always, φ(n) is the Euler phi function, that is, the number of positive integers up

to n which are relatively prime to n. We record some well-known facts about cyclotomic

polynomials needed for our discussion.

Lemma 4.3.1. For a prime number p and a positive integer n, we have

(a) Φpn(x) = Φn(xp) if p |n;

(b) Φpn(x) = Φn(xp)/Φn(x) if p - n;

(c) Φn(x) = xφ(n)Φn(1/x) for n > 1.

The following important result due to Kurshan and Odlyzko [19 ] considerably reduces

the possible values for k for a given n.

Lemma 4.3.2. [9 , Lemma 15] Let n > 1. Then Φn(ζk) is a nonzero real number if and only

if k divides φ(n).

Proof. It is well-known that Φn(x) is a self-reciprocal polynomial. This implies that Φn(ζk) =

ζ
φ(n)
k Φn(ζ−1

k ). On the other hand, Φn(ζk) ∈ R if and only if Φn(ζk) = Φn(ζk) = Φn(ζk) =

Φn(ζ−1
k ). Thus we must have Φn(ζk) = ζ

φ(n)
k Φn(ζk), which can only happen if n = k or

k |φ(n). Noting that Φn(ζk) = 0 if and only if n = k completes the proof.

We present the main results of Caldwell [10 ] without proof. Writing n = pe1
1 · · · perr , we

define rad(n) = p1 · · · pr.

Theorem 4.3.3. [10 , Theorem 2] Let n > 1. Let R = rad(n) and let L be such that

n = LR. Let p be any prime divisor of n. Then Φn(ζk) = 1 for all k such that

(a) k |L, whenever R is not a prime,

(b) k | 2L, k - L, whenever R is not 2 or twice a prime,
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(c) k | (p− 1)L, whenever pk 6= gcd(k, L)R,

(d) k | gcd
(
p+ 1, φ(R/p)

)
L, whenever pk 6= gcd(k, L)R.

Caldwell [10 ] tested this theorem experimentally for n ≤ 2000. He found 21206 solutions

to Φn(ζk) = 1, and of those solutions, only eighteen of them were not a consequence of

Theorem 4.3.3 . The following three theorems account for those eighteen solutions.

Theorem 4.3.4. [10 , Corollary 3] Let p ≡ 19, q ≡ 11 (mod 24), and suppose 3pq |n. Then

Φn(ζk) = 1 for all k | 24L, except when k/ gcd(k, L) = 8.

Theorem 4.3.5. [10 , Theorem 4] Let p, q, r be distinct primes dividing n. If

k | gcd(p2 − 1, q2 − 1, pqr − 1)L or k | gcd(p2 − 1, q2 − 1, pqr + 1, Lφ(R/r)),

then Φn(ζk) = 1.

Theorem 4.3.6. [10 , Theorem 5] Let p, q, r be distinct primes dividing n with p and q odd.

If k | gcd(q ± 1, r(p ± 1), φ(rpq)/2)L, k - rpq, then Φn(ζk) = 1. Here all four combinations

q ± 1 and p± 1 are possible.

The following theorem, which gives an explicit formula for evaluating Φn(ζk) using Dirich-

let characters, is due to Bzdęga et al. [9 ]. While theoretically nice, the formula would be

computationally unwieldy as k gets large.

Theorem 4.3.7. [9 , Theorem 1] Let n, k > 1 with gcd(n, k) = 1. Denote by G(k) the mul-

tiplicative group modulo k and by Ĝ(k) = hom((Z/kZ)?,C?) the set of Dirichlet characters

modulo k. For all χ ∈ Ĝ(k) let

Cχ(ζk) =
∑

g∈G(k)
χ(g) log(1− ζgk),

where we take the logarithm with imaginary part in (−π, π]. Then

Φn(ζk) = exp
(

1
φ(k)

∑
χ∈Ĝ(k)

Cχ(ζk)χ(n)
∏
p |n

(1− χ(p))
)
.
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In order to obtain a more easily computable characterization of when Φn(ζk) = 1, we will

make use of the following two lemmas.

Lemma 4.3.8. [9 , Lemma 18] Assume there exists a prime factor p of n such that p ≡ 1

(mod k) and e ≥ 1 such that n = pen′ with p - n′.

(a) If n′ 6= k, then Φn(ζk) = 1.

