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1 Introduction

This algorithm is called SQUFOF, which stands for Square Form Factor-
ization. It is based upon the theory of real quadratic fields, including the
concept of the infrastructure of such fields [12]. The final sentence in [12]
alludes to such an algorithm but it was not developed at that time.

In January 1975, I gave a talk [14] entitled, “Analysis and Improvement
of the Continued Fraction Method of Factorization.” The powerful method
referred to is that of Brillhart and Morrison which was just about to appear
in the Lehmer Jubilee issue of Math. Comp. [8]. We abbreviate their algo-
rithm BRIMOR. Its appearance in that issue was particularly appropriate
since it is based upon the much earlier, pre-computer method of Lehmer
and Powers [6]. In this introduction, I will give

1. A brief sketch of BRIMOR,

2. The three salient points in my critique of BRIMOR [14],

3. An account of how the development of SQUFOF was resumed, after
a six-month delay, because of the pathological response the BRIMOR
made when it was used to factor the composite

(1) N0 = 260 + 230 − 1.

This last episode, with its mildly comic aspects, then leads us directly
to the algorithm SQUFOF for factoring integers N .
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Before I launch into this developmental account of SQUFOF, it seems
desirable to list its several characteristics as follows:

A. It is an O(N1/4) algorithm.

B. Essentially all numbers in the arithmetic are half-precision, specifi-
cally, they are < 2

√
N .

C. It has a very simple, short program.

D. Very little memory is needed.

E. Its theory is based upon that of the periods of reduced binary quad-
ratic forms of discriminant 4N .

After we have SQUFOF before us, it will be appropriate to return to
these five characteristics and give them a detailed commentary.

Briefly, this is BRIMOR. N is a large odd number to be factored. Its
square root is expanded in a regular continued fraction:

(2)
√

N = q0 +
1

q1+

1

q2+

1

q3+
· · · .

The qn are positive integers with

(3) q0 = [
√

N ],

and subsequent qn, together with the associated integers Pn and Qn, are
evaluated by the starting values:

(4) Q0 = 1, P1 = q0, Q1 = N − q2
0

and the recurrences

(5) qn =

[

q0 + Pn

Qn

]

,

(6) Pn+1 = qnQn − Pn, Qn+1 = Qn−1 + qn(Pn − Pn+1).

These formulas are well-known, but since we need the same Pn and Qn in
SQUFOF, we record them at once and let them serve both purposes.

Also well-known are An and Bn with

(7) A0 = 1, B0 = 0, A1 = q0, B1 = 1,
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and the recurrences

(8) An+1 = Anqn + An−1, Bn+1 = Bnqn + Bn−1.

The key relationship for BRIMOR is

(9) (−1)nQn = A2
n −B2

nN.

The An and Bn grow exponentially; we reduce An modulo N :

(10) An ≡ An (mod N),

ignore the Bn, and have

(11) (−1)nQn ≡ A
2

n (mod N).

Since

(12) Pn, Qn < 2
√

N, An < N,

the former are half-precision numbers while the latter are full-precision.
With a fixed set of trial-divisor primes p1 = 2, p2 = 3, . . . , pk, (k depen-

dent on N), BRIMOR factors those Qn that it can, discards the others,
and saves An for each factored Qn. The index is increased until BRIMOR
can assemble subsets of these Qn into products that are perfect squares:

(13)
∏

some n

(−1)nQn = Q2,

and if

(14) A =
∏

same n

An,

we have

(15) N |Q2 −A2 = (Q−A)(Q + A).

If

(16) N 6 |(Q−A) and N 6 |(Q + A),

we call Q2 a proper square and the GCD

(17) D = (Q−A, N)
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is a proper divisor of N . If (16) is not satisfied, Q2 is an improper square
and BRIMOR assembles another square and tries again. If the reader wants
a fuller account of BRIMOR, then he should read [8].

For that which follows, we single out four features of BRIMOR: two are
“peculiar” and two are “disappointing.”

(i) It seems peculiar that while most of the arithmetic is half-precision
since it involves the Pn and Qn in (12), that which involves An is full-
precision or multi-precision. Further, these larger numbers An must also
be stored.

(ii) Secondly, the condition (16) as to whether a particular Q2 is proper
or not remains completely mysterious here and is only determined after
the fact by computing the D in (17). The authors of BRIMOR [8] are
pragmatic. Inasmuch as the whole thing is automatic, it does no harm if
the machine finds a few improper squares prior to a proper square. In fact,
it alone might even know that it did so. The factor arrives; that is what
we want. Still, a mathematician wants to know what is happening. And
if one encounters a very long sequence of improper squares, he may even
need to know.

BRIMOR is a powerful algorithm for factoring large N—say, those
above 40 decimals—and if N = f1f2 with both factors large, it is the
fastest algorithm known at this time. Nonetheless, two principal features
are disappointing. (iii) Most of the time is spent in trial-and-error division
of the Qn by the pi. This does seem rather crude in contrast with the
sophistication of the rest of the algorithm. (iv) Secondly, much memory
is needed to store the large parity matrix ani mod 2, which records the
parity of the exponent of each pani

i that divides each of the factored Qn.
These are needed in assembling the Qn into squares Q2. Obviously, space
is money, and much space makes it harder for the routine to squeeze onto
a time-sharing computer.

