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Abstract. We consider several problems about pseudoprimes.
First, we look at the issue of their distribution in residue classes.
There is a literature on this topic in the case that the residue class
is coprime to the modulus. Here we provide some robust statistics
in both these cases and the general case. In particular we tabulate
all even pseudoprimes to 1016. Second, we prove a recent conjec-
ture of Ordowski: the set of integers n which are a pseudoprime to
some base which is a proper divisor of n has an asymptotic density.

In memory of Aleksandar Ivić (1949–2020)

1. Introduction

Fermat’s “little” theorem is part of the basic landscape in elementary
number theory. It asserts that if p is a prime, then ap ≡ a (mod p) for
every prime p. One interest in this result is that for a given pair a, p,
it is not hard computationally to check if the congruence holds. So, if
the congruence fails, we have proved that the modulus p is not prime.
A pseudoprime is a composite number n with 2n ≡ 2 (mod n), and

more generally, a pseudoprime base a is a composite number n with
an ≡ a (mod n). Pseudoprimes exist, in fact, there are composite
numbers n which are pseudoprimes to every base a, the first 3 examples
being 561, 1105, and 1729. These are the Carmichael numbers. Named
after Carmichael [7] who published the first few examples in 1910, they
were actually anticipated by quite a few years by Šimerka [22].
We now know that there are infinitely many Carmichael numbers

(see [1]), the number of them up to x exceeding x0.33 for all sufficiently
large x (see [12]). This count holds a fortiori for pseudoprimes to any
fixed base a since the Carmichael numbers comprise a subset of the
base-a pseudoprimes.
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One can also ask for upper bounds on the distribution of pseudo-
primes and Carmichael numbers. Let

L(x) = exp(log x log log log x/ log log x) = x
log log log x
log log x .

We know (see [19]) that the number of Carmichael numbers up to x is
at most x/L(x) for all sufficiently large x, and it is conjectured that
this is almost best possible in that the count is of the form x/L(x)1+o(1)

as x → ∞. The heuristic for this assertion is largely based on thoughts
of Erdős [10].
It is conjectured that the same is true for pseudoprimes to any

fixed base a, however the upper bound is not as tight. We know (see
[19]) that for all large x, the number of odd pseudoprimes up to x is
≤ x/L(x)1/2 and it seems likely that the argument goes through for
those base-a pseudoprimes coprime to a, for any a > 1. An unpub-
lished paper of Li [15] does achieve the same upper bound for even
pseudoprimes as we have for odd ones, and it is likely here as well, that
the result generalizes to an arbitrary base a > 1.
For positive coprime integers a, n let la(n) denote the order of a

(mod n) in (Z/nZ)∗. Further, let λ(n) denote the maximal value of
la(n) over all a (mod n); it is the universal exponent for the group
(Z/nZ)∗. If a, n are positive integers, not necessarily coprime, let na

denote the largest divisor of n coprime to a. Note that n is a base-a
pseudoprime if and only if la(na) | n − 1 and n/na | a, as is easily
verified.
It is natural to consider the distribution of pseudoprimes in residue

classes. Consider the integers n ≡ r (mod m), and suppose that n is a
base-a pseudoprime. Let us write down some necessary conditions for
n to exist. Let

g = gcd(r,m), h = gcd(la(ga), m).

Then if n is a base-a pseudoprime in the residue class r (mod m), we
must have

(1) h | r − 1 and g/ga | a.
We conjecture that (1) is sufficient for there to be infinitely many base-
a pseudoprimes n ≡ r (mod m). In fact, a heuristic argument based
on that of Erdős [10] suggests that if these conditions hold for a, r,m,
then the number Pa,r,m(x) of base-a pseudoprimes n ≡ r (mod m) with
n ≤ x is x1−o(1) as x → ∞.
Let Cr,m(x) denote the number of Carmichael numbers n ≤ x with

n ≡ r (mod m). Clearly for any a, r,m we have Cr,m(x) ≤ Pa,r,m(x).
Here are some things we know towards the conjecture.