(b) If n′ = k, then Φn(ζk) = p.

Proof. If n′ 6= k, then by Lemma 4.3.1 , we have Φn(x) = Φn′(xp
m)/Φn′(xp

m−1). Since p ≡ 1

(mod k), we have ζpk = ζk. Thus,

Φn(ζk) = Φn′(ζp
m

k )
Φn′(ζp

m−1

k )
= Φn′(ζk)

Φn′(ζk)
= 1.

On the other hand, if n′ = k, the identity Φn(x) = Φk(xp
m)/Φk(xp

m−1) yields the inde-

terminate form 0/0. Applying L’Hôpital’s rule, we obtain

Φn(ζk) = pmζp
m−1
k Φ′k(ζ

pm

k )
pm−1ζp

m−1−1
m Φ′k(ζ

pm−1

k )
= pmζ−1

k Φ′k(ζk)
pm−1ζ−1

m Φ′k(ζk)
= p.

Lemma 4.3.9. [9 , Lemma 19] Assume there exists a prime factor p of n such that p ≡ −1

(mod k) and e ≥ 1 such that n = pen′ with p - n′.

(a) If n′ = 1, then Φn(ζk) = −ζ(−1)e
k .

(b) If n′ 6= k, then Φn(ζk) = ζ
(−1)eφ(n′)
k . Furthermore, if n′ ≥ 3, then Φn(ζk) = ζ

φ(n)/2
k .

(c) If n′ = k, then Φn(ζk) = −pζ(−1)eφ(k)
k .

Proof.

(a) By Equation (4.1 ), one has

xp
e − 1 =

∏
d | pe

Φd(x) =
e∏
j=0

Φpj(x)

= Φpe(x)
e−1∏
j=0

Φpj(x) = Φpe(x)(xpe−1 − 1).
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The last equality uses the fact that for a prime p and positive integer e, one has Φpe(x) =∑p−1
j=0 x

jpe−1
, and Φp0(x) = Φ1(x) = x − 1. This, together with the assumption that p ≡ −1

(mod k), gives

Φpe(ζk) = ζp
e

k − 1
ζp

e−1

k − 1
= ζ

(−1)e−1
k

ζ
(−1)e−1
k − 1

= −ζ(−1)e
k

(b) By Lemma 4.3.1 , we have Φn(x) = Φpn′(xp
e−1) = Φn′(xp

e)/Φn′(xp
e−1). Evaluating at ζk,

we obtain

Φn(ζk) = Φn′(ζp
e

k )
Φn′(ζp

e−1

k )
= Φn′(ζ(−1)e

k )
Φn′(ζ(−1)e−1

k )
= ζ

(−1)eφ(n′)
k ,

where the last equality uses part (c) of Lemma 4.3.1 .

(c) With n′ = k, first observe that differentiating the identity Φk(x) = xφ(k)Φk(1/x) yields

Φ′k(x) = φ(k)xφ(k)−1Φk(1/x)− xφ(k)−2Φ′k(1/x).

Note that Φk(ζk) = Φk(1/ζk) = 0, hence evaluating at x = ζ
(−1)e
k gives

Φ′k(ζ
(−1)e
k ) = −ζ(−1)e(φ(k)−2)

k Φ′k(ζ
(−1)(e+1)

k ). (4.2)

On the other hand, by L’Hôpital’s rule, we have

Φn(ζk) = peζp
e−1
k Φk(ζp

e

k )
pe−1ζp

e−1−1
k Φ′k(ζe−1

k )
= pζ

2(−1)e
k

Φ′k(ζ
(−1)e
k )

Φ′k(ζ
(−1)e+1

k )
.

After comparing with the identity in (4.2 ), the claim follows immediately.

The property from part (c) of Lemma 4.3.1 implies that for n ≥ 2, one has Φn(ζk) =

±
∣∣Φn(ζk)

∣∣ ζΦ(n)/2
k . The following lemma determines the sign.

Lemma 4.3.10. [9 , Lemma 16] Write ξk = e2jπi/k. For n ≥ 2 we have

Φn(ξk) = (−1)φ(nj/k;n)∣∣Φn(ξk)
∣∣ ξφ(n)/2
k ,

where φ(x;n) is the number of positive integers j ≤ x with gcd(j, n) = 1.
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Denote by Ω(n) the number of prime divisors of n, counted with multiplicity, and let

ω(n) be the number of distinct prime divisors of n.