These four features of BRIMOR set the stage for my talk [14] mentioned
above. In [14] we use the very same Pn and Qn that are in BRIMOR, but
we interpret them as the coefficients of binary quadratic forms, and do
not use the language of continued fractions. This change of view makes
the theory of real quadratic fields available to us, both the classical theory
and the modern additions, and this gives us some new insights that do not
appear when we confine ourselves to the theory of continued fractions. The
two main conclusions that [14] thereby obtained concern the two “peculiar”
features given above:

1.) The An are not needed at all. We need not compute them (8),
reduce them (10), store them, multiply them (14), or use them in (17).
This seems very surprising, since (15) is the heart of BRIMOR, and a Q
without an A in (15) looks like a question without an answer. Nonetheless,

4



it is true, the An are not needed.
2.) We can predict a priori whether a given square (13) is proper or

not, and if the number of factors on the left of (13) is not too large, it is
quite feasible to do so.

So the alternative viewpoint in [14] satisfactorily clarifies both of the
peculiar features in BRIMOR. In the title of [14] appears the word “Im-
provement.” If we need not compute the An, and can bypass the improper
squares that fail (16), there is some saving in time, and since the full-
precision An need not be stored, there is also saving in memory. (Of course,
other operations are needed to take their place, and these would have to
be taken into account.) But the practitioners of BRIMOR said that these
savings would be relatively small since

(a) Most of the time is taken in factoring the Qn by the pi, and
(b) Most of the space is taken by the parity matrix ani mod 2, and there-

fore the proposed, potential savings in time and space would be relatively
small.

Thus, my proposed “improvements,” based upon an analysis of the two
peculiar features of BRIMOR, were frustrated by the two disappointing
features of BRIMOR. I had not proposed, in [14], to alter these two latter,
and there they stood, like twin dragons, guarding the gate and resistant to
progress.

So [14] has not yet been published, the “improvements” it suggested
have not been programmed, and some months went by. Now we come to
the funny part.

A man, name unknown to me, came up with the following implau-
sible conjecture: If Mp1

and Mp2
are successive Mersenne primes, their

arithmetic mean is also a prime. While that is true for (7 + 31)/2 = 19,
(31 + 127)/2 = 79, etc., Brillhart and friends examined the 19-digit N0 =
(M31 + M61)/2 = 260 + 230 − 1, given in (1), and found that it failed a
Fermat test since

13N0−1 6≡ 1 (mod N0).

Therefore, it is composite, but when they tried to factor N0 by BRIMOR it
gave them 114 successive improper squares. The procedure in such a case
is to halt execution and begin again with kN0 for some small multiplier k.
No further pathology was encountered and they did factor N0.

Let us define practical failure and absolute failure. In a case such as the
foregoing, there is no point in continuing execution since there may well be
thousands of improper squares still to come, and it is faster to simply restart
with kN . When there is such an excessive number of improper squares, we
say that we have a practical failure. If the period of the continued fraction
is very short, say, for such N as N = M 2 + 1, there may be no proper
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square at all. We call that an absolute failure, and the remedy is the same:
restart with kN . SQUFOF also has such absolute failures but it does not
have practical failures.

Brillhart asked me if my [14] could explain why N0 causes a practical
failure and whether, perhaps, it could even be an absolute failure. The
answer to the first question is, “yes,” that is easy to understand. We
have an early Qn that is exceptionally small (relative to

√
N). Specifically,

Q2 = 5, and, as will be seen below, this leads to an immense number of
improper squares. In fact, any

(18) N = M2 + M − 1

with a very large M will behave the same way; the specific M = 230 is
not the problem. The quadratic has the discriminant 5 and that is where
Q2 = 5 is coming from. More generally, any

(19) N = M2 + a or N = M2 + M + a

with M large and the discriminant small will behave the same way. Luckily,
most N are not of this type—nonetheless, such numbers are often of specific
interest to number-theorists.

Concerning Brillhart’s second question, I felt that the answer would be,
“no”—N0 does not lead to absolute failure, but to prove this I had only a
hand-held HP-65 with its very small memory (100 steps in the program).
Obviously, one cannot put the huge BRIMOR on such a machine. But one
can put on the simple algorithm in (4)–(6) for computing the Qn and Pn,
and simply wait for a Qn that is a proper square. The first such is

(20) Q162146 = 281852.

By the criterion alluded to above, which simplifies greatly when the square
in (13) contains only one factor, we know, at once, that Q162146 is a proper
square square, and that earlier square Qn that had appeared, including

(21)
Q50194 = 280632, Q63516 = 220652,
Q69730 = 289192, Q149926 = 101312,

were improper squares. No An were computed, but, as stated above, they
are not needed. So, from (20), and without the corresponding A162146, we
do factor the 19-digit N0 as

(22) N0 = 139001459 · 8294312261

even though the HP-65 only computes with 10-digit numbers. The two
factors in (22) are prime and further details are given below after we have
SQUFOF before us.
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Note the course of events: the twin dragons could not enter the HP-
65 since they were too large. In their absence, the elimination of the An,
and the determination of the propriety of the Q’s, are no longer marginal
possibilities. Now they come to the front as essential features of the new
algorithm.

Obviously, we must go to larger indices n to find (−1)nQn that are
already squares rather than those of the Qn in (13) that are assembled
into squares. But it might be said (qualitatively) that we can afford to do
so, since we merely compute the Qn and Pn by the very simple (4)–(6),
and completely omit all of the complex logistic in BRIMOR. The crucial
quantitative questions are these:

α) What is the mean index-difference ∆n between successive square
(−1)nQn?

