
SQUARE FORM FACTORIZATION, II

CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

Abstract. We propose a new subexponential time integer factoring algorithm called
SQUFOF2, based on ideas of D. Shanks and R. de Vogelaere. It begins by using a sieve like
that in the multiple polynomial Quadratic Sieve to construct a square value of a binary
quadratic form. It uses this value to produce a square form. Then it factors the integer N
as the original SQUFOF does by taking an inverse square root and following a nonprincipal
cycle to a symmetry point. This marriage with the Quadratic Sieve transforms SQUFOF
from a O(N1/4) algorithm into one with subexponential time. On the way we prove new
facts about infrastructure distance, which is used in the time complexity analysis.

1. Introduction

About forty-five years ago, Daniel Shanks invented an integer factoring algorithm he
called SQUFOF for SQUare FOrms Factoring. The method factors N in expected time
O(N1/4) with a short, simple algorithm. He explained the algorithm to a few people but
published nothing about it. A manuscript [20] was found in his office after his death. A
paper [10] completed the heuristic argument Shanks began in [20], but did not explore all
of the ideas in that work. The present work investigates another idea from [20], one that de
Vogelaere raised when Shanks lectured on SQUFOF in [19]. Starting from de Vogelaere’s
idea, we were led to a variation of SQUFOF, called SQUFOF2, that factors N in expected
subexponential time O(exp(1.02

√
logN log logN)).

Both SQUFOF and SQUFOF2 require the theory of real quadratic fields, including the
concept of the infrastructure of such fields, to explain the running time of the algorithms.

The next section introduces the parts of the theory of binary quadratic forms, developed
by Gauss [9], that we need. The following section treats the infrastructure distance and
requires a bit of theory of ideals in a quadratic number field. After we recall how SQUFOF
works, we present our new algorithm and give several examples. Finally we give the proof
of the expected running time for SQUFOF2. Let L(N) = exp(

√
logN log logN). We will

show that the expected running time is L(N)1.02+o(1).
The authors thank D Buell, MJ Jacobson Jr, HW Lenstra Jr, H Montgomery and C

Pomerance for valuable correspondence related to this work.

2. Binary quadratic forms

We follow Buell [3] in this treatment of quadratic forms. Let F (X,Y) = aX2+bXY +cY 2

be a binary quadratic form in the variables X, Y . The coefficients a, b, c will always be
integers. The discriminant of F is ∆ = b2 − 4ac. We are concerned only with indefinite

forms, those with positive discriminant. Sometimes we will write (a, b, c) for the form F .

2010 Mathematics Subject Classification. Primary 11A51; Secondary 11E16, 11R11, 11Y05.
Key words and phrases. Integer factorization, binary quadratic form, infrastructure distance.
This work is based on the Ph.D. thesis of the first author, supervised by the second author.
SSW’s work was supported by the CERIAS Center at Purdue University.

1

2 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

2.1. Equivalent forms. A form F represents an integer m if there are integers x and y so
that F (x, y) = m. The representation is primitive if gcd(x, y) = 1.

The classical modular group SL2(Z) acts on the set of binary quadratic forms by
(
α β
γ δ

)

F (X,Y) = F (αX + βY, γX + δY).

Two forms are equivalent if they are in the same orbit of SL2(Z). Equivalent forms have
the same discriminant and represent the same integers. The number of equivalence classes
of forms with given discriminant is a finite number h.

Each equivalence class of forms contains a set of canonical representatives called reduced

forms. The (indefinite) form (a, b, c) is reduced if
∣
∣
∣

√
∆− 2|c|

∣
∣
∣ < b <

√
∆. The set R of

reduced forms (a, b, c) with given discriminant ∆ is finite because |a| <
√
∆.

2.2. Reduction of forms. For any indefinite form (a, b, c) with ac 6= 0, define the standard
reduction operator ρ by

ρ((a, b, c)) =
(
c, r(−b, c), (r(−b, c)2 −∆)/(4c)

)
,

where r(−b, c) is the unique integer r with r + b ≡ 0 (mod 2c) and

−|c| < r ≤ |c| if
√
∆ < |c| ,

√
∆− 2|c| < r <

√
∆ if |c| <

√
∆ .

Write ρn(F) for the result of n applications of ρ to F . Note that if F has discriminant ∆,
then ρ(F) also has discriminant ∆. If F is reduced, then so is ρ(F). If F is not reduced,
then ρn(F) is reduced for some

(1) n ≤ 2 +

⌈
log |c|√

∆

⌉

according to Proposition 5.6.6 of Cohen [5].
The unique reduced form F0 = (1, b, c) is the principal form. It has b > 0 and c < 0.
One can prove that ρ is a permutation of R. The inverse of ρ is ρ−1 = τρτ , where

τ((a, b, c)) = (c, b, a). A cycle of R is an orbit of R under the action of powers of ρ. Since
the leading coefficients alternate in sign as ρ is applied, every cycle contains an even number
of reduced forms. The principal cycle P is the one containing the principal form.

2.3. Composition of forms. There is a multiplication operation called composition de-
fined on forms of a fixed discriminant. We do not define it here because it is complicated
and we do not actually need it. See [3], [10], [14], [18] or [21] for the definition. Write FG
for the composition of forms F and G. Composition is commutative and the principal form
F0 is a neutral element. Every form has an inverse. However, composition is not associative.
Gauss [9] proved that if forms F and F ′ are equivalent and if G and G′ are equivalent, then
FG and F ′G′ are equivalent. Hence one can define composition of equivalence classes of
forms of a given discriminant. This operation makes the set C of equivalence classes into a
group called the class group.

The only composition of forms we need for the new algorithm is F0 with itself, and
F0F0 = F0 = F−1

0 .
Suppose F and G are forms and that H = FG is their composition. Gauss proved that if

x1, y1, x2 and y2 are integers, then there exist integers x3, y3 so that H(x3, y3) = F (x1, y1) ·
G(x2, y2) and gave formulas for x3 and y3 in terms of x1, y1, x2, y2 and the coefficients of

SQUARE FORM FACTORIZATION, II 3

F and G. The modern version of these formulas appears on page 57 of [3] or as van der
Poorten’s [21] “magic matrix.” We need only the formulas for F = G = F0 = (1, b, c); they
are

x3 =x1x2 − cy1y2(2)

y3 =x1y2 + y1x2 + by1y2(3)

which the reader may check using high school algebra.