Theorem 4.3.11. [9 , Corollary 22] Let k ∈ {5, 8, 10, 12} and n > 1 with gcd(n, k) = 1.

Suppose that n has no prime divisor ±1 (mod k). Then

log
∣∣Φn(ζk)

∣∣ = (−1)Ω(n)−12ω(n)−1 log|γk| ,

where

γk =



1 + ζk k = 5;

1 + ζk + ζ2
k k ∈ {8, 10} ;

1 + ζk + ζ2
k + ζ3

k + ζ4
k k = 12.

For low order k, Bzdęga et al. [9 ] computes Φn(ζk) explicitly for k ∈ {1, 2, 3, 4, 5, 6} . In

the case k = 5, the authors use Theorem 4.3.11 and Lemma 4.3.10 and mention that the case

k ∈ {8, 10, 12} can be obtained by a similar procedure, however they do not actually carry

out these computations. Note that as we are primarily interested in finding when Φn(ζk) = 1,

Theorem 4.3.11 will not produce any results in the case of k = 8, as log|γ8| = log(
√

2+1) 6= 0.

4.4 Evaluating Φn(ζk) for k = 2e

Throughout this section whenever we write a number n = pe1
1 · · · perr q

f1
1 · · · qfss , where ei, fj

are nonnegative integers, each of the pi, qj are assumed to be distinct prime numbers. We

will clarify the distinction between p and q later.

4.4.1 Case k = 8

Since we are ultimately concerned when Φn(ζk) = 1, we will assume throughout that k

divides φ(n) so that Φn(ζk) is real. We will make extensive use of the following well-known

fact. We will treat the cases 8 |n and 8 - n separately. More generally, whenever k is a power

of 2 dividing n, we have the following:
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Theorem 4.4.1. Let k = 2e with e ≥ 1. Suppose k |n. Then we have

Φn(ζk) =



0 n = k

p n = 2epr

1 otherwise

with p a prime number and r ≥ 1.

Proof. For n = k this is clear. The case k = 2 is well-known. We proceed by induction

on e. Assume the theorem holds for k = 2e. Denote by νp(a) the p-adic valuation of a; by

assumption ν2(n) ≥ 3. Then by Lemma 4.3.1 ,

Φn(ζ2k) = Φn/2(ζ2
2k) = Φn/2(ζk),

and the result follows by the induction hypothesis.

Next we consider the case 8 - n. In light of Lemma 4.3.8 we further assume that n has

no prime factor p ≡ 1 (mod 8). If n has a prime factor congruent to −1 modulo 8, then

carrying out Lemma 4.3.9 explicitly, write n = pen′ with p - n′ with p ≡ −1 (mod 8):

(a) If n′ = 1, then

Φn(ζ8) = −ζ(−1)e
8 =


−ζ8 if e ≡ 0 (mod 2)

ζ3
8 if e ≡ 1 (mod 2)

.

(b) If n′ 6= 8, then

Φn(ζ8) = ζ
(−1)eφ(n′)
8 =


−1 if 4 |φ(n′) but 8 - φ(n′)

1 if 8 |φ(n′)
.

(c) If n′ = 8, then Φn(ζ8) = −pζ(−1)eφ(8)
8 = p. Note that this also follows from Theo-

rem 4.4.1 .
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Now we may assume that n is an integer whose odd prime factors are all 3 or 5 modulo 8.

We consider three possible cases: n = 4qe1
1 · · · qerr , n = 2qe1

1 · · · qerr and n = qe1
1 · · · qerr with

qi ≡ 3 or 5 (mod 8) distinct primes. Denote m = qe1
1 · · · qerr .

Case n = 4m: Here we easily reduce to the case k = 4. (See Bzdęga et al. [9 , Lemma 23].)