β) What is the probability P that these squares are proper squares?

We shall see that if N has 1 + k distinct prime factors, then

(23) ∆n = 1.77491
N1/4

2k

is the answer to α) where the constant is

(24) 1.77491 . . . = (log 8)
2 +
√

2

4
= 3(log 2)

2 +
√

2

4
.

The answer to β) is

(25) P =
2k − 1

2k
,

so that the probable ∆n between proper squares is

(26) ∆n = 1.77491
N1/4

2k − 1
.

This clearly relates to the first characteristic of SQUFOF listed above,
namely:

A.) It is an O(N1/4) algorithm.
This shows that SQUFOF is a practical algorithm; we will return to all

five characteristics later.
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2 SQUFOF without a list

SQUFOF has many possible variants, the one to be selected depends largely
on the size of N and the size of the computer available. For simplicity, I
will give the basic algorithm first, and defer the variants, such as the “fast
return,” “fast list-test,” “odd discriminant,” etc., until later.

The Pn and Qn generated by (4)–(6) have the invariant

(27) N = P 2
n + Qn−1Qn (all n).

Therefore, the quadratic form

(28) Fn = (−1)n−1Qn−1x
2 + 2Pnxy + (−1)nQny2

has the discriminant 4N . We abbreviate Fn by writing its coefficients in
Gauss’s notation with the factor 2 suppressed:

(29) Fn =
(

(−1)n−1Qn−1, Pn, (−1)nQn

)

.

So we have

F1 = (Q0, P1,−Q1), F2 = (−Q1, P2, Q2),

F3 = (Q2, P3,−Q3), F4 = (−Q3, P4, Q4), etc.

The Fn constitute the principal period of reduced forms of discriminant 4N ,
namely, from (4), those generated by

(30) F1 = (1, q0, q
2
0 −N).

Fn is periodic and for some even π, we would have

(31) Fπ = (q2
0 −N, q0, 1),

the reversal of F1. Then

Fπ+1 = (1, q0, q
2
0 −N) = F1, etc.

It is convenient to rename Fπ as F0 and begin the period with F0, not F1.
To save space and time, consider the forms strung together in this fash-

ion:
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−Q1

P1 ← F0

1
P1 ← F1

−Q1

P2 ← F2

Q2

P3 ← F3

−Q3

...
A B C

and store the successive forms in only three registers: A, B, C. Begin
with F0 in (A, B, C). Compute P1 and −Q1 for F1 and store them in B,
A, leaving C intact. Compute P2 and Q2 for F2 and store them in B, C,
leaving A intact, etc.

We are looking for a square form . This is a form Fn with

(32) (−1)nQn = S2,

a perfect square. The index n must be even. The An have not been
computed and are not needed since, by the reverse sequence to be defined
presently, Fn leads us to a positive factor of N :

(33) 0 < f < N, f |N.

The probability that f is a proper factor, that is, that f > 1, is given in
(25).

In Section 4, we define the list (in two different variants). Then we will
have:

f is a proper factor,
S2 is a proper square,

if S is not in the list. We are deliberately postponing the list for clarity
of exposition, and because SQUFOF without a list does have utility, and is
an even simpler algorithm.

So suppose

(34) F = Fn = (−Q, P, S2)

and consider the form

(35) F−1/2 = (−S, P, SQ).
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We explain the notation later. It has the same discriminant but may not
be reduced. We reduce it by

(36) R0 = P + S

[

q0 − P

S

]

,

(37) S−1 = S, S0 = (N −R2
0)/S,

(38) G0 = (−S−1, R0, S0).

Then G0 is a reduced form equivalent to F−1/2. It generates the reverse
sequence:

(39) Gn = ((−1)m−1Sm−1, Rm, (−1)mSm)

by exactly the same formulas:

(5a) sm =

[

q0 + Rm

Sm

]

(6a) Rm+1 = smSm −Rm, Sm+1 = Sm−1 + sm(Rm −Rm+1).

In the reverse sequence, we are looking for a symmetry point, given by
the condition

(40) Rm = Rm+1.

We then have

−Sm−1 Sm−1

Rm Rm

Sm or −Sm

Rm Rm

−Sm−1 = −Sm+1 Sm+1 = Sm−1

The condition (40) will be met for an index m approximately equal to n/2
for the n in (34) if n is sufficiently large. The reader need not worry about
the vagueness of this

(41) m ≈ n/2

since we are not using it operationally to find (40). Further, we later have
a measure called the infrastructure distance for which the length of Sm−S0

is exactly 1/2 of the length of Qn −Q0.
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By (6a), Rm = smSm/2, and the invariant N = R2
m +Sm−1Sm gives us

(42) N = Sm

(

Sm−1 + Sm
s2

m

4

)

.

If Sm is odd, it is the asserted factor f . If Sm is even, Sm/2 is the asserted
factor f . See: no An!

Now consider an example.

N1 = 13290059, q0 =
[√

N
]

= 3645,

F0 = (−4034, 3645, 1),

F = F52 = (−5107, 3628, 52)

is the first square form. So

F−1/2 = (−5, 3628, 25535)

and G0 = (−5, 3643, 3722).

Then G25 = (571, 3119,−6238),

G26 = (−6238, 3119, 571),

m = 25 ≈ 1

2
52, R25 = R26 = 3119, f = 3119 and

N1 = 3119 · 4261.

Since the factors are prime, k = 1. The first square, Q52, is already proper,
and by (25) and (26) we may characterize N1 as a slightly lucky example.