2.4. Form with specified value. The only other computation involving forms that we
need is this: Given a form F = (a, b, c) and a pair of relatively prime integers x, y at which
F has the value F (x, y) = r, find a form (r, s, t) equivalent to F . The solution is simple
and was known to Gauss. See page 49 of [3]. Use the Euclidean algorithm to find integers
w and z with xw − yz = 1. Then

r =ax2 + bxy + cy2(4)

s =b(xw + zy) + 2(axz + cyw)(5)

t =az2 + bzw + cw2(6)

works, as the reader may verify using high school algebra. The form (r, s, t) is equivalent
to (a, b, c) because the transformation matrix

(
x z
y w

)

from F to (r, s, t) has determinant xw − yz = 1, so it is in SL2(Z).

2.5. Ambiguous forms. Both SQUFOF and SQUFOF2 work by finding an ambiguous

form, a form (a, b, c) with a | b. Since a | b2 − 4ac = ∆, a must divide ∆. Conversely, if

a | ∆ and a <
√
∆, there is a reduced ambiguous form (±a, b, c).

Ambiguous forms occur in reduced cycles at symmetry points, where ρ((c, b, a)) = (a, b, c).
Every symmetry point must have an ambiguous form by the definition of ρ, as 2b ≡ 0
mod 2a, so a | b.

The class of an ambiguous form is also called ambiguous. The ambiguous classes are
exactly the classes of order 2 in the class group by Buell [3] Corollary 4.9. Both SQUFOF
and SQUFOF2 factor N by finding a square form (under composition) in the principal
period of forms of discriminant ∆ = N or 4N . They take its square root, which is a form
in an ambiguous class. Then they traverse this class to an ambiguous form, whose end
coefficient is a factor of ∆ and hopefully of N .

3. The infrastructure distance

We need the concept of infrastructure distance for the time complexity of SQUFOF2
(and also for that of the original SQUFOF).

3.1. Fundamental discriminants. Let N be an odd integer to be factored. Since squares
are easy to detect and factor, we may assume that N is not a square. We also assume N
is square free. If N ≡ 1 (mod 4), let ∆ = N . If N ≡ 3 (mod 4), let ∆ = 4N > 0.
Then ∆ is a fundamental discriminant, that is, ∆ ≡ 1 (mod 4) or ∆ ≡ 0 (mod 4) and
∆/4 ≡ 2 or 3 (mod 4). In fact, both SQUFOF and SQUFOF2 appear to work fine even
when N is not square free (but not a square) and ∆ = 4N is not a fundamental discriminant

4 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

(when N ≡ 1 (mod 4)), but we do not know how to analyze either algorithm without the
assumption that ∆ is a fundamental discriminant.

3.2. Number fields and ideals. Let K = Q(
√
∆) be a number field. Let σ denote the

nontrivial field automorphism of K: σ(a + b
√
∆) = a − b

√
∆. The norm of α ∈ K is

N(α) = ασ(α) = a2 − b2∆.
An order in K is a subring of the ring of algebraic integers in K containing 1 and with

field of fractions K. In the following we focus on one order, namely, A = Z[(∆ +
√
∆)/2].

The product M1 ·M2 of two subsets M1, M2 of K is the additive subgroup of K generated
by the set of all products xy with x ∈ M1, y ∈ M2. An A-ideal is a subset M of K with
A ·M =M . An invertible A-ideal is an A-ideal for which there exists M ′ with M ·M ′ = A.
The inverse of M is A ·M ′. The set I of all invertible A-ideals is a commutative group with
respect to multiplication.

One can show (see [14]) that the invertible A-ideals are the subgroups of K of the form

M =

(

Z+

(

b+
√
∆

2a

)

Z

)

· α ,

where α ∈ K∗, a, b ∈ Z satisfy c = (b2 −∆)/(4a) ∈ Z, gcd(a, b, c) = 1 and N(α)/a > 0.
Formulas for multiplying invertible A-ideals are given on page 127 of [14]. They are the

same ones used for composition of forms.
A principal A-ideal is an additive subgroup of K of the form Aα with α ∈ K∗ and

N(α) > 0. The principal A-ideals form a subgroup P of I. The class group of A is the
quotient C = I/P. It is a finite group. Its order h is the class number of A. We use the same
symbols C, h because C is the same group as the class group of forms with discriminant ∆.

There is a correspondence between the binary quadratic forms of discriminant ∆ and
invertible A-ideals in K = Q(

√
∆) defined by

(a, b, c) ↔
(

Z+

(

b+
√
∆

2a

)

Z

)

α,

where α is any element of K∗. If we write β = ((b+
√
∆)/(2a))α, then (a, b, c) corresponds

to Zα + Zβ. Principal A-ideals correspond to forms equivalent to those in the principal
cycle, that is, to F0.

3.3. Infrastructure distance defined. Let η be the smallest element (a unit) of A for
which η > 1 and N(η) = 1. The regulator of A is R = log η.

Let Γ denote the subgroup

Γ =

{(
1 m
0 1

)

: m ∈ Z

}

of SL2(Z). Two forms (a1, b1, c1) and (a2, b2, c2) are in the same orbit under Γ if and only if
a1 = a2 and b1 ≡ b2 (mod 2a1). Let F denote the orbit space {forms of discriminant ∆}/Γ.

Since Γ is a subgroup of SL2(Z), there is a natural surjection from F onto the orbit space
of equivalence classes of forms of discriminant ∆ under the action of SL2(Z), that is, onto
the class group C. Lenstra [14] defines a group structure on F that makes this map into a
group homomorphism. Let G denote the kernel of this map.

Using the correspondence between invertible A-ideals and forms, Lenstra [14] defines a
map d: G → R/RZ with the property that if the form (a, b, c) corresponds to the principal

SQUARE FORM FACTORIZATION, II 5

ideal Aγ, then

d((a, b, c)) =
1

2
log

∣
∣
∣
∣

σ(γ)

γ

∣
∣
∣
∣
mod R.

This map d is a small modification of the “distance” defined by Shanks [18]. The map d is
a group homomorphism: d(FG) = d(F) + d(G) mod R.

This distance, as a unary operator, is defined only on the principal cycle. To apply it
within other cycles, Lenstra defines the infrastructure distance as the binary operator:

d(F,G) = d(GF−1)

Note that this is only defined for F,G in the same cycle, as that is precisely when GF−1

will be in the principal cycle.

3.4. Formulas for infrastructure distance. Lenstra [14] gives an explicit formula for
the distance when reducing forms:

Theorem 1. For an indefinite integral binary quadratic form F (X,Y) = aX2+bXY +cY 2

of discriminant ∆ the infrastructure distance between F and ρ(F) is given by

d(F, ρ(F)) =
1

2
log

∣
∣
∣
∣
∣

b+
√
∆

b−
√
∆

∣
∣
∣
∣
∣
.

For a proof, see section 11 of [14].
Lenstra [14] shows that the average value, taken over all forms in a cycle, of this distance

is Lévy’s constant

(7) ℓ = π2/(12 log 2) ≈ 1.19.