Let e1, e2 be positive integers. Then we have

Φn(ζ8) = Φ2m(ζ2
8 ) = Φ2m(ζ4) =



0 if m = 1

−1 if m = qe1
1 q

e2
2 , qj ≡ 3 mod 4

1 otherwise

Case n = 2m: Using Lemma 4.3.1 ,

Φn(ζ8) = Φm(ζ2
8 )

Φm(ζ8) = Φm(ζ4)
Φm(ζ8) . (4.3)

If some qj ≡ 5 (mod 8), then qj ≡ 1 (mod 4), and Φm(ζ4) = 1 by Lemma 4.3.8 . Oth-

erwise all qj ≡ 3 (mod 4). Since by assumption 8 divides φ(n) = φ(m), we must have

r ≥ 3, as φ(qejj ) = qej−1(qj − 1) is divisible by 2 but not 4. So again by Lemma 4.3.9 ,

Φn(ζ4) = 1. We have now determined the numerator in (4.3 ), and we are left now with

the final case.

Case n = m: By assumption we have 8 |φ(n) = qe1−1
1 · · · qer−1

r (q1 − 1) · · · (qr − 1). So either

all qi ≡ 3 (mod 8) with r ≥ 3 or there exists some qj ≡ 5 (mod 8) with r ≥ 2. To

finish this case, we start with some lemmas.

Lemma 4.4.2. If n = p1 · · · pr with all pi ≡ 3 (mod 8), then

Φn(ζ8) =
(
ζ8 − 1
ζ3

8 − 1

)(−1)r2r−1

= (ζ2
8 + ζ8 + 1)(−2)r−1

.
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Proof. Through repeated use of Lemma 4.3.1 , when r > 1 we have that

Φp1···pr(x) =
∏Φp1(xp

e2
2 ···p

er
r )∏Φp1(xp

f2
2 ···p

fr
r )

(−1)r

=
∏(xp1p

e2
2 ···p

er
r − 1)/(xp

e2
2 ···p

er
r − 1)∏(xp1p

f2
2 ···p

fr
r − 1)/(xp

f2
2 ···p

fr
r − 1)

(−1)r

, (4.4)

where the product in the numerator is taken over the 2r−2 odd-cardinality subsets of the

set {p2, . . . , pr} and the product in the denominator is taken over the 2r−2 even-cardinality

subsets of {p2, . . . , pr} . Now since ∑ ei ≡ 1 (mod 2) and ∑fi ≡ 0 (mod 2), we have

ζ
p1p

e2
2 ···p

er
r

8 = ζ31+
∑

ei

8 = ζ8 and ζ
p1p

f2
2 ···p

fr
r

8 = ζ31+
∑

fi

8 = ζ3
8 .

Combining this with (4.4 ), we obtain

Φp1···pr(ζ8) =
(
ζ8 − 1
ζ3

8 − 1

)(−1)r2r−1

.

Noting that this identity is also valid for r = 1 completes the proof.

Lemma 4.4.3. If n = q1 · · · qs with all qi ≡ 5 (mod 8), then

Φn(ζ8) =
(
ζ8 − 1
−ζ8 − 1

)(−1)s2s−1

= (ζ3
8 + ζ2

8 + ζ8)(−2)s−1
.

Proof. Upon noting that ζ5
8 = −ζ8, the proof is the same as Lemma 4.4.2 , mutatis mutandis.

Lemma 4.4.4. Let n = p1 · · · prqf1
1 · · · qfss with pi ≡ 3 (mod 8) and qj ≡ 5 (mod 8). Let

σ = ∑
fi. Then

Φn(ζ8) =
(
(−1)σ2ζ3

8 − (−1)σ2ζ8 + 3
)(−1)r2r+s−2
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Proof. Through repeated use of Lemma 4.3.1 , we see that

Φn(ζ8) =

 Φp1···pr

(
(−1)σζ8

)
Φp1···pr

(
(−1)1+σζ8

)


2s−1

=

( (−1)σζ8 − 1
(−1)σζ3

8 − 1

)(−2)r−1 (
(−1)σ+1ζ8 − 1
(−1)σ+1ζ3

8 − 1

)(−2)r−1


2s−1

=
( (−1)σζ8 − 1

(−1)σζ3
8 − 1

)(
(−1)σ+1ζ3

8 − 1
(−1)σ+1ζ8 − 1

)(−1)r2r+s−2

=


(2ζ3

8 − 2ζ8 + 3)(−1)r2r+s−2 if σ ≡ 0 (mod 2)

(−2ζ3
8 + 2ζ8 + 3)(−1)r2r+s−2 if σ ≡ 1 (mod 2)

=
(
(−1)σ2ζ3

8 − (−1)σ2ζ8 + 3
)(−1)r2r+s−2

,

as desired.