SOME THOUGHTS ON PSEUDOPRIMES 3

• For all large x we have C0,1(x) > x.33. This is the main result
of Harman [12], improving the earlier result with exponent 2/7
in [1].

• If gcd(r,m) = 1 and r is a square mod m, then for x sufficiently
large, Cr,m(x) > x1/5. This result is due to Matomäki [16].

• If gcd(r,m) = 1, then Cr,m(x) > x1/(6 log log log x) for x sufficiently
large. This recent result of the first-named author [20] is based
on the argument for a somewhat weaker bound due to Wright
[24].

• If gcd(r,m) = 1, then P2,r,m(x) is unbounded. This result of
Rotkiewicz [21] is, of course, weaker than the previous item,
but it preceded it by over half a century and is much simpler.

There are elementary ideas for showing P2,r,m(x) is unbounded even
when gcd(r,m) > 1. For example, there are infinitely many even pseu-
doprimes, the case r = 0, m = 2. Here’s a proof. Suppose n is an even
pseudoprime and let p be a prime with l2(p) = n. From Bang [3] such
a prime p exists. Then pn is another even pseudoprime. It remains to
note that n = 161,038 is an even pseudoprime. This proof is essentially
due to Beeger [6]. The example 161,038 was found by Lehmer in 1950.
A similar argument can be found for other choices of r,m, but we

know no general proof that Pa,r,m(x) is unbounded when (1) holds.
At the end of this paper we present substantial counts of pseudo-

primes in residue classes.
The usual thought with pseudoprimes is to fix the base a and look

at pseudoprimes n to the base a. Instead, one can take the opposite
perspective and fix n, looking then at the bases a for which n is a
pseudoprime. Let

F (n) = #{a (mod n) : an−1 ≡ 1 (mod n)}.
From Baillie–Wagstaff [2] and Monier [17], we have

F (n) =
∏

p|n
gcd(p− 1, n− 1),

where p runs over primes. Now let

F ∗(n) = #{a (mod n) : an ≡ a (mod n)}.
Note that F ∗(n) = n if and only if n = 1, n is a prime, or n is a
Carmichael number. The Baillie–Wagstaff formula can be enhanced as
follows:

F ∗(n) =
∏

p|n
(1 + gcd(p− 1, n− 1)).
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Thus, F ∗(n)− F (n) is the number of residues a (mod n) with an ≡ a
(mod n) and gcd(a, n) > 1. Among these it is interesting to consider
those a that divide n. Let

D(n) = #{a | n : 1 < a < n, an ≡ a (mod n)}
and let

S = {n ∈ N : #D(n) > 0}.
T. Ordowski [18] has conjectured that S has an asymptotic density;
counts up to 108 by A. Eldar suggest that this density may be about
5
8
. In the next section we present a proof that the density of S exists.

2. Proof of Ordowski’s conjecture

For each integer b ≥ 2 let

Sb = {n > b : n ≡ 0 (mod b), (n/b)n ≡ n/b (mod n)},
Then

S =
⋃

b≥2

Sb.

Indeed, if b ≥ 2 and n ∈ Sb, let a = n/b. Then a ∈ D(n), so n ∈ S.
Conversely, if n ∈ S and a | n with 1 < a < n and an ≡ a (mod n),
then n ∈ Sn/a.
We also remark that if n ∈ Sb, then gcd(b, n/b) = 1. Indeed, if p

is a common prime factor with pα ‖n/b, then we have pα+1 | n and
pα+1 | (n/b)n, contradicting (n/b)n ≡ n/b (mod n).
For a set S of positive integers, let δ(S) be the asymptotic density

of S should it exist.

Proposition 1. For each b ≥ 2, δ(Sb) exists and

(2) c1 :=
∑

b≥2

δ(Sb) < ∞.