Thus, the distance dn from the first form in a cycle to the n-th form is roughly proportional
to n, with ℓ being the proportionality factor.

This explicit formula for the infrastructure distance leads to an interesting corollary,
particularly in the context of the original SQUFOF:

Corollary 1. For all reduced indefinite integral binary quadratic forms F = (a′, b′, c′),
with principal form of the same discriminant F0 = (1, b, c), the distance d(F, ρ(F)) ≤
d(F0, ρ(F0)), with equality if and only if b′ = b.

Proof. By the discriminant formula, ∆ = b′2 − 4a′c′, and so b′ ≡ ∆ mod 2. The principal
form is constructed as a reduced form with a = 1, and thus |

√
∆ − 2| < b <

√
∆, and so b

is uniquely determined. For any reduced F , b′ has the same parity requirement and upper
bound, and so we have b′ ≤ b, and b′ −

√
∆ ≤ b−

√
∆ < 0, giving

d(F, ρ(F)) =
1

2
log

∣
∣
∣
∣
∣

b′ +
√
∆

b′ −
√
∆

∣
∣
∣
∣
∣
≤ 1

2
log

∣
∣
∣
∣
∣

b′ +
√
∆

b−
√
∆

∣
∣
∣
∣
∣
≤ 1

2
log

∣
∣
∣
∣
∣

b+
√
∆

b−
√
∆

∣
∣
∣
∣
∣
= d(F0, ρ(F0)). �

In the algorithm, we need the distance from the identity form F0 to a square form F .
For that, we find the distance of a matrix action:

Theorem 2. For an indefinite integral binary quadratic form F (X,Y) = aX2+bXY +cY 2

of discriminant ∆ and matrix

S =

(
x z
y w

)

∈ SL2(Z),

6 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

the infrastructure distance between F and S · F is

d(F, S · F) = 1

2
log

∣
∣
∣
∣
∣

2ax+ y(b+
√
∆)

2ax+ y(b−
√
∆)

∣
∣
∣
∣
∣

mod R,

where R is the regulator of Q[
√
∆].

Proof. Write F ′(X,Y) = S ·F = a′X2+b′XY +c′Y 2. Write representatives for the invertible
ideals corresponding to F , F ′:

M =

(

Z+
b+

√
∆

2a
Z

)

M ′ =

(

Z+
b′ +

√
∆

2a′
Z

)

We can use the substitution F (xX + zY, yX + wY) = F ′(X,Y) to verify that γ = (2ax +

y(b −
√
∆))/(2a′) ∈ Q[

√
∆] satisfies M ′ = γM . Letting X and Y stand in for arbitrary

integers:

γM =

(

2ax+ y(b−
√
∆)
)

2a′
·M

=

(

2ax+ y(b−
√
∆)
)(

(xX + zY) + b+
√
∆

2a (yX + wY)
)

2a′

=

2 (ax2 + bxy + cy2)
︸ ︷︷ ︸

=F (x,y)=a′

X +



2(axz + cwy) + b(wx+ yz)
︸ ︷︷ ︸

=b′

+(xw − yz)
︸ ︷︷ ︸

=1

√
∆



Y

2a′

=

(

X +
b′ +

√
∆

2a′
Y

)

=M ′

This allows calculation of the infrastructure distance using the definition:

d(F, S · F) = d(M,M ′) = d(γMM−1) = d(γA)

=
1

2
log

∣
∣
∣
∣

σ(γ)

γ

∣
∣
∣
∣
=

1

2
log

∣
∣
∣
∣
∣

2ax+ y(b+
√
∆)

2ax+ y(b−
√
∆)

∣
∣
∣
∣
∣
. �

Corollary 2. For an indefinite integral binary quadratic form F (X,Y) = aX2+bXY +cY 2

of discriminant ∆ and primitive representation F (x, y) = r, the infrastructure distance

between F and the form G with leading coefficient r, constructed as in Section 2.4, is

d(F,G) =
1

2
log

∣
∣
∣
∣
∣

2ax+ y(b+
√
∆)

2ax+ y(b−
√
∆)

∣
∣
∣
∣
∣

mod R,

where R is the regulator of Q[
√
∆].

Proof. The matrix for this transformation is given as

(
x z
y w

)

, for some w, z with xw−yz =
1, which exist as F (x, y) is a primitive representation of v. The distance follows from
Theorem 2. �

SQUARE FORM FACTORIZATION, II 7

The form produced by the matrix action probably is not reduced, so we also need a
bound on the distance to the nearby reduced form ρ(G). A suitable bound is discussed in
section 12 of [14], which states that the reduction of a form is one of the two forms closest
in infrastructure distance above or below it with the same a sign, or the form with opposite
a sign between them. This means the reduction adds at most two steps along the cycle over
what would be expected from infrastructure distance before reduction.

During the operation of the original SQUFOF, we will also need the distance d(τ(Fn), F0)
for a form Fn on the principal cycle. We can construct this distance using a well known
fact about τ .

Theorem 3. For an indefinite integral binary quadratic form F (X,Y) = aX2+bXY +cY 2

of discriminant ∆, ρ(τ(F)) is an inverse of F under composition in F .

Proof. τ is given by the matrix action by

(
0 1
1 0

)

. ρ is an action by

(
0 −1
1 0

)

, followed by a

matrix in Γ. The action by the product of these two matrices takes a form aX2+bXY +cY 2

to its inverse aX2 − bXY + cY 2, and so ρ(τ(F)) is equivalent to this inverse by an action
of Γ, and thus equal in F . �

Corollary 3. With a principal indefinite integral binary quadratic form F0 of discriminant

∆, and a reduced form Fn = ρn(F0) on the principal cycle,

d(τ(Fn), F0) = d(F0, Fn+1).

Proof. Note that by Theorem 1, we have d(τ(Fn), ρ(τ(Fn))) = d(Fn, Fn+1). By Theorem 3,
we have d(ρ(τ(Fn)), F0) = d(F0, Fn). And so

d(τ(Fn), F0) = d(τ(Fn), ρ(τ(Fn))) + d(ρ(τ(Fn)), F0)

= d(Fn, Fn+1) + d(F0, Fn) = d(F0, Fn+1). �

This is not used for SQUFOF2, as SQUFOF2 constructs an inverse form that is not
reduced, with square in the first coefficient, and as such directly uses the inverse operation
(a, b, c) 7→ (a,−b, c) instead of τ .

4. Summary of the original SQUFOF

These preliminaries permit a brief description of SQUFOF. For more detail see [10].
To factor a composite nonsquare positive integer N , SQUFOF computes some forms in the

principal cycle of forms with (fundamental) discriminant ∆ = 4N (or N if N ≡ 1 (mod 4)).