A digression: N1 is an appropriate first example since it is given in both
[8] and [6]. Further [6], it is a factor of the 55-th term of the aliquot series
for 276. Since [9], p. 218, aliquot series usually grow fairly rapidly, they
produce larger and larger N and require stronger and stronger factorization
methods. When Henri Cohen was still a microbiologist in Berkeley, he
told me that he had used up much machine time in computing amicable
numbers and in extending [1] the notorious aliquot series for 276. I told
him to show it to Lehmer. The recent developments in factorization were
just beginning and I knew that Lehmer could not resist extending 276
still further. Richard Guy soon organized an international factorization
cartel and all of my new methods, including SQUFOF and my earlier [11]
CLASNO, were extensively exercised in following this and that aliquot
sequence into the wild blue yonder, [4], [3].
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Now consider N2 = 42854447. We have F0 = (−4331, 6546, 1), F316 =
(−6022, 5093, 532). Absent a list, we do not know if 532 is proper, but its
reverse sequence gives us f = 1 and so we find, after the fact, that it is
not. All versions of SQUFOF save the last square form and q0, and so we
can return to Fn and continue. We find, close by,

F332 = (−3382, 6515, 112)

but its reverse sequence also gives f = 1 and so Q332 is also improper.
Then

F380 = (−11134, 6401, 132),

G0 = (−13, 6554, 2347), G172 = (−2633, 4423, 8846), R172 = R173 = 4423,
f = 4423, and N2 = 4423 ·9689. The reader may recognize these factors as
primes and so k = 1 again and, by (26), N2 is a somewhat unlucky example.
In the next section, we will return to its improper Q316 and Q332.

When I gave my HP-67 SQUFOF to Lenstra his first example was

N3 = 11213 · 19937 = 223553581,

and he was surprised to find that f = 11213 came back almost at once,
(namely, n = 6, m = 2.) He assumed that there must be a trick. In fact,
since he had just multiplied the two factors, the multiplier 19937 would
still be in the register called LASTX. If we prefaced SQUFOF with a few
steps that examined LASTX, this cofactor 19937, and then f , would have
been found at once. However, there was no such preface; N3 is simply a
lucky example. We will return to luck and to other interesting N after we
have developed the theory.

3 The Ambiguous Periods and their Infras-

tructure

We return to N2 and determine why Q332 and Q316 were improper. From
F332 = F above we have

G0 = (−11, 6537, 11098).

Then G152 = (−4331, 6546, 1), G153 = (1, 6546,−4331), m = 152, and
S152 = 1 = f . But G153 is merely F0 read backwards. Now the recursions
(5), (6) or (5a), (6a) are reversible and may be used for n (or m) either
increasing or decreasing. It follows that G0 is merely F153 read backwards,
and in this Gm sequence, we are merely retracing our steps to the symmetry
point S152 = Q0 = 1. We verify that in Table I which gives some of the
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Table I. Principal period Fn for N2

n Fn dn

(−1)n−1Qn−1 Pn (−1)nQn

0 −4331 6546 1 0.0000000
1 1 6546 −4331 5.2930050
2 −4331 6447 298 7.7298729
3 298 6367 −7771 9.8682646
4 −7771 1404 5261 10.0861182
5 5261 3857 −5318 10.7625349
6 −5318 1461 7657 10.9895336
7 7657 6196 −583 12.7864371

73 3146 5585 −3707 95.7405234
142 −5507 6524 53 182.3677642
153 11098 6537 −11 195.1542013
252 −12731 6521 26 295.8354933
316 −6022 5093 532 364.7355284
325 1682 6471 −583 377.5219655
332 −3382 6515 112 390.3084026
364 −1279 6525 218 425.2186554
380 −11134 6401 132 446.5023708
405 2113 6513 −206 471.3639976
443 5266 4423 −4423 519.0866787
444 −4423 4423 5266 519.9077373
481 5137 6465 −206 566.8093597
506 −7942 6443 132 591.6709865
634 −7711 6531 26 742.3378641
886 −4331 6546 1 1038.1733570

forms in the principal period: those for n = 0 through 7, followed by
others of interest. The period is π = 886, and, since F886 = F0 is F1 read
backwards, we have a second symmetry point at n = 443 = 886/2 where
we find Q443 = 4423.

For F = F332, the operation F−1/2 jumps backwards “about half-way”
to F153 and turns around to become G0. The reader may protest, as in
(41), that

153/332≈ 1/2

is not very accurate, and so we direct his attention to the infrastructure
distances dn between Q0 and Qn that are listed in Table I. Here,

(43) d153 = d332/2
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is exact.
We define

(44) dn = log
An + Bn

√
N√

Qn

in terms of the An and Bn in (7), (8), and we note, from (9), that

(45) (−1)nQn = Norm
(

An + Bn

√
N

)

.

Further, since Qπ is the first occurrence of (−1)nQn = +1 after Q0, we
have

(46) dπ = R = log ε,

where ε is the fundamental unit of norm +1. Thus, the (narrow) regulator
R of Q(

√
N) equals the distance dπ, and dn is a useful generalization of

R. In all versions of SQUFOF here, we do not compute An or dn. We
use them here merely to illustrate the infrastructure of the quadratic field
Q(
√

N). See my [12] and Lenstra’s recent [7].
In Table I, besides (43), note

d316 = 2d142, d506 = 2d252.

