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Abstract

Let sp(m) denote the sum of the base-p digits of the positive integer m. Kellner
and Sondow defined a primary Carmichael number as a squarefree integer m with
sp(m) = p for each prime divisor p of m. We show that the Prime k-tuples Conjec-
ture implies that there are infinitely many primary Carmichael numbers. We define
the degree of a Carmichael number and prove several results about this concept.

1. Introduction

A Carmichael number is a composite positive integer m for which the congruence

am−1 ≡ 1 (mod m) holds for every integer a coprime to m. In 1889, Korselt proved

that a composite integer m is a Carmichael number if and only if p− 1 | m− 1 for

every prime divisor p of m. Carmichael proved that every Carmichael number is

odd, squarefree, and has at least three prime factors.

Kellner and Sondow [4] found a new characterization of Carmichael numbers. Let

sp(m) denote the sum of the base-p digits of the positive integer m. They proved

that a positive integer m is a Carmichael number if and only if it is squarefree

and each of its prime factors p satisfies both sp(m) ≥ p and sp(m) ≡ 1 (mod p −

1). This characterization directly implies that m is odd and has at least three

prime factors. They also defined a special type of Carmichael number they called a

primary Carmichael number. This is a squarefree positive integer m with sp(m) = p

for each of its prime factors p. Alford, Granville, and Pomerance [1] proved that

there are infinitely many Carmichael numbers. Kellner and Sondow [4] counted the

Carmichael numbers and primary Carmichael numbers up to 1010, but were unable

to prove that there are infinitely many primary Carmichael numbers. We prove

below that the Prime k-tuples Conjecture implies that there are infinitely many

primary Carmichael numbers.
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2. Chernick’s polynomials

For integers k ≥ 3 and n ≥ 1 define

Uk(n) = (6n+ 1)(12n+ 1)

k−2∏

i=1

(9 · 2in+ 1).

Chernick [2] proved that U3(n) is a Carmichael number whenever all three of its

factors 6n + 1, 12n+ 1, and 18n+ 1 are prime. He also showed that if k ≥ 4 and

2k−4 divides n, then Uk(n) is a Carmichael number whenever each of its k factors

is prime.

Let a1, . . ., ak be positive integers and let b1, . . ., bk be nonzero integers. Let

P (x) denote the number of positive integers n ≤ x for which ain + bi is prime for

each i = 1, . . ., k. The Prime k-tuples Conjecture says that if no prime divides

k∏

i=1

(ain+ bi) (1)

for every n, then there is a constant c > 0 such that P (x) ∼ cx/ logk x as x → ∞.

The Prime k-tuples Conjecture is supported by numerical data and a heuristic

argument, but it has never been proved, except for k = 1.

Chernick [2] called a polynomial of the form of (1) universal if it is a Carmichael

number for every n for which each of the k factors is prime. He gave many examples

of universal polynomials, not just Uk(n).

Since no prime can divide Uk(n) for every n, the Prime k-tuples Conjecture

and Chernick’s theorem together imply that there are infinitely many Carmichael

numbers with exactly k prime factors, in fact, at least ckx
1/k/ logk x of them less

than or equal to x for some ck > 0.

3. Formulas for base-p digits

The smallest primary Carmichael number, mentioned by Kellner and Sondow [4], is

Ramanujan’s taxicab number 1729. This number also happens to be U3(1), which

led us to the results in this section. Kellner [3] also noticed Chernick’s paper and

observed that U3(n) is a primary Carmichael number whenever all three of its factors

are prime. In particular, he gave a different proof of Corollary 1 below.

Lemma 1. Let n be a real number, p = 6n + 1, q = 12n + 1, r = 18n + 1, and

m = U3(n) = pqr. Then

m = 2p+ (p− 7)p2 + 5p3,

m = (3n)q + (9n+ 1)q2, and

m = (14n+ 1)r + (4n)r2.
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Proof. Write each equation in terms of n and check that it is an identity. The

algebra becomes slightly simpler if one cancels the base prime from each side first.

Alternately, one can use a computer algebra system to check the equations.

Corollary 1. With the same hypotheses as Lemma 1, except that n is a positive

integer, we have sp(m) = p, sq(m) = q, and sr(m) = r.