If N ≡ 1 (mod 4), replace N with 2N . Let q = ⌊
√
N⌋ and F0 = (1, 2q,N − q2). Compute

Fn = ρn(F0) for n = 2, 3, . . . until you find a square form F = Fn = (u, v, w2) with w > 0.
The index n will be even and u < 0. The inverse square root of F under composition is
G = F−1/2 = (−w, v,−uw). Now compute Gm = ρm(G) for m = 1, 2, 3, . . . until you
reach a symmetry point, that is, two consecutive forms Gm, Gm+1 with the same middle
coefficient f . Then either f (if f is odd) or f/2 (if f is even) has a good chance of being
a proper factor of N . The infrastructure distance between G and Gm+1 is exactly one-half
that between F0 and Fn+1, so that m is approximately n/2.

The symmetry point signals an ambiguous form Gm+1 = (g, f, e), described in Section
2.5, yielding a divisor g of 4N . If g 6= ±1,±2, then the algorithm yields a factor of N .
The probability that SQUFOF succeeds this way depends on the number of distinct prime
factors of N and is always at least 0.5 (heuristically).

8 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

As SQUFOF computes the Fn, it maintains a list of “bad” square forms which lead to
a trivial factorization of N . These are the square forms whose inverse square roots lie in a
cycle whose ambiguous form has g = ±1 or g = ±2. They are recognized in the sequence
F0, F1, . . . by having a very small end coefficient. Use of this list improves the chance of
success of SQUFOF to 1.0. See [10] for details.

SQUFOF has a time complexity of O(N1/4) because that is the average distance between
square forms on the principal period. It uses negligible memory.

5. Two examples of SQUFOF

Here is an example in which SQUFOF works well. Let

N1 = 13290059, q0 = 2
⌊√

N1

⌋

= 7290, F0 = (1, 7290,−4034).

Then F = F51 = (−5107, 7256, 52) is the first square form. See Table 1.

Table 1. Principal period Fn for N1

n Fn dn
a b c

0 1 7290 −4034 0.000000
1 −4034 778 3257 4.743078
2 3257 5736 −1555 4.850191
3 −1555 6704 1321 5.912935
4 1321 6506 −2050 7.498563

49 −2327 5738 2174 51.098906
50 2174 2978 −5107 52.162371
51 −5107 7256 52 52.592824
52 52 7244 −6847 55.606202

Then F−1/2 = (−5, 7256, 25535), G0 = (−5, 7286, 3722), and the symmetry point is
G23 = (571, 6238,−6238). Finally, 6238/2 = 3119 divides N1 and we have N1 = 3119 ·4261.
Note that m = 23 ≈ 1

251, f23 = f24 = 6238. The first square form, F51, succeeded. See
Table 2.

The second example shows how SQUFOF could fail without a list.
Let N2 = 42854447. The square form is F = F315 = (−6022, 10186, 532), as shown in

Table 3.
So F−1/2 = (−53, 10186, 319166), G0 = (−53, 13048, 5507), and the symmetry point is

G141 = (4331, 13092,−1). The factor of N2 should be 13092/2 = 6546, but this number
does not divide N2. See Table 4. Note that G136 through G141 are the forms F5 through F0

in Table 3 with the end coefficients reversed and their signs changed. The reason for failure
is that the square root operation led into the period containing a form with end coefficient
g = −1, the negative of the principal period. In this situation, SQUFOF would return to
F315 and resume its search for a square form. SQUFOF with a list would notice that F was
the square of a form earlier in the principal period and continue to the next square form.

Note that in both examples, the infrastructure distance dn traversed in the second se-
quence is exactly half of that traversed in the first sequence, and that dn ≈ ℓn.

SQUARE FORM FACTORIZATION, II 9

Table 2. Nonprincipal period Gn for N1

n Gn dn
e f g

F−1/2 −5 7256 25535
0 −5 7286 3722 0.000000
1 3722 158 −3569 3.978333
2 −3569 6980 311 4.000007
3 311 6704 −6605 5.912935
4 −6605 6506 410 7.498563
5 410 6614 −5741 8.931761

21 1130 5206 −5765 10.442852
22 −5765 6324 571 25.204238
23 571 6238 −6238 26.526552
24 −6238 6238 571 27.803101

Table 3. Principal period Fn for N2

n Fn dn
a b c

0 1 13092 −4331 0.000000
1 −4331 12894 298 5.293005
2 298 12734 −7771 7.729873
3 −7771 2808 5261 9.868265
4 5261 7714 −5318 10.086118
5 −5318 2922 7657 10.762535

313 −907 12088 6973 361.941673
314 6973 1858 −6022 363.552386
315 −6022 10186 532 363.695262
316 532 12286 −1822 364.735528

6. The new algorithm SQUFOF2

The expected value of the location n of the first square form in the principal period is
cN1/4 where the constant c is about 1.77/(2k−1) when N has 1+k (distinct) prime factors.
(See [10].) This makes SQUFOF a O(N1/4) time algorithm.

The new algorithm does not compute the forms in the principal cycle, so it cannot
maintain a list of bad forms. Therefore, it sometimes fails. But, in contrast to SQUFOF,
the new algorithm has many chances to succeed, so it does not matter that up to half of
the chances fail. (The same statement is true of the Quadratic and Number Field Sieves.)

This work was inspired by the following quote from an unpublished manuscript [20] by
Shanks found in his office after his death.

Gauss [9] proved that any form F in the principal genus has a square root
f such that f · f (under composition and reduction) = F . His constructive
proof gives a remarkable algorithm for computing f .

10 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

Table 4. A (nonprincipal) period Gn for N2

n Gn dn
e f g

F−1/2 −53 10186 319166
0 −53 13048 5507 0.000000
1 5507 8880 −4121 3.186067
2 −4121 7504 6983 4.026201
3 6983 6462 −4642 4.678396
4 −4642 12106 1339 5.219150

136 −7657 2922 5318 169.581327
137 5318 7714 −5261 171.605229
138 −5261 2808 7771 172.281646
139 7771 12734 −298 172.499500
140 −298 12894 4331 174.637891
141 4331 13092 −1 177.074759
142 −1 13092 4331 182.367764

The w2 in (u, v, w2) is the value of a form with x = 0 and y = 1. If, for
any Fn, its value is a square for certain values of x and y, then one can easily
construct an equivalent form (probably not reduced) that is a square form.

This variation on SQUFOF was suggested by R. de Vogelaere when I first
spoke on SQUFOF in [19]. He calls it the “fat” SQUFOF. One tries small
pairs (x, y) in Fn to see if it has a small square value.