(47) R = dn + dπ−n, e.g., for n = 252, 380, 405, 443,

d7 = d153 − d142, d325 = d153 + d142, d380 = 2d634 −R.

Finally, what do you make of this:

(48) d73 ≈ 2d481 −R (not quite equal),

3146x2 + 2 · 5585xy − 3707y2 = 1032 for x = y = 1?

We will return to (47) and (48).
The first improper square for N2 behaves a little differently. For F316,

we have
G0 = (−53, 6524, 5507)

G141 = (4331, 6546,−1), G142 = (−1, 6546, 4331). These forms are not in
Fn, since Fn is in the principal genus and therefore

((−1)nQn|p) = +1

for p = 4423, 9689, and for all n. But (−1|4423) = −1 and G141 cannot be
an Fn.
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Table II. Nonprincipal period F n for N2

n F n dn

(−1)n−1Qn−1 P n (−1)nQn

0 −2633 4423 8846 0.0000000
1 8846 4423 −2633 0.8210586
2 −2633 6109 2102 2.5303631
3 2102 6503 −269 5.3574448

18 −1402 6531 143 28.0969841
93 3718 6443 −361 124.9868675

173 2347 6544 −13 223.2511854
421 8711 6545 −2 519.0866787
422 −2 6545 8711 523.6836397
842 −2633 4423 8846 1038.173357

If we change the signs of both end-coefficients in Table I, we obtain a
second period of reduced forms for Q(

√
N2). Let us write it as −Fn, and

then our new G0 is merely −F142 read backwards.
Finally, the proper F380 led us to a period of reduced forms that is

neither Fn nor −Fn. Call it Fn and write Qn, P n, dn. Now examine Table
II.

For the proper F380, we see that G0 is F 173 read backwards. Since the
symmetry points of ±Fn are ±1 and ∓4423, obviously the present +8846
and −2 lie elsewhere. It is also clear that a fourth period −F n will have
−8846 and +2. The period now, π = 842, is a little different than π = 886,
but dπ = dπ = R remains the same.

Note that

(49) d173 = d380/2,

and, for a later option called “fast return,” note that

(50) d18 = (d380 − d332)/2,

so that a

(51) G0 = (−143, 6531, 1402),

which we construct later, is very close to the symmetry point −8846 in
−Fn. We return to dn later.

The four periods ±Fn and ±F n are called the ambiguous periods A
by Gauss. They are those with symmetry points, at which we find two
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successive forms
(A, B, C), (C, B, A).

Any two forms (A, B, C) and (C, B, A) are inverses under Gauss’s operation
composition, c.f. Appendix 1 of [11], and, in any A, if an (A, B, C) is in A,
so is its inverse. The name for the A comes from Latin meaning “facing (or
going) both ways.” Under composition, the product of any two forms in one
A is a form in the principal period Fn, when it is reduced. In the example
above, the four A, including Fn itself, are the four square-roots of Fn. The
operation F−1/2 in (35), when applied to a square-form F , therefore gives
us a G0 which is the inverse square-root of F under composition. It will
take us into some A, possibly F itself. We now see that this quadratic
form formulation is much richer than the continued-fraction formulation
described above for BRIMOR. In that algorithm, we never leave Fn, and,
if N is large, we almost never even reach the second symmetry point in Fn—
that unequal to the Q0 = 1 with which we start. So Q0 = 1 is BRIMOR’s
only symmetry point, and SQUFOF’s method of avoiding the An is not
possible in BRIMOR.

In SQUFOF, we work only in the A (unlike CLASNO [11] where we
may encounter any equivalence class). Nonetheless, let us round out our
N2 picture as follows: From Table II we construct

F = −F 93 = (−3718, 6443, 361)

which is a square-form not in Fn. This is possible since −Fn, like Fn, is
in the principal genus mentioned above. We apply (35) and (38) to F and
get

H0 = (−19, 6538, 5737),

it being convenient here to write H0 instead of G0. Then

H878 = H0 at the same distance R

but Hm never encounters a symmetry point, since Hm is not an A. In
particular, the inverse of H0, namely H−1

0 = (5737, 6538,−19) and then
H−1

1 = (−19, 6534, 8489), . . . are not in Hm. Likewise, −Hm and −H−1
m

give distinct, nonambiguous periods. So now we have 8 periods of reduced
forms:

±Fn, ±F n, ±Hm, ±H−1
m .

In SQUFOF, we allow any odd N with 1 + k distinct prime divisors for
k > 0. But the theory is simplest if

(52) N ≡ −1 (mod 4) and N square-free
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since our discriminant 4N is then a fundamental discriminant, and our
periods map directly into the equivalence classes of the real quadratic field
Q(
√

N). In such a field the rational primes fall into three sets p, q and r,
according as

(4N |p) = +1, (4N |q) = −1), or (4N |r) = 0.

Then, the Kronecker symbol (4N |n) gives the well-known

(53) L(1, χ) =

∞
∑

n=1

(4N |n)
1

n
=

hR

2
√

N
,

where h is the narrow class number.
For simplicity, in the discussion that follows, we largely confine ourselves

to N that satisfy (52).
Our N2 satisfies (52) and has the ramified primes:

r = 2, 4423, 9689 (only),

the splitting primes:

p = 11, 13, 19, 29, 31, 37, 53, . . .

and inert primes:
q = 3, 5, 7, 17, 23, 41, 43, . . . .