Proof. Since p ≥ 7 (because n ≥ 1), the coefficients 2, p−7, and 5 are between 0 and

p−1, so they are the base-p digits of m. Thus sp(m) = 2+(p−7)+5 = p. Similarly,

the base-q and base-r digits lie in the correct intervals and sq(m) = 12n + 1 = q

and sr(m) = 18n+ 1 = r.

Here is the promised theorem.

Theorem 1. The Prime k-tuples Conjecture implies that there are infinitely many

primary Carmichael numbers with exactly three prime factors.

Proof. By the Prime k-tuples Conjecture, there are infinitely many positive integers

n for which U3(n) has exactly three prime factors. By Corollary 1, each of these

numbers U3(n) is a primary Carmichael number.

Can we get a similar result for U4(n) and find even more primary Carmichael

numbers? Here are the corresponding lemma and corollary.

Lemma 2. Let n be a real number, p = 6n+1, q = 12n+1, r = 18n+1, t = 36n+1,

and m = U4(n) = pqrt. Then

m = (p− 10)p+ 46p2 + (p− 72)p3 + 35p4,

m = (6n+ 1)q + (3n− 2)q2 + (3n)q3 + 2q4,

m = (4n)r + (6n)r2 + (8n+ 1)r3, and

m = (26n+ 1)t+ (9n)t2 + (n)t3.

Proof. Write each equation in terms of n and check that it is an identity.

If n = 1, then p = 7 and sp(m) = 0 + 4 + 3 + 4 + 5 + 3 = 19 6= 7, so m is a

Carmichael number but not primary. The next n for which U4(n) has only four

prime factors is n = 45. But m = U4(45) is not a primary Carmichael number

either, as this corollary shows.

Corollary 2. With the same hypotheses as Lemma 2, except that n ≥ 12 is an

integer, we have sp(m) = 2p− 1, sq(m) = q, sr(m) = r, and st(m) = t.

Proof. Since p ≥ 73 (because n ≥ 12), the coefficients p − 10, 46, p − 72, and

35 are between 0 and p − 1, so they are the base-p digits of m. Thus sp(m) =

(p − 10) + 46 + (p − 72) + 35 = 2p − 1. Similarly, the base-q, base-r, and base-t



INTEGERS: 22 (2022) 4

digits lie in the correct intervals, so sq(m) = 12n+1 = q, sr(m) = 18n+1 = r and

st(m) = 36n+ 1 = t.

Call a Carmichael number m secondary if m is not primary, but each prime factor

p of m satisfies either sp(m) = p or sp(m) = 2p− 1. Then we have this theorem.

Theorem 2. The Prime k-tuples Conjecture implies that there are infinitely many

secondary Carmichael numbers with exactly four prime factors.

Proof. By the Prime k-tuples Conjecture, there are infinitely many positive integers

n for which U4(n) has exactly four prime factors. By Corollary 2, each of these

numbers U4(n) with n ≥ 12 is a secondary Carmichael number.

4. Numerical results

Using the online tables of Carmichael numbers computed by Pinch [5], we have

counted the primary and secondary Carmichael numbers up to 1018. Let C(x),

C1(x), and C2(x) denote the numbers of all, primary, and secondary Carmichael

numbers up to x, respectively. Table 1 gives C(x), C1(x), and C2(x) for x = 10n,

n = 3, . . ., 18. It also shows the percentage of all Carmichael numbers that are

primary or secondary. It appears that primary and secondary Carmichael numbers

are rare among Carmichael numbers.

n C(10n) C1(10
n) Percent C2(10

n) Percent
3 1 0 0.00 0 0.00
4 7 2 28.57 2 28.57
5 16 4 25.00 6 37.50
6 43 9 20.93 17 39.53
7 105 19 18.10 42 40.00
8 255 51 20.00 74 29.02
9 646 107 16.56 152 23.53
10 1547 219 14.16 299 19.33
11 3605 417 11.57 547 15.17
12 8241 757 9.19 944 11.45
13 19279 1470 7.62 1671 8.67
14 44706 2666 5.96 3037 6.79
15 105212 5040 4.79 5346 5.08
16 246683 9280 3.76 9159 3.71
17 585355 17210 2.94 15570 2.66
18 1401644 32039 2.29 26216 1.87

Table 1: Number of Carmichael numbers below various limits.
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The first secondary Carmichael number is 1105, which has three prime factors.