SQUFOF2 avoids the slow search for a square form by constructing one. It uses a sieve

to factor some values of the first quadratic form F0 in the principal period. (It could have
used any form Fn in the principal cycle, but they all represent the same integers, and F0 is
more convenient because it is the identity for composition.) Integers with no prime factor
other than those < B are called “smooth” or “B-smooth.” The sieve finds smooth values
of F0(x, y) for (x, y) in a certain rectangle. Lenstra and Pomerance [15] devised a similar
factoring algorithm using positive definite binary quadratic forms.

SQUFOF2 chooses a bound B for the primes to consider and a size S for the sieve region.
The sieve begins by solving the congruence r2 ≡ N mod p for each prime p < B. For each
0 < y < S and for each p < B the two solutions of F0(x, y) ≡ 0 mod p are computed
using the quadratic formula. The sieve then divides each F0(x, y) with −S < x < S by
the primes that are known to divide it because they lie in two arithmetic progressions with
common difference p. If the remaining cofactor is 1, then the number is smooth and the
triple (x, y, F0(x, y)) is saved.

Then the new algorithm uses linear algebra over GF (2) to match the prime factors of a
subset of the F0(x, y) and find a set whose product is a square (as in the quadratic sieve).
See Example 8.7 in [22]. The linear algebra finds the left null space of a matrix (its cokernel)
over GF (2) with one row for each triple (x, y, F0(x, y)) and one column for each prime < B.
The i, j entry of the initial matrix is 1 if the j-th prime divides the i-th value of F0(x, y) to
an odd power and 0 otherwise. The 1s in each vector in the left null space tell which values
F0(x, y) to multiply to produce a square integer.

SQUFOF2 multiplies these values by composing the quadratic forms, using Formulas (2)
and (3). When gcd(x, y) > 1, the algorithm removes their common factor, which removes a

SQUARE FORM FACTORIZATION, II 11

square from the product. (Thus the square value of the composition of all the forms might
be a proper divisor of the square value constructed by the linear algebra.)

It uses Formulas (4), (5), (6) to convert this form and its square value into another form
which is a square form having the same square value as its end coefficient.

Then SQUFOF2 computes the inverse square root of the square form as in the regular
SQUFOF. Proposition 3.1 of [10] says that if gcd(v,w) = 1 and F = (u, v, w2) is a square
form on the principal cycle, then (−w, v,−uw) is a square root of F . The proof using the
formulas in Section 2.1.3 of [10] shows that this is true so long as F is equivalent to a form
in the principal cycle, whether F is reduced or not. It is clear from the quote above that
Shanks (and Gauss) knew this.

See Wagstaff [22] Chapters 8 and 6 for an introduction to the Quadratic Sieve and basic
SQUFOF. See Gower and Wagstaff [10] for an analysis of basic SQUFOF. See Crandall and
Pomerance [7] Section 6.1 or Pomerance [16] for more about the Quadratic Sieve, including
a proof of its time complexity. The proof of the time complexity of SQUFOF2 will closely
resemble Pomerance’s argument in [16]. We give the proof in Section 8 below.

7. Two examples of SQUFOF2

Here we trace the entire SQUFOF2 algorithm for factoring N3 = 13847. Part of the
principal period for N3 is given in Table 5. The forms all have discriminant ∆ = 4N3 =
55388.

Table 5. Principal period Fn for N3 = 13847

n Fn dn
a b c

0 1 234 −158 0.000000
1 −158 82 77 2.926897
2 77 226 −14 3.290544
3 −14 222 109 5.240115
4 109 214 −22 7.007206

27 −46 182 121 27.043476

43 1 234 −158 45.133347

The regular SQUFOF algorithm with a list would compute the principal period for 27
steps and encounter the square form (−46, 182, 112), which leads to a nonprincipal period
where it finds a proper factor of N3 after 10 more steps. On its way through the principal
period it places on its list two small values c from forms (a, b, c) that prevent it from failing
when it encounters two other square forms before the one in step 27, as these lead to trivial
factors.

SQUFOF2 sieves the first form F0 in the principal period seeking smooth numbers. The
prime factors of the values of this form at (x, y) with gcd(x, y) = 1 (that is, the values
primitively represented by F0) are restricted to 2 and those p for which the Legendre symbol
(N3/p) = 1. The set of these primes that are < B is called the “factor base.” Since F0 is
indefinite (∆ > 0), the number −1 is included as a “prime” in the factor base. In this tiny
example we use B = 75 and the factor base

{−1, 2, 7, 11, 17, 23, 37, 43, 59, 71, 73}

12 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

consisting of −1, 2 and the first 9 primes p with (N3/p) = +1.
We sieve the first form over the range −20 < x < 20 and 0 < y < 20, saving only smooth

values with gcd(x, y) = 1. We omit y < 0 since F0(−x,−y) = F0(x, y). We find 57 values
that factor completely using the factor base, including these eight:

F0(2, 3) = −14 = −2 · 7
F0(−1, 1) = −391 = −17 · 23
F0(7, 10) = 629 = 17 · 37
F0(−4, 1) = −1078 = −2 · 72 · 11
F0(8, 5) = 5474 = 2 · 7 · 17 · 23
F0(14, 3) = 8602 = 2 · 11 · 17 · 23

F0(−19, 2) = −9163 = −72 · 11 · 17
F0(1, 12) = −19943 = −72 · 11 · 37

Linear algebra over GF (2) constructs subsets of the form values whose product is square.
It finds that

F0(8, 5)F0(2, 3)F0(−1, 1) = 5474 · (−14) · (−391) = 2272172232

is a square.
Formulas (2) and (3) tell us that F0(8, 5)F0(2, 3) = F0(2386, 3544) = −76636. Since

gcd(2386, 3544) = 2, we cancel the common factor 2 and find that F0(1193, 1772) = −19159.
Formulas (2) and (3) tell us that F0(1193, 1772)F0(−1, 1) = F0(238783, 414069). Since

gcd(238783, 414069) = 391, we cancel the common factor 391 and find that F0(713, 1059) =
49 = 72. Formulas (4), (5), (6) convert this to the square form (72,−226,−22). The inverse
square root of (−22, 226, 72) is (7, 226,−22 · 7) = (7, 226,−154). This leads in 2 steps
(applications of ρ) to (79, 234,−2) and failure.

We try another dependency. Linear algebra finds that

F0(14, 3)F0(−1, 1)F0(−4, 1) = 8602 · (−391) · (−1078) = 2272112172232,

another square.
Formulas (2) and (3) tell us that F0(14, 3)F0(−1, 1) = F0(460, 713). Removing the com-

mon factor 23 gives us F0(20, 31) = −6358. Formulas (2) and (3) give F0(20, 31)F0(−4, 1) =
F0(4818, 7150). We cancel the common factor 22 and find that F0(219, 325) = 1192.