Then

L(1, χ) = 1− 1

3
− 1

5
− 1

7
+ 1

9
+ 1

11
+ 1

13
+ 1

15
− · · ·

= 3

4
· 5

6
· 7

8
· 11

10
· 13

12
· 17

18
· 19

18
· · · ·

= 0.63435435 . . . =
hR

2
√

N2

,

and our R = 1038.173357 gives h = 8. Thus, our 8 periods contain all of
the periods of reduced forms for N2.

There will be 21+k A and therefore 22+k symmetry points ±S. The
factor f given by the reverse sequences Gm will be improper at only four
of these points, namely, at

±S = ±1,±2,

and we must design the list to avoid these four. For all other symmetry
points, f is proper, and so the ratio

P =
Proper symmetry points

All symmetry points
=

2k+2 − 4

2k+2
=

2k − 1

2k
,
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as in (25).
The Qn in Fn, and likewise the end-coefficients in any of the periods,

are divisible by p primes (to any power) but are not divisible by any q
primes. If (52) holds, the r primes can divide to the first power only. Thus
in Table I,

Q6 = 13 · 19 · 31, Q7 = Q325 = 11 · 53, Q252 = 2 · 13, Q142 = 53.

A second way in which SQUFOF theory is richer than BRIMOR’s is this:
The latter regards the p = 13 in Q6 and that in Q252 as the same prime.
Similarly, the p = 53 in Q7, Q325 and Q142. But from the point of view
of Q(

√
N), or that of composition, p is a splitting prime and there are two

different prime ideals of norm p. If p|Qn, (27) gives us

(54) P 2
n ≡ N (mod p).

We reduce Pn as

(55) Pn ≡ ±ap (mod p) with (0 < ap < p/2).

We can now distinguish between the two different p according as

(56) Pn ≡ +ap or Pn ≡ −ap (mod p).

Let us adopt the convention that the prime be written as p in the first case
and p in the second case. For example, since

1461 ≡ 5 and 6521 ≡ −5 (mod 13),

13 divides Q6 in Table I while 13 divides Q252. The r primes do not split;
there is only one, and we write it r. The factorizations above now become
(57)
Q6 = 13·19·31, Q7 = 11·53, Q325 = 11·53, Q252 = 2·13, Q142 = 53.

BRIMOR makes no distinction between p and p and would compute,
e.g.,

(−Q7) · (−Q325) = 112 · 532,

Q6 ·Q252 = 2 · 132 · 19 · 31.

But the prime ideals 53 and 53, etc., are not equal, and in the composition
of forms, which is closely related to ideal multiplication, we have, instead,
the rules

(58) p · p = p2, p · p = p2, but p · p = 1.
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Similarly, if (52) holds,

(59) r · r = 1.

Thus, if we compose F7 and F325, from (57), and prior to any needed
reduction, we would obtain the form

(60) (−Q, P, 112)

for some P ≡ +3, not −3 (mod 11). If (60) is reduced, we must have
P = 6515 and therefore Q = 3382. This is, in fact, F332. We may write

(61) F7 · F325 = F332,

and we note, from (47) and (43), that

(62) d7 + d325 = d332.

From (45) we had

−583 = Norm
(

A7 + B7

√
N

)

,

−583 = Norm
(

A325 + B325

√
N

)

,

112 = Norm
(

A332 + B332

√
N

)

.

The cancellation 53 · 53 = 1 in composition is reflected in the product of
principal ideals:

(63)
(

A7 + B7

√
N

)(

A325 + B325

√
N

)

= 53
(

A332 + B332

√
N

)

.

Therefore,

A7 + B7

√
N√

583
· A325 + B325

√
N√

583
=

A332 + B332

√
N√

121
,

which, by (44), gives (62).
Let any two principal forms:

Fl = (al, bl, cl), Fm = (am, bm, cm),

be composed and give a form

(64) F = (a, b, c)
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where c, as in (60), is the product of the p’s, p’s, and r’s in cl and cm

according to the rules (58) and (59). There are three cases. If

(65) |c| <
√

N,

there will be a reduced form in the principal period

Fn = (an, bn, cn)

with cn = c. In this case, as in (61), we may write

Fl · Fm = Fn

and have dl + dm = dn. All the examples in (43) and (47) are in this case
since √

N = 6546.33 . . . .

If

(66) 2
√

N < |c|,

there is no such Fn, and when (64) is reduced to, say, Fk we have instead

(66a) dl + dm = dk + a small, computable correction.

We will show presently how to compute this correction. If

(67)
√

N < |c| < 2
√

N,

we have a no-man’s land: there may be such an Fn, or there may not be
such an Fn. If there is, then dl + dm = dn, as before. As an example, let
Fl = Fm = F481 in Table I. Then

6546.33 < c = 1032 < 13092.66.

If there were a reduced form:

(67a) Fn = (a, b, 10609),

it would be at dn = 2(566.8093597)− R = 95.4453620. There is no such
reduced form. When reduced, we obtain F73 instead very close to this
distance. See (48).