Theorem 4.4.5. Let n = pe1
1 · · · perr q

f1
1 · · · qfss with pi ≡ 3 (mod 8) and qj ≡ 5 (mod 8). Let

ρ = ∑
ei and σ = ∑

fj. Assume r > 0; then

Φn(ζ8) =
2− (−1)ρ+σ−r(ζ8 + ζ−1

8 )
2 + (−1)ρ+σ−r(ζ8 + ζ−1

8 )

(−1)r2r+s−2

Proof. As we saw in the previous lemma,

Φn(ζ8) =

 Φp
e1
1 ···p

er
r

(
(−1)σζ8

)
Φp

e1
1 ···p

er
r

(
(−1)1+σζ8

)


2s−1

=


Φp1···pr

((
(−1)σζ8

)3ρ−r)
Φp1···pr

((
(−1)1+σζ8

)3ρ−r)


2s−1

(4.5)

= Φp1···pr

((
(−1)ρ+σ−rζ

(−1)ρ−r
8

))2s−1

Φp1···pr

((
(−1)1+σ+ρ−rζ

(−1)ρ−r
8

))21−s

=


 (−1)ρ+σ−rζ

(−1)ρ−r
8 − 1

(−1)1+ρ+σ−rζ
(−1)1+ρ−r

8 − 1

 (−1)σ+ρ−rζ
(−1)1+ρ−r

8 − 1
(−1)1+σ+ρ−rζ

(−1)ρ−r
8 − 1




(−1)r2r+s−1

(4.6)

=
2− (−1)ρ+σ−r(ζ8 + ζ−1

8 )
2 + (−1)ρ+σ−r(ζ8 + ζ−1

8 )

(−1)r2r+s−2

,
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where in (4.5 ) we use Lemma 4.3.1 and in (4.6 ) we use Lemma 4.4.2 .

Finally, since Theorem 4.4.5 assumes r > 0, it remains to deal with the case n = qf1
1 · · · qfss

with all qi ≡ 5 (mod 8). But this is just an application of Lemma 4.3.1 followed by

Lemma 4.4.3 .

Lemma 4.4.6. Let n = qf1
1 · · · qfss with all qi ≡ 5 (mod 8). Let σ = ∑

fi. Then

Φ
q
f1
1 ···q

fs
s

(ζ8) =
(
(−1)σ−sζ3

8 + ζ2
8 + (−1)σ−sζ8

)(−2)s−1

.

We sum up these results with the following theorem.

Theorem 4.4.7. We have Φn(ζ8) = 1 if and only if one of the following conditions holds:

• n = pen′ with p - n′, p ≡ 1 (mod 8) and n′ 6= 8;

• 8 |n and n 6= 8pe with p prime and e a nonnegative integer;

• n = pen′ with p - n′, p ≡ −1 (mod 8), n′ 6= 8 and 8 |φ(n′);

• n = 4m, where m is odd but m 6= qe1
1 q

e2
2 , where qi ≡ 3 (mod 4) and ej > 0.

Proof. It only remains to verify that Φn(ζ8) 6= 1 for n = pe1
1 · · · perr q

f1
1 · · · qfss . From Theo-

rem 4.4.5 if r > 0, we have

Φn(ζ8)


(
(−1)ρ+σ−rζ3

8 − ζ2
8 + 1

)(−1)r2r+s−2

if ρ ≡ r (mod 2)(
ζ2

8 + (−1)ρ−rζ8 + 1
)(−1)r2r+s−2

if ρ 6≡ r (mod 2),

but
∣∣∣(−1)ρ+σ−rζ3

8 − ζ2
8 + 1

∣∣∣ 6= 1 and
∣∣∣ζ2

8 + (−1)ρ−rζ8 + 1
∣∣∣ 6= 1. Hence Φn(ζ8) 6= 1 in this case.

Similarly, if r = 0, we have

Φ
q
f1
1 ···q

fs
s

(ζ8) =
(
(−1)σ−sζ3

8 + ζ2
8 + (−1)σ−sζ8

)(−2)s−1

,

but
∣∣∣(−1)σ−sζ3

8 + ζ2
8 + (−1)σ−sζ8

∣∣∣ 6= 1, hence Φn(ζ8) 6= 1.
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4.4.2 Case k = 16

As we will see, the case k = 16 is already much more complicated than the case k = 8.