Formulas (4), (5), (6) convert this to the square form (1192,−4244, 317). The inverse
square root of (317, 4244, 1192) is (119, 4244, 317 ·119) = (119, 4244, 37723). This reduces to
(−113, 40, 119) and leads in 3 steps to (83, 122,−122) and the factorization 13847 = 61 ·227.

Now we factor N1 = 13290059 with less detail. The factorization of this N1 with reg-
ular SQUFOF was shown above. The first form is F0 = (1, 7290,−4034). After some
experimentation, we choose a factor base consisting of all primes < 115 and sieve region
−226 < x < 226 and 0 < y < 226. Thus the factor base is {−1, 2, 5, 13, . . . , 113} of size 15.
After sieving only the first 5 rows, that is, 1 ≤ y ≤ 5, we have found 13 smooth values. We
decide to perform the linear algebra and discover two solutions.

The first solution tells us that the product of the four values

F0(−22, 1), F0(94, 3), F0(−69, 4), F0(55, 4)

is a square. As we compose these forms using Formulas (2) and (3) we remove common
factors of 2, 1261 and 3827 and arrive at F0(1067091, 1928527) = 11405172025 = 1067952.

SQUARE FORM FACTORIZATION, II 13

Formulas (4), (5), (6) produce the square form

(11405172025, 10816923944, 2564754029) = (1067952, 10816923944, 2564754029)

with inverse square root (−273902906527055, 10816923944,−106795). This form reduces to
(3469, 2876,−3235), which leads in four steps to the symmetry point (−2, 7290, 2017) and
failure.

The second solution tells us that the product of the ten values

F0(−53, 1), F0(−22, 1), F0(−1, 1), F0(−61, 2), F0(21, 2),

F0(−157, 3), F0(49, 3), F0(−69, 4), F0(−69, 4), F0(216, 5)

is a square. We remove many common factors as we compose these forms and find

F0(1474289783211707013, 2664449249336597236) = 2416556752202799184225

= 491584860652 .

Formulas (4), (5), (6) produce the square form

(491584860652 , 1610582552405188463444, 268354566445365576761)

with inverse square root

(−13191904215083620289036306335465, 1610582552405188463444,−49158486065).

This form reduces to (4315, 2634,−2678), which leads in eleven steps to the symmetry point
(3119, 6238,−1142) and the factor 6238/2 = 3119 of N1.

8. Time and space complexity of SQUFOF2

8.1. Parameters of SQUFOF2. Following Pomerance [16], let L = L(N)1+o(1). Hiding
the o(1) this way allows us to absorb constants and powers of logN and log logN into
L and greatly simplify the presentation. We may write, for example, seemingly incorrect
equations like L logN = L log logN = 2L = π(L) = L, where π(B) ≈ B/ logB is the
number of primes ≤ B.

Let M(k) denote the time needed to multiply (or divide or remainder) two integers of
length k digits. The schoolboy methods show M(k) = O(k2). Using Schönhage-Strassen
(See Section 4.3.3 of Knuth [12]), one can improve this to M(k) = O(k log k log log k). Of
course, it is well known that one can add and subtract two k-digit integers in O(k) steps.
As the example of SQUFOF2 factoring N = 13290059 shows, the intermediate numbers
may be much larger than N . We will show that the entire arithmetic with all of them is
not slower than the sieve or linear algebra steps.

The algorithm has two parameters: the size of the factor base and the area of the sieve
region. We specify these using two constants α, β in the interval (0.1, 1) to be determined
later. The factor base consists of −1, 2, and all primes p < Lα with (N/p) = +1. We will
sieve the values of F0(x, y) with gcd(x, y) = 1 and −Lβ < x < Lβ, 0 < y < Lβ.

8.2. Heuristic assumptions. We now examine the individual steps of SQUFOF2 and
estimate the complexity of each in terms of α and β.

The initialization of F0 = (1, b, c) consists of computing b = 2⌊
√
N⌋ and c = (b2 −∆)/4.

The square root may be found in O(log2N) steps by an integer variation of Newton’s
method as in Algorithm 1.7.1 of Cohen [5]. The rest of the arithmetic may be done in
O(log2N) steps.

14 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

The proof of the time complexity is heuristic. It requires several plausible hypotheses.
First we assume there are enough primes in the factor base.

Hypothesis 1. There is a constant n1 such that if N > n1, then for any α ∈ (0.1, 1) the

number of primes p < Lα for which p ∤ N and (N/p) = +1 is at least π(Lα)/3.

Hypothesis 1 is plausible because the expected number of such primes is π(Lα)/2. Next,
we assume the sieve will produce enough smooth numbers.

Hypothesis 2. There is a constant n2 such that if N > n2, then for any α ∈ (0.1, 1) and

any β ∈ (0.1, 1) the values |F0(x, y)| with −Lβ < x < Lβ, 0 < y < Lβ and gcd(x, y) = 1
have the same probability of being Lα-smooth as all integers in (1,max |F0(x, y)|).

We need gcd(x, y) = 1 to construct a form (r, s, t) with r = |F0(x, y)| as explained at the
end of Section 2.4. Hypothesis 2 is plausible because when gcd(x, y) = 1 there is no reason
to expect |F0(x, y)| to have larger or smaller prime factors than other integers of the same
size. If gcd(x, y) > 1, then gcd(x, y)2 would divide |F0(x, y)|, so it might have more prime
factors than usual. Another concern might be that only half of the primes p can divide
|F0(x, y)|, namely those with (N/p) = +1. But each of these primes has twice the chance
of dividing |F0(x, y)| because for each y the quadratic congruence F0(x, y) ≡ 0 mod p has
two solutions when (N/p) = +1. These two effects exactly cancel and leave the probability
of being smooth unchanged. See page 118 of [16] for details of this probability calculation.

The sieve begins by solving the congruence r2 ≡ N mod p for each prime in the factor
base. The naive algorithm of testing each r in 1 < r < p/2 takes O(L2α) steps and is good
enough for us. (The modular square root may be done quickly by Algorithm 2.3.9 of [7].)
For each 0 < y < Lβ and for each p the solutions of F0(x, y) ≡ 0 mod p are computed using

the quadratic formula. This takes O(LβLα) = O(Lα+β) = O(L2max(α,β)) steps.
The sieve then divides each F0(x, y) by the primes that are known to divide it. If the

remaining cofactor is 1, then the number is smooth and the triple (x, y, F0(x, y)) is saved. It
is known [17] or [2] that this can be done for k values in O(k log k log log k) steps. SQUFOF2
has Lβ sieves, one for each y, of length 2Lβ, so the total number of steps for all sieving is
O(L2β).