Let us contrast two cases involving F6 that are not shown in Table I.
By (57),

F6 · F252 = (−Q, P, 2 · 19 · 31)
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with P ≡ −2 (mod 19),≡ +4 (mod 31). Since 2 · 19 · 31 = 1178 <
√

N ,
(65) holds and we predict that

Fn = (−4031, 6173, 1878)

will be in the principal period at dn = d6+d252. In fact, one finds F260 = Fn

at this distance. Now try

(68) F6 · F506 = (−Q, P, 13 · 19 · 31)

with P ≡ −5 (mod 13),≡ −2 (mod 19),≡ +4 (mod 31). Here, c = 7657 =
Q6, but with 13 replaced by 13. Now, (67) holds, and there may, or may
not, be a principal form (68) at dn = d6 + d506. This time,

F6 · F506 = Fn = (−3694, 3817, 7657)

is found for n = 514 at this distance.
We note, in passing, that we will deduce (23) from the probability

distribution that (64) will appear as a reduced form Fn, with (−1)nQn = c,
at the distance dn = dl + dm. This probability is 1 if (65) holds, 0 if (66)
holds, and decreases monotonically from 1 to 0 if (67) holds. A priori,
our last c = 7657 was more likely to appear than was the c = 1032 above.
(Nonetheless, one easily notes the much larger |c| = 12731, etc., in Table
I.)

From Table I, the reader can now make many predictions. Thus: At
what distances dn will one find

(−1)nQn = −113 or 13 · 109 or − 2 · 11 · 149?

Or, again, although F72 is not shown in Table I, predict d72 = 94.4929093.
(Hint: Use (6) to determine whether 11 or 11 and 13 or 13 divides Q72.)

Let us now contrast these predictions with the continued fraction theory
in BRIMOR. There are a few N , such as N = M 2 + 1, where the pattern
of the Qn is obvious. There are a few others [10], [13], such as N = Sk =
(2k + 3)2 − 8, where the pattern is complicated, but still discernible. But
for most large N , the Qn appear to be almost random and completely
unpredictable. Similarly, it is very mysterious in BRIMOR whether a Q2

is proper or not. All this occurs if one does not distinguish p and p.
But with this distinction, we see that there is a great deal of predictable

inner structure within the principal period. It also occurs in the other
periods and is called the infrastructure in [12]. We will use it to design the
list, and later the fast return for SQUFOF.

Since the infrastructure is still relatively new, it should be informative
and interesting to briefly mention four background topics.
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1. Lagrange (long before Gauss) gave a complete theory of the reduction
and equivalence of binary quadratic forms. But he regarded Ax2 + Bxy +
Cy2 and Ax2−Bxy+Cy2 as equivalent since they represent the same num-
bers. In contrast, Gauss called them improperly equivalent, not properly
equivalent (unless they are ambiguous). This distinction between proper
and improper equivalence seems almost trifling, or pedantic, when one first
reads it in, say, Dickson’s book [2]. Yet, it is all-important. Without this
distinction, the class number comes out wrong, composition collapses, the
class group disappears, and so do equations like (53). The distinction be-
tween p and p above is very closely related, and we see, again, that without
it the whole structure largely collapses.

2. In my original talk [12], I defined the distance by

(69) dn = log
(

An + Bn

√
N

)

instead of (44), and used a “ramification factor” and a “reduction factor” to
correct, when needed, such relations as those in (47) and (66a). Since An +
Bn

√
N grows exponentially with n, while

√
Qn is bounded, the difference

between (69) and (44) is relatively small when n is large; e.g., in Table I
we would have d443 = 523.28 . . . instead of 519.09 . . .. The definition (69)
is workable, but that in (44) is simpler and more elegant. For something
we call “distance,” we would like the distance to the midpoint, such as d443

above, to equal R/2. But it does not with (69). So, shortly after [12], I
changed the definition to that in (44) but I did not publish it.

Lenstra, independently therefore, made essentially the same change [7].
(Originally, he differed by a factor of 2.) Simultaneously, he considerably
simplified the treatment that I had given [12] for the reduction factor. He
gives (in our notation)

(70) dn − dn−1 =
1

2
log

∣

∣

∣

∣

∣

√
N + Pn√
N − Pn

∣

∣

∣

∣

∣

whether Fn is reduced or not. That (70) is consistent with (44) follows
from the identities

An + Bn

√
N√

Qn
=

An−1 + Bn−1

√
N

√

Qn−1

·
√

N + Pn
√

QnQn−1

and
(
√

N + Pn)2

QnQn−1

=

√
N + Pn√
N + Pn

.
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We illustrate (70) with two examples. We gave a hint above to be used in
computing d72. But (70) gives us

d72 = d73 −
1

2
log

√
N + 5585√
N − 5585

at once. Next, return to (48), (66a) and (67a). By composition, the latter
is

(71) F481 · F481 = (3146, 8731, 10609)

and is not reduced. We reduce it by, first, (10609,−8731, 3146) and then
F73 in Table I. Then, one verifies that

2d481 −R +
1

2
log

∣

∣

∣

∣

∣

√
N − 8731√
N + 8731

∣

∣

∣

∣

∣

+
1

2
log

∣

∣

∣

∣

∣

√
N + 5585√
N − 5585

∣

∣

∣

∣

∣

= d73.

The fact that 2d481−R differs from d73 by only 0.295 . . . is reflected in the
fact that 10609 is represented by F73 with the small variables x = y = 1 in
(48).

3. With some exceptions, such as the aforementioned N = M 2 + 1
or N = Sk, the regular continued fractions for most large

√
N with large

periods π tend to approximately obey the known probabilistic laws, c.f.
[5]. These are the laws of Khintchine, Gauss-Kuzmin and Lévy. In our
notation, the latter approximation can be written as

log
(

An + Bn

√
N

)

≈ π2

12 log 2
n,

and therefore, for large n,

(72) dn ≈
π2

12 log 2
n.