We start by carrying out Lemma 4.3.9 . Write n = pen′ with p ≡ −1 (mod 16), where p - n′.

Then

(a) If n′ = 1, then Φn(ζ16) = −ζ(−1)e
16 .

(b) If n′ /∈ {1, 16} , then Φn(ζ16) = ζ
(−1)eφ(n′)
16 .

(c) If n′ = 16, then Φn(ζ16) = p, which again follows from Theorem 4.4.1 as well.

In case (b), we see that Φn(ζ16) is real-valued if and only if Φn(ζ16) = ±1, and

Φn(ζ16) =


1 if 16 |φ(n′)

−1 if 8 |φ(n′) but 16 - φ(n′).

Writing n′ = 2fpe1
1 · · · perr , we have 16 |φ(n′) in the following cases:

• r ≥ 4;
• r = 3 and f ≥ 2;
• r = 3 and some pj is congruent to one of {5, 9, 13} modulo 16;
• r = 2 and f ≥ 3;
• r = 2 and some pj is congruent to 9 modulo 16; or
• r = 1 and f ≥ 5.

Moreover, we have 8 |φ(n′) in the following cases:

• r ≥ 3;
• r = 2 and f ≥ 3;
• r = 2 and some pj is 5 modulo 8; or
• r = 1 and f ≥ 4.

From here on we will assume that n has no prime factor p ≡ ±1 (mod 16). In light of

Theorem 4.4.1 , we will also assume that 16 does not divide n. Looking back at the proof of

Lemma 4.4.2 and Lemma 4.4.3 , we see that we only needed the fact that 3 = 8/2 − 1 and

67



5 = 8/2 + 1. This immediately leads to the following generalization which gives a similar

result in the case k = 16.

Lemma 4.4.8. Let k = 2e. If n = p1 · · · pr with all pi ≡ k/2 + 1 (mod k), then

Φn(ζk) =
 ζ16 − 1
ζ
k/2+1
16 − 1

(−1)r2r−1

.

Similarly, if all pi ≡ k/2− 1 (mod k), then

Φn(ζk) =
 ζ16 − 1
ζ
k/2−1
16 − 1

(−1)r2r−1

.

Other possible values of n require more work. In a similar fashion to our work for k = 8,

we start with n having primes of a certain form and work our way to a more general n. We

recall the following identities, which can be found in Gradshteyn and Ryzhik[15 ]:

αn =
∑

k≡0 mod 4

(
n

k

)
= 1

2

(
2n−1 + 2n/2 cos πn4

)

βn =
∑

k≡2 mod 4

(
n

k

)
= 1

2

(
2n−1 − 2n/2 cos πn4

)

γn =
∑

k≡1 mod 4

(
n

k

)
= 1

2

(
2n−1 + 2n/2 sin πn4

)

δn =
∑

k≡3 mod 4

(
n

k

)
= 1

2

(
2n−1 − 2n/2 sin πn4

)

Lemma 4.4.9. Let n = p1 · · · pr with pi ≡ m (mod 16), where m ∈ {3, 5, 11, 13} . Then

Φn(ζ16) =
(ζ16 − 1)αr(−ζ16 − 1)βr

(ζm16 − 1)γr(−ζm16 − 1)δr

(−1)r

.
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Proof. For m ∈ {3, 5, 11, 13} , we have

ζm
e

16 =



ζ16 if e ≡ 0 (mod 4)

ζm16 if e ≡ 1 (mod 4)

−ζ16 if e ≡ 2 (mod 4)

−ζm16 if e ≡ 3 (mod 4).

Combining this fact with (4.4 ), the result follows.

In the same way that we could generalize Lemma 4.4.2 and Lemma 4.4.3 , we have the

following generalization of Theorem 4.4.5 .

Theorem 4.4.10. Let k = 2e. Let n = pe1
1 · · · perr q

f1
1 · · · qfss with pi ≡ k/2 − 1 (mod k) and

qj ≡ k/2 + 1 (mod k). Let ρ = ∑
ei, σ = ∑

fj, and assume r 6= 0. Then

Φn(ζk) =

2− (−1)ρ+σ−r
(
ζk + ζ−1

k

)
2 + (−1)ρ+σ−r

(
ζk + ζ−1

k

)


(−1)r2r+s−2

.