The first secondary Carmichael number with four prime factors is 41041. The first

Carmichael number which is neither primary nor secondary is 561, the smallest

Carmichael number.

Recall that if a prime p divides a Carmichael number m, then sp(m) ≥ p and

sp(m) ≡ 1 (mod p− 1). Define the degree of a Carmichael number m as the maxi-

mum of (sp(m)− 1)/(p− 1) taken over all prime factors p of m. Then the primary

and secondary Carmichael numbers are those of degree 1 and 2, respectively. Table

2 shows the number of Carmichael numbers up to 1018 of each degree by number

of prime factors.

Degree 3 4 5 6 7 8 9 10 11
1 31103 933 3 0 0 0 0 0 0
2 4339 15806 5918 153 0 0 0 0 0
3 144 13179 38497 16922 812 1 0 0 0
4 0 5931 46753 74231 24179 1188 4 0 0
5 0 2604 34517 97495 79757 15303 563 2 0
6 0 1113 22076 83500 107883 42789 4575 90 0
7 0 536 12954 58087 94741 54790 10084 478 3
8 0 279 7512 36386 65843 45254 11197 808 7
9 0 142 4085 20195 37923 27869 7854 679 18

10 0 77 2392 11637 20866 15808 4583 411 5
11 0 40 1441 7248 13023 9491 2807 254 5
12 0 17 898 4327 7711 5820 1683 158 5
13 0 12 488 2241 4211 3139 950 105 4
14 0 8 249 1116 2014 1496 423 50 1
15 0 2 106 508 856 592 190 15 1
16 0 1 61 223 321 242 48 6 0
17 0 1 37 131 139 74 11 1 0
18 0 2 31 80 87 48 7 1 0
19 0 1 21 80 86 30 4 0 0
20 0 1 16 45 54 21 5 0 0
21 0 0 6 25 31 23 2 0 0
22 0 0 2 24 9 9 2 0 0
23 0 0 0 3 7 7 0 0 0
24 0 0 0 2 0 1 0 0 0
25 0 0 0 1 0 1 1 0 0
26 0 0 0 0 0 1 0 0 0

Table 2: Carmichael numbers by degree and number of prime factors.

Roughly speaking, Carmichael numbers with more prime factors are more likely

to have higher degrees. It may be true that all Carmichael numbers with only three
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factors have degree at most 3 and that Carmichael numbers with degree 1 have no

more than five factors. These statements hold for the data up to 1018.

5. What about U5(n) and beyond?

Can we use U5(n) to find infinitely many Carmichael numbers of degree 3? The

complexity of the formulas for the digits of Uk(n) increases as k increases.

Lemma 3. Let n be a real number, p = 6n+1, q = 12n+1, r = 18n+1, t = 36n+1,

u = 72n+ 1, and m = U5(n) = pqrtu. Then

m = (110)p+ (p− 637)p2 + (1355)p3 + (p− 1260)p4 + (431)p5,

m = (6n− 2)q + (9n+ 12)q2 + (3n− 11)q3 + (6n− 11)q4 + (13)q5,

m = (6n+ 1)r + (16n)r2 + (18n− 3)r3 + (14n+ 2)r4 + (1)r5,

m = (10n)t+ (7n)t2 + (17n+ 1)t3 + (2n)t4, and

m = (411(n/8) + 1)u+ (143(n/8))u2 + (21(n/8))u3 + (n/8)u4.

Corollary 3. With the same hypotheses as Lemma 3, except that n ≥ 226 is an

integer and 8 | n, we have sp(m) = 2p − 1, sq(m) = 2q − 1, sr(m) = 3r − 2,

st(m) = t, and su(m) = u.

Only su(m) = u requires 8 | n; the others hold for all n ≥ 226.

Proof. Since p ≥ 1355 (because n ≥ 226), the coefficients in the first equation

in Lemma 3 are between 0 and p − 1, so they are the base-p digits of m. Thus

sp(m) = 110+(p−637)+1355+(p−1260)+431 = 2p−1. Similarly, the base-q, base-

r, base-t, and base-u digits lie in the correct intervals and sq(m) = 24n+1 = 2q−1,

sr(m) = 54n + 1 = 3r − 2, st(m) = 36n + 1 = t, and su(m) = (n/8)576n + 1 =

72n+ 1 = u.