The linear algebra finds the left null space of a matrix over GF (2) with one row for each
triple (x, y, F0(x, y)) and one column for each prime in the factor base. The sieve finishes
when there are a few more triples than primes, so the matrix is nearly square with order
π(Lα), that is, O(Lα). Gaussian elimination finds the left null space of a matrix of order k
in O(k3) steps. Other methods reduce this complexity to O(kr) steps for some r ∈ (2, 3].
For example, Coppersmith and Winograd [6] give a method with r ≈ 2.49. We shall assume
that SQUFOF2 uses a method with complexity O(Lrα) steps.

For each basis vector of the left null space we must compose the forms whose rows appear
in the linear dependency. There are no more than Lα of them. As we iterate Formulas (2)
and (3) let the (x, y) for the i-th form be (x1, y1), (x2, y2), etc. The i-th iteration replaces

(x, y) by (xxi − cyyi, xyi + yxi + byyi). Since b, |c| < 2
√
N and each |xi|, yi < Lβ, the

final (x, y) of the composition of all the forms in one dependency has |x|, |y| bounded
by (2

√
NLβ)L

α
. The size of this number, its logarithm, is O(Lα log(2

√
NLβ)) = O(Lα).

The complexity of arithmetic with numbers of that size is O(L2α) and there are no more
than O(Lα) such arithmetic operations, for a total complexity of O(L3α) steps for the
composition process. Using fast multiplication techniques, such as the Schönhage-Strassen
method mentioned above, we can reduce this to O(L2α) steps.

SQUARE FORM FACTORIZATION, II 15

The next step is to construct a square form from the form with a square value using
Formulas (4), (5), (6). This arithmetic takes O(L2α) steps or O(Lα) steps using fast mul-
tiplication. Finding the inverse square root of the square form has the same complexity.

According to Formula (1), the number of steps in the reduction of the inverse square root
is proportional to the size of its third coefficient, which is O(Lα) steps. Each step involves
arithmetic with numbers of this size or smaller, so the total complexity of the reduction is
O(L2α) steps.

The final step of SQUFOF2 is the search for the symmetry point. The infrastructure
distance to it from the (reduced) inverse square root is exactly half that from F0 to the
square form. The infrastructure distance from F0 to the square form is given by Corollary 2.
To estimate this distance, we assume the denominator is at least 1 for a positive proportion
of the values.

Hypothesis 3. For pairs (x, y) with square value F0(x, y) computed as in SQUFOF2, at

least 1
2 of the pairs satisfy |2ax+ y(b−

√
∆)| > 1.

This hypothesis is reasonable, as the relative size of x and y vary considerably through
the possible solutions. By Hypothesis 3 and Corollary 2, we can find solutions with infras-

tructure distance bounded by 1
2 log

∣
∣
∣2x+ y(b+

√
∆)
∣
∣
∣ ≤ Lα. In sum, the total number of

forms traversed seeking the symmetry point is O(Lα), the number of steps in the reduction
and the return.

At the symmetry point the only remaining operation is a gcd of N and the middle
coefficient of size O(

√
N), which may be done in O(log2N) steps. We need to assume that

the symmetry point gives a proper factor of N with probability ≥ 1/2. Hypothesis 4 is the
same as Assumption 4.19 in [10].

Hypothesis 4. Each of the reduced ambiguous forms of the fundamental discriminant ∆
has an equal chance of being the one at the symmetry point.

For real numbers 0 < B ≤ A, let ψ(A,B) denote the number of integers ≤ A all of whose
prime factors are ≤ B. Dickman [8] was the first to notice that one should use a log scale
to estimate ψ(A,B). He sketched a proof that for large A one has ψ(A,B) ≈ Au−u, where
u = (logA)/ logB. In other words, the probability that a positive integer ≤ A is B-smooth
is approximately u−u. See Knuth and Trabb-Pardo [13] and Canfield, Erdős, Pomerance
[4] for proofs of precise versions of Dickman’s theorem. Hypothesis 2 assumes that the
probability that values F0(x, y) in the sieve rectangle −Lβ < x < Lβ, 0 < y < Lβ with
gcd(x, y) = 1 are Lα-smooth is the same as for all integers in (1,max |F0(x, y)|).

The cover design of [1] illustrates the following lemma, which is well known.

Lemma 1. Let m be a large integer. Let G(m) be the number of pairs (x, y) of integers

with 1 ≤ x ≤ m, 1 ≤ y ≤ m and gcd(x, y) = 1. Then G(m) = (6/π2)m2 + O(m logm) as

m→ ∞.

Proof. The set counted by G(m) is the union of the two sets {(x, y) : 1 ≤ x ≤ y ≤
m; gcd(x, y) = 1}, {(x, y) : 1 ≤ y ≤ x ≤ m; gcd(x, y) = 1} whose intersection is the
singleton {(1, 1)}. Each of these two sets has size

∑m
x=1 φ(x), where φ is Euler’s function.

But
∑m

x=1 φ(x) = (3/π2)m2+O(m logm) by Theorem 330 of [11] or Theorem 3.7 of [1]. �

8.3. Time and space complexity of SQUFOF2.

16 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

Theorem 4. Assuming Hypotheses 1, 2, 3 and 4, the expected time complexity of SQUFOF2

to factor a large square free integer N using an elimination method with an exponent r is

L(N)r/
√
4r−4+o(1). The space complexity is L(N)1/

√
r−1+o(1).

Proof. The assumption that N is square free implies that ∆ is a fundamental discriminant.
This property is needed for Hypothesis 4 to make sense as in [10]. Hypothesis 1 is needed to
construct the factor base for the sieve. Hypothesis 2 is used to ensure that enough smooth
values are found so that the linear algebra will produce linear dependencies. Hypothesis 4
guarantees that each square form has probability at least 1/2 of leading to a proper factor
of N . Hypothesis 3 is used to bound the distance travelled in the return step.

This proof is for the case N ≡ 3 mod 4. The proof for N ≡ 1 mod 4 is similar.
The discussion above shows that the most time-consuming steps of SQUFOF2 are the

sieve (L2β) and linear algebra (Lrα). The sieve initialization, composition and reduction
each take L2α steps, but 2 < r ≤ 3. The other steps are even faster.