Proof. To see that δ(Sb) exists we will show that Sb ∪ {b} is a finite
union of residue classes.
To get a feel for things, we work out the first few b’s. The case b = 2

is particularly simple. For n to be in S2 it is necessary that n/2 be odd,
since we need gcd(b, n/b) = 1. And this condition is sufficient when
n > 2: it is easy to check that (n/2)n ≡ n/2 (mod n). Indeed the
congruence is trivial modulo n/2 and it is trivial modulo 2. Thus S2 is
the set of numbers that are 2 (mod 4) (other than 2), with density 1

4
.

Now take b = 3. For ab ∈ S3 we consider the two cases a ≡ 1
(mod 3), a ≡ 2 (mod 3). Every number of the form 3a with a ≡ 1
(mod 3) and a > 1 is in S3, which gives density 1

9
. For a ≡ 2 (mod 3)
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we need 23a ≡ 2 (mod 3) and this holds if and only if a is odd. That
is, a ≡ 5 (mod 6), and this condition is sufficient. This part of S3 has
density 1

18
, so δ(S3) =

1
6
.

We now work out the general structure of Sb. We have a number ab,
where gcd(a, b) = 1 and a > 1. We trivially have aab ≡ a (mod a), so
the important condition is aab ≡ a (mod b). Since gcd(a, b) = 1, this is
equivalent to aab−1 ≡ 1 (mod b), which holds if and only if d | ab − 1,
where d is the multiplicative order of a (mod b). This cannot hold
unless gcd(d, b) = 1, and in this case, a is in a residue class (mod d).
So, if a ≡ a0 (mod b) and a0 (mod b) has multiplicative order d with
gcd(d, b) = 1, then such a’s lie in a residue class of modulus bd. Thus,
for each residue in a0 ∈ (Z/bZ)∗ with multiplicative order d coprime to
b we have a residue class of modulus b2d that consisting of all ab ∈ Sb

with a ≡ a0 (mod b) and a ≡ b−1 (mod d).
Let λ(b) denote the universal exponent for the group (Z/bZ)∗. Thus,

the divisors of λ(b) run over all of the possible multiplicative orders for
elements in the group. For d | λ(b), let N(d, b) denote the set of
elements a0 (mod b) with multiplicative order d. Thus,

(3) δ(Sb) =
∑

d|λ(b)
gcd(d,b)=1

N(d, b)

b2d
.

It seems difficult to work out a formula for N(d, b) but we do have
the relation

(4)
∑

d|λ(b)
N(d, b) = ϕ(b),

which just reflects the partitioning of (Z/bZ)∗ by the orders of its ele-
ments. We consider various cases. First suppose that λ(b) is smooth,
more specifically, assume that P (λ(b)) < B(b) := exp((log b)1/2), where
P (n) denotes the largest prime factor of n. Note that the primes divid-
ing λ(b) are the same primes that divide ϕ(b), so that P (ϕ(b)) < B(b).
Using the main result from [4], the number of such integers b ≤ x is
≤ x/B(x) for all sufficiently large x. Since (4) implies that the sum of
N(d, b)/d for d | λ(b) is ≤ ϕ(b) < b, (3) implies that δ(Sb) < 1/b. But
the sum of 1/b over such a sparse set of b’s is easily seen to converge
via a partial summation argument.
So, we may assume that pb := P (λ(b)) ≥ B(b). There are two types

of numbers d | λ(b) to consider: pb | d and pb ∤ d. In the first case (4)
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implies that

∑

d|λ(b)
pb|d

N(d, b)

d
≤ 1

pb

∑

d|λ(b)
N(d, b) ≤ b

B(b)
.

Suppose now pb ∤ d. Since pb | λ(b) | ϕ(b), we have either p2b | b or one
or more primes q ≡ 1 (mod pb) divide b. In either case the number
of residues mod b with order not divisible by pb is at most ϕ(b)/pb.
(Actually, since gcd(d, b) = 1, the case p2b | b does not occur.) Thus,

∑

d|λ(d)
pb∤d

N(d, b) ≤ ϕ(b)

pb
≤ b

B(b)
.