Theorem 4.4.11. Let n = pe1
1 · · · perr q

f1
1 · · · qfss with pi ≡ 3 (mod 16) and qj ≡ 5 (mod 16).

Let ρ = ∑
ei and σ = ∑

fj. Then

Φn(ζ16) =

bs/2c∏
i=0


(
ζ5σ−2i3ρ−r

16 − 1
)αr (−ζ5σ−2i3ρ−r

16 − 1
)βr

(
ζ5σ−2i31+ρ−r

16 − 1
)γr (−ζ5σ−2i31+ρ−r

16 − 1
)δr


(−1)r( s2i)

b(s−1)/2c∏
i=0


(
ζ5σ−2i−13ρ−r

16 − 1
)αr (−ζ5σ−2i−13ρ−r

16 − 1
)βr

(
ζ5σ−2i−13ρ−r

16 − 1
)γr (−ζ5σ−2i−131+ρ−r

16 − 1
)δr


(−1)r( s
2i+1)
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Proof. Using the usual reductions, we have

Φn(ζ16) =

bs/2c∏
i=0

(
Φn

p
e1
1 ···p

er
r

(
ζ5σ−2i

16

))( s2i)

b(s−1)/2c∏
i=0

(
Φn

p
e1
1 ···p

er
r

(
ζ5σ−2i−1

16

))( s
2i+1)

=

bs/2c∏
i=0

(
Φnp1···pr

(
ζ5σ−2i3ρ−r

16

))( s2i)

b(s−1)/2c∏
i=0

(
Φnp1···pr

(
ζ5σ−2i−13ρ−r

16

))( s
2i+1)

.

Applying Lemma 4.4.9 completes the proof.

Remark 1. Replacing 3 by 11 and 5 by 13, we get an analogous statement whose proof is

the same.

In a way similar to the case k = 8, we can build this up to get an extremely complicated

expression for Φn(ζ16). However, unless there is a way to greatly simplify the expression in

Theorem 4.4.11 , writing it down is far too unwieldy. It certainly seems that the expressions

in Lemma 4.4.9 and Theorem 4.4.11 should never be equal to 1, and we have verified this in

some subcases in Mathematica. That said, we believe the case for k = 8 can be generalized

in the following way. Let k = 2e. Then we have established Φn(ζk) = 1 if

• n = pfn′ with p - n′, p ≡ 1 (mod k) and n′ 6= k;

• k |n and n 6= kpf with p prime and f a nonnegative integer;

• n = pfn′ with p - n′, p ≡ −1 (mod k) and k |φ(n′).

In the case k = 8 we had one final condition to make the statement biconditional. Namely,

if n = 4m, where m is odd but m 6= qe1
1 q

e2
2 , where qi ≡ 3 (mod 4) and ej ≥ 0. More

generally, suppose m is odd. Then Φ2e−1m(ζk) = Φ2m(ζ2e−2
k ). For 2 ≤ j < e− 1 we similarly

find Φ2e−jm(ζk) = Φ2m(ζ2e−j−1
k ). Using these identities, we can recursively apply the above

conditions to find when Φn(ζk) = 1.

We carried this out in Sage for k = 16 and n up to 10 000. We found 2375 values of n

such that Φ(ζ16) = 1. Of these, 1390 such n could be explained by the first condition above,
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488 could be explained by the second, and 183 could be explained by the third. The above

conditions are not mutually exclusive, so after eliminating repeats, there were 488 values of

n not explained by these first three conditions.

Upon inspecting these unexplained values of n, we found that all of them were evenly di-

visible by 4 or 8. For those evenly divisible by 4, say n = 4m with m odd. Then applying the

above identity, we have Φ4m(ζ16) = Φ2m(ζ2
16) = Φ2m(ζ8) so that we can apply Theorem 4.4.7 .

In the situation where n = 8m with m odd, we get Φ8m(ζ16) = Φ2m(ζ4
16) = Φ2m(ζ4), in which

case we may apply Lemma 23 of Bzdęga et al. [9 ]. This explained every value of n.