By Hypothesis 2, the probability that F0(x, y) is smooth is the same as the probability
that a random integer in the interval [1,m] is smooth, where m is the maximum value of

|F0(x, y)| in the sieve rectangle. Since b and |c| < 2
√
N , −Lβ < x < Lβ and 0 < y < Lβ,

we see that m < 4
√
NL2β. We will choose β so that we must sieve at least one-tenth of

the sieve rectangle to get enough smooth values, so logm ≈ log(4
√
NL2β). There are L2β

pairs (x, y) in the rectangle and, by Lemma 1, (6/π2)L2β of them have gcd(x, y) = 1. The
constant 6/π2 and the O(Lβ logLβ) from Lemma 1 are absorbed by our convention on L.
The number of smooth relations is L2β times the probability that |F0(x, y)| is Lα-smooth,
which by Hypothesis 2 is L2βψ(m,Lα)/m. We will have enough smooth relations, that is,
Lα of them, when L2βψ(m,Lα)/m = Lα. By Dickman’s theorem (or Theorem 2.1 of [16]),
ψ(A,B) ≈ Au−u, where u = (logA)/(logB). Then, ignoring the 4,

u =
logm

logLα
=

log(
√
NL2β)

logLα
=

logN

2α logL
+

2β

α
.

We may ignore the constant 2β
α . A short calculation shows that log u = (log logN)/2,

log u−u = −1
4α

√
logN log logN and u−u = L−1/(4α). We will have enough smooth relations

if L2βL−1/(4α) = Lα, or 2β − 1/(4α) = α, or β = α
2 + 1

8α . Choose this value for β. Then
the time complexity will be

Lmax(2α,2β,rα) = Lmax(2α,α+1/(4α),rα) = Lrα.

The space requirement is L2α for the matrix and Lβ = Lα/2+1/(8α) < L2α for the sieve.
Choose

α =
1

2
√
r − 1

to obtain the theorem statement. �

We have shown that the time and space complexities of SQUFOF2 are the same as for
the Quadratic Sieve. Compare Theorem 7.1 of [16].

Note that the exponent for the time complexity is

rα =
r

2
√
r − 1

= 1 +O((r − 2)2)

as r → 2, so is not sensitive to small changes in r between 2 and 3.

SQUARE FORM FACTORIZATION, II 17

With r = 3 the time and space complexity exponents are 3/(2
√
2) ≈ 1.06 and 1/

√
2 ≈

0.71. With r = 2.49 they are 1.02 and 0.82. With r = 2 (slightly better than the best
conceivable elimination method) they would be 1.00 and 1.00.

With r = 3 the exponents on L for the size of the factor base and the length of the sieve
interval are α = 1/(2

√
2) ≈ 0.35 and β = 3/(4

√
2) ≈ 0.53. With r = 2.49 they are 0.41 and

0.51. With r = 2 they would be 0.50 and 0.50.
These values are for factoring large N in theory. For a practical program one should

experiment with values of α and β to determine which are best. For factoring N between
10 and 30 decimal digits we found that α ≈ 0.7 and β ≈ 0.8 are about right.

9. Conclusion

The new integer factoring algorithm SQUFOF2 presented here is interesting, but it is no
faster than the Quadratic Sieve, and that method is slower than the Number Field Sieve
for large integers. That is why we have not tried SQUFOF2 on very large integers.

The Quadratic Sieve has several variations that accelerate it but do not change its theo-
retical time complexity. These include using multipliers, using large primes, adding approx-
imate logarithms in the sieve rather than dividing, fast linear algebra, and using multiple
polynomials with self initialization. See [16] and Section 6.1 of [7]. All of these variations
work well in SQUFOF2. Self initialization of multiple polynomials works especially well in
SQUFOF2 because F0 = (a, b, c) with a = 1, so that the calculations in Formula (6.3) on
page 239 of [7], which are the same for SQUFOF2 as for the Quadratic Sieve, become trivial
addition and subtraction.

SQUFOF2 factors 30-digit integers in about half a minute on a PC, while SQUFOF
would take about a minute for numbers of that size. A basic Quadratic Sieve would also
take about half a minute on a PC.

References

[1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
[2] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient Algorithms. The MIT Press,

Cambridge, Massachusetts, 1996.
[3] D. A. Buell. Binary Quadratic Forms, Classical Theory and Modern Computations. Springer-Verlag,

Berlin, New York, 1989.
[4] E. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim concerning “factorisatio nu-

merorum”. J. Number Theory, 17:1–28, 1983.
[5] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, New York, 1996.
[6] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. SIAM J.

Comput., 11:472–492, 1982.
[7] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, New

York, 2001.
[8] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude.

Ark. Mat., Astronomi och Fysik, 22A, 10:1–14, 1930.
[9] C. F. Gauss. Disquisitiones Arithmeticae. Yale University Press, New Haven, English edition, 1966.

[10] J. Gower and S. S. Wagstaff, Jr. Square form factorization. Math. Comp., 77:551–588, 2008.
[11] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon Press, Oxford,

England, Fifth edition, 1979.
[12] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Addison-

Wesley, Reading, Massachusetts, Second edition, 1981.
[13] D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm. Theoretical Computer

Science, 3:321–348, 1976.

18 CLINTON BRADFORD AND SAMUEL S. WAGSTAFF, JR.

[14] H. W. Lenstra, Jr. On the calculation of regulators and class numbers of quadratic fields. In J. V.
Armitage, editor, Journées Arithmétiques, 1980, volume 56 of Lecture Notes Series, pages 123–150.
London Math. Soc., 1982.

[15] H. W. Lenstra, Jr. and C. Pomerance. A rigorous time bound for factoring integers. Jour. Amer. Math.

Soc., 5(3):483–516, 1992.
[16] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In H. W. Lenstra, Jr.

and R. Tijdeman, editors, Computational Methods in Number Theory, Part 1, volume 154 of Math.

Centrum Tract, pages 89–139, CWI, Amsterdam, 1982.
[17] P. A. Pritchard. A sublinear additive sieve for finding primes. Communications of the ACM, 24:18–23,

1981.
[18] D. Shanks. The infrastructure of a real quadratic field and its applications. In Proceedings of the 1972

Number Theory Conference, Boulder, pages 217–224, 1972.
[19] D. Shanks. Square forms factorization. Lecture, before 1975.
[20] Daniel Shanks. SQUFOF Notes. Manuscript, 30 pages, available at http://homes.cerias.purdue.edu/

∼ssw/shanks.pdf.
[21] Alfred J. van der Poorten. A note on NUCOMP. Math. Comp., 72:1935–1946, 2003.
[22] S. S. Wagstaff, Jr. The Joy of Factoring, volume 68 of Student Mathematical Library. Amer. Math. Soc.,

Providence, Rhode Island, 2013.

Email address: clintonbradford@gmail.com

Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067, USA

Email address: ssw@cerias.purdue.edu

Center for Education and Research in Information Assurance and Security and Depart-

ment of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398, USA