Thus, the approximation
153/332≈ 1/2

that we mentioned prior to (43), and its error, is a reflection of the approx-
imation, and error, in (72). For large n, we will usually find that (72) is
roughly correct. For example, our N2 has eight periods: 2 with π = 886, 2
with π = 842, and 4 with π = 878. The average is 871, and we do find that

871 · π2

12 log 2
= 1033.5 ≈ R = 1038.2.
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We may call the distance in (70) the length of the form Fn. Some forms
are “long” and some are “short.” The mean length is

1.18657 =
π2

12 log 2

by (72). If Qn−1 or Qn is very small relative to
√

N , then Fn must be long.
4. The key operation in SQUFOF is (35), wherein we compute an

(inverse) square-root of Fn. This is trivially accomplished since S2 is a
perfect square. Gauss proved that any form F in the principal genus has a
square-root f such that

f · f (under composition and reduction) = F.

His constructive proof gives a remarkable algorithm for computing f . (This
is simplified in my algorithm GATESR [13]. But GATESR is of no use to
us here since it requires the complete factorization of N , and, if we knew
that, we obviously would not need SQUFOF.)

But the S2 in (34) is the value of a form (28) with x = 0 and y = 1. If,
for any Fn in (28), its value is a square for certain values of x and y, then
one can easily construct an equivalent form (probably not reduced) that
is a square-form (34). For example, in our much-mentioned F73 in (48),
x = y = 1 gives S2 = 1032, and F73 is equivalent to (71). Then

(73) F−1/2 → G0 = (−103, 6465, 10274)

is −F 32 read backwards. F 32 is not shown in Table II but would be at
d32 = 47.7226810 = d481 − 1

2
R. So (73) would factor N2 very quickly.

This variation on SQUFOF was suggested by R. de Vogelaire when I
first spoke on SQUFOF in [15]. He calls it the “fat” SQUFOF. One tries
small pairs (x, y) in Fn to see if it has a small square value. I know of no
one who has actually tried it, or who analyzed its relative efficiency. For
N2, it appears to be of value, since F73 is encountered long before the first
explicit proper square-form F380. Of course, one would want to know that
(71) is also proper. In the next section, we turn to construction of the list.

This paper is a long one, and, for brevity, we refer the reader to Lenstra’s
[7] for a more thorough, theoretical treatment of the infrastructure.

4 The lists (two types)

We have two versions of the list: the first we call the Queue, or the Nec-
essary and Sufficient List; the second is the Sufficient List, or the Cheap
List. First lists first!
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In the foregoing analysis of N2 we saw that the improper square-forms
F316 and F332 arose from F 2

142 = F316 and F 2
153 = F332 and appear at the

distances
d316 = 2d142 and d332 = 2d153.

Here, F 2
142 and F 2

153 are already reduced and these squares can be predicted
to occur in Fn as soon as we encounter Q142 = 53 and Q153 = 11. We
generalize this.

In (32) above, we had the test:

Q2l = S2 ?

for every l. We now add the test:

(74) Qn < L = 2

√

2
√

N ?

for every n. If (74) does not hold (the usual case when N is large), we
continue. If Qn is odd and (74) holds, we make the further test:

(75) Qn < 1

2
L ?

If Qn is even and (74) holds, or if Qn is odd and (75) holds, then (66) does
not hold and F 2

n may appear as an improper square-form. If, in addition,
(65) holds, then F 2

n will appear as an improper square-form.
The queue algorithm is this: If Qn is even, and (74) holds, put the pair

(76) Qn/2, Pn mod Qn/2 ≥ 0

into the queue. If Qn is odd, and (75) holds, put the pair

(77) Qn, Pn mod Qn ≥ 0

into the queue. If we call N a full-precision number, the numbers in
(76)–(77) are quarter-precision and we can pack either pair into one half-
precision number. For example,in my SQUFOF program for an HP-41C,
N < 1020, the word-length is 1010, and either pair packs into one word as
follows.

Return to N2 in Table I. We have L = 228.85 At n = 142, 153 and 252
we place numbers into the queue as follows:

n Queue
142 53.00005
153 11.00003
252 13.00008
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Here, the second number in the pair is divided by 105 and added to the
first number. Note that

5

53
< 1

2
, 3

11
< 1

2
, 8

13
> 1

2

tells us, at once, that the primes dividing the corresponding Qn are 53, 11
and 13.

Next we come to the square-form F316. Since P316 = 5093 ≡ 5 (mod 53),
F316 gives us 53.00005 which is at the top of the queue. We have kept no
record as to specifically how it got there: that is, we no longer know (at
n = 316) whether it came from a

(78) (−1)nQn = 53 or − 53 or 106 or − 106

at dn = 1

2
d316 in Fn. But that is irrelevant since, in any case, the G0

for F316 will lead us to one of the four symmetry points ±S = ±1 or ±2,
and therefore to an improper factor f = 1 or 2. Obviously, whichever is
correct in (78), (−1)n+1Qn will be at the same distance below −1 in −Fn.
Further, by the computation of forms and (59), ±Qn/2 or ±2Qn will be
at dn = d421 + 1

2
d316 in F n or −Fn (see Table II) according as Qn is even

or odd. Therefore, in any of the four cases, F316 must be improper. We
save its 53.00005 in a register LIS called “last improper square-form” and
continue.

We must digress briefly since we have not yet defined dn. There are two
ways to do that. Lenstra [7] . . . [sic]
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