Conjecture. For k = 2e, the above procedure finds all possible values n such that Φn(ζk) = 1.
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5. CONCLUSION AND FUTURE WORK

Let gcd(a, b) = 1. It has been known for more than a century that the primes p for which

ap + b is also prime are rarer than all primes, in the sense that the sum of the reciprocals

of such primes converges or is finite, while the sum of the reciprocals of all primes diverges.

Our Theorem 2.3.4 quantifies this rarity by estimating the sum of the reciprocals of the

primes p with p + 6 also prime. Since we do not know whether there are infinitely many

such primes all we can do is bound this sum in an interval (1.2608, 1.9760). We have done

this for only a few cases, but it is clear that one could do it for any a, b, with gcd(a, b) = 1.

(If gcd(a, b) > 1, the problem is much easier because ap + b is always divisible by gcd(a, b),

so the sum of the reciprocals of such primes would be the empty sum.)

Because the tightness of the upper bounds we have found depends on explicitly computing

the lower bounds, one could obtain better bounds by computing the sums Sa,b(x0) up to a

larger limit x0. As noted in Wagstaff [38 ], one could probably achieve slightly better upper

bounds with the same x0 by assuming the Extended Riemann Hypothesis as was done in

Klyve [18 ] for the sum of reciprocals of twin primes.

Knowledge of the existence of Carmichael numbers dates back to the early 1900s. Al-

ford et al. [2 ] proved in 1994 that there are infinitely many Carmichael numbers. In 2013,

Wright [39 ] gave the first unconditional proof that there are infinitely many Carmichael num-

bers in every possible arithmetic progression. Using his methods, along with recent results

from Pomerance [30 ], we were able to give an explicit lower bound on the number of elliptic

Carmichael numbers up to X that are congruent to a modulo M for particular M in our

Theorem 3.2.7 .

We recently noticed a paper by Kellner and Sondow [17 ] that gives a new characteri-

zation of Carmichael numbers. By specializing one parameter in the new characterization,

they define a proper subset of Carmichael numbers they call primary Carmichael numbers.

Numerical experiments suggest that a sizable proportion of all Carmichael numbers are pri-

mary, but it is not even known whether there are infinitely many of them. It may be possible

to prove a characterization of primary Carmichael numbers similar to Korselt’s criterion. If

this is done, one should be able to modify the results of Chapter 3 to show there are infinitely
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many primary Carmichael numbers in many arithmetic progressions. Perhaps one can define

primary elliptic Carmichael numbers and prove similar results.

At the end of Chapter 3 , we gave several results on strong Lucas pseudoprimes and Lucas

V -pseudoprimes. As noted in Baillie et al. [3 ], there are many related open questions. It

would be nice to have a formula that bounds the number of D or the number of pairs (P,Q)

for which n is a vpsp. Another open question is the asymptotic growth rate for the number

of vpsp’s up to x. This growth rate probably depends on the algorithm for choosing the

parameters P and Q as described in Baillie et al. [3 ].

Let r be an integer > 1. Our Corollary 3.3.4 shows that there are infinitely elliptic

Carmichael numbers m ≡ 3 (mod 4) that are also strong pseudoprimes to base r and strong

lpsp(P,Q) and vpsp(P,Q) for P = 4 · rk and Q = 8 · r2k. Perhaps one could prove an

analogous corollary with a different (P,Q) pair such that (P,Q) would be chosen by the

algorithm described in Baillie et al. [3 ]. Such a result would prove that there are infinitely

many counterexamples to the Baillie-PSW primality test.

Let Φn(x) be the nth cyclotomic polynomial. Many authors have made contributions to

characterizing for which pairs (k, n) does one have Φk(x) |Φn(x)−1. Some of the more general

results, such as those in Bzdęga et al. [9 ] are not efficiently computable. In Chapter 4 , we gave

simple necessary and sufficient conditions for which values n does one have Φ8(x) |Φn(x)−1.

We listed several analogous sufficient conditions to find which n satisfy Φ16(x) |Φn(x)− 1.

More generally, let k be a power of 2. Then we believe by applying well-known identities,

one can build up a complete characterization for when Φk(x) |Φn(x)−1 using our Chapter 4 

results. It seems feasible that one can obtain similar characterizations for k = pe, where p

is an odd prime and e ≥ 1. Then by using various cyclotomic identities, obtain results for a

general k. Such an elementary characterization would be useful in applying these results to

primality proving.
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