Theorem 3. The Prime k-tuples Conjecture implies that there are infinitely many

Carmichael numbers of degree 3 with exactly five prime factors.

Proof. By the Prime k-tuples Conjecture, there are infinitely many positive integers

n divisible by 8 for which U5(n) has exactly five prime factors. By Corollary 3, each

of these numbers U5(n) with n ≥ 226 is a Carmichael number of degree 3.

Can we use U6(n) to find infinitely many Carmichael numbers of degree 4? Here

are the results. The proofs are similar to those above.
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Lemma 4. Let n be a real number, p = 6n+1, q = 12n+1, r = 18n+1, t = 36n+1,

u = 72n+ 1, v = 144n+ 1, and m = U6(n) = pqrtuv. Then

m =(p− 2530)p+ (17290)p2 + (p− 46476)p3 + (61523)p4+

(p− 40176)p5 + (10367)p6,

m =(6n+ 28)q + (9n− 159)q2 + (3n+ 256)q3 + (6n− 2)q4+

(12n− 283)q5 + (161)q6,

m =(12n− 4)r + (8n+ 9)r2 + (2n+ 17)r3 + (10n− 40)r4 + (4n+ 5)r5 + (14)r6,

m =(6n+ 1)t+ (19n− 1)t2 + (13n− 2)t3 + (26n+ 2)t4 + (8n+ 1)t5,

m =(165(n/8))u+ (103(n/8))u2 + (265(n/8) + 1)u3 + (41(n/8))u4 + (2(n/8))u5,

and

m =(13119n/128+ 1)v + (4562n/128)v2 + (704n/128)v3+

(46n/128)v4 + (n/128)v5.

Corollary 4. With the same hypotheses as Lemma 4, except that n ≥ 7746 is an

integer and 128 | n, we have sp(m) = 3p − 2, sq(m) = 3q − 2, sr(m) = 2r − 1,

st(m) = 2t− 1, su(m) = u, and sv(m) = v.

Thus the Carmichael numbers U6(n) have degree 3, not 4.

Theorem 4. The Prime k-tuples Conjecture implies that there are infinitely many

Carmichael numbers of degree 3 with exactly six prime factors.

It turns out that U7(n) gives degree 4.

Lemma 5. Let n be a real number, a = n/8, b = n/128, c = n/4096, p = 6n+ 1,

q = 12n+ 1, r = 18n+ 1, t = 36n+ 1, u = 72n+ 1, v = 144n+ 1, w = 288n+ 1,

and m = U7(n) = pqrtuvw. Then

m =118910p+ (p− 934117)p2 + 3014339p3 + (p− 5122476)p4 + 4841423p5+

(p− 2415744)p6 + 497663p7,

m =(6n− 632)q + (9n+ 4323)q2 + (3n− 9722)q3 + (6n+ 6208)q4 + 6466q5+

(12n− 10529)q6 + 3887q7,

m =70r + (18n− 212)r2 + (8n− 113)r3 + (8n+ 884)r4 + (10n− 727)r5+

(10n− 128)r6 + 227r7,

m =(30n− 5)t+ (23n+ 16)t2 + (25n+ 2)t3 + (30n− 26)t4 + (8n+ 2)t5+

(28n+ 11)t6 + t7,

m =(81a+ 1)u+ (351a− 1)u2 + (193a− 2)u3 + (361a+ 2)u4+

(158a+ 1)u5 + (8a)u6,

m =(5313b)v + (3244b)v2 + (8420b+ 1)v3 + (1362b)v4 + (91b)v5 + (2b)v6, and

m =(839133c+ 1)w + (291717c)w2 + (45506c)w3 + (3194c)w4 + (97c)w5 + (c)w6.
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Corollary 5. With the same hypotheses as Lemma 5, except that n ≥ 853746 is

an integer and 4096 | n, we have sp(m) = 3p− 2, sq(m) = 3q − 2, sr(m) = 3r − 2,

st(m) = 4t− 3, su(m) = 2u− 1, sv(m) = v, and sw(m) = w.

Theorem 5. The Prime k-tuples Conjecture implies that there are infinitely many

Carmichael numbers of degree 4 with exactly seven prime factors.

Perhaps one can continue these arguments to show that the Prime k-tuples Con-

jecture implies that there are infinitely many Carmichael numbers of each degree

greater than or equal to 1.
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