With the above display and (3), δ(Sb) ≤ 2/(bB(b)). Since the sum of
2/(bB(b)) converges, the proof is complete. �

Theorem 1. Let

c0 = lim
k→∞

δ
(

⋃

2≤b≤k

Sb

)

.

We have δ(S) = c0.

Proof. First note that Proposition 1 implies that
⋃

2≤b≤k Sb has an as-
ymptotic density, so that c0 exists and c0 ≤ 1. For a given integer
b ≥ 2, we have seen in the proof of Proposition 1 that Sb is the union
of N(d, b) residue classes mod b2d, where d runs over the divisors of
λ(b) that are coprime to b and N(d, b) is the number of residues mod
b of multiplicative order d. Note that b2d < b3. It follows from a
complete inclusion-exclusion argument that the number of n ≤ x in
⋃

2≤b≤(log x)1/3 Sb is (c0+o(1))x as x → ∞. It thus suffices to prove that

the number of n ≤ x with n ∈ Sb for some b > (log x)1/3 is o(x) as
x → ∞.
Let ǫ(x) ↓ 0 arbitrarily slowly. It follows from Erdős [9] that but for

o(x) integers n ≤ x, n has no divisors in the interval (x1/2−ǫ(x), x1/2+ǫ(x)).
In particular, but for o(x) integers n ≤ x, if n = ab we may as-
sume that either a ≤ x1/2/B(x) or b ≤ x1/2/B(x), where as before,
B(x) = exp(

√
log x).

We first consider numbers n ≤ x with n ∈ Sb and (log x)1/3 < b ≤
x1/2/B(x); the argument here is mostly in parallel with the proof of
Proposition 1.
Using [4], the number of integers b ∈ (ej, ej+1] with P (λ(b)) ≤ e

√
j+1

is ≪ ej−
√
j , so the number of integers n ≤ x divisible by one of these

b’s is ≪ x/e
√
j . Since the sum of 1/e

√
j for ej+1 > (log x)1/3 is o(1)
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as x → ∞, there are at most o(x) integers n ≤ x divisible by some
b ∈ ((log x)1/3, x1/2/B(x)] with P (λ(b)) ≤ B(b).
Let pb = P (λ(b)) and assume that pb > B(b). Let d | λ(b) with

gcd(d, b) = 1 and let r be one of the N(d, b) residue classes mod bd
where lb(r) = d and br ≡ 1 (mod d). The number of integers n =
ab ≤ x where a ≡ r (mod bd) is at most 1 + x/(b2d), so the number
of integers n = ab ≤ x with lb(a) = d and n ∈ Sb is at most N(d, b) +
xN(d, b)/(b2d). Using (4), we have

(5)
∑

n≤x
n∈Sb

1 ≤ b+ x
∑

d|λ(b)

N(d, b)

b2d
.

Since the sum of b for b ≤ x1/2/B(x) = o(x), we wish to show that

(6)
∑

(log x)1/3<b≤x1/2/B(x)

∑

d|λ(b)

N(d, b)

b2d
= o(1), x → ∞.

By (4) the contribution to the sum in (6) when pb | d is ≤ 1/(bpb) ≤
1/(bB(b)). Summing this for b > (log x)1/3 is o(1) as x → ∞.
Now consider the case pb ∤ d. As we have seen in the proof of

Proposition 1, we have
∑

d|λ(b)
pb ∤ d

N(d, b) ≤ ϕ(b)

pb
.

Thus, the inner sum in (6) is ≤ 1/(bpb) ≤ 1/(bB(p)). Summing on
b > (log x)1/3 this is o(1) as x → ∞.
We have just shown that the number of integers n ≤ x of the form

ab where n ∈ Sb and (log x)1/3 < b ≤ x1/2/B(x) is o(x) as x → ∞. It
remains to consider the case a ≤ x1/2/B(x).
The number of integers n ≤ x of the form ab with a ≤ x1/2/B(x)

and P (b) ≤ B(x) is

≪
∑

a≤x1/2/B(x)

x

aB(x)
= o(x), x → ∞,

using standard estimates on the distribution of smooth numbers (or
even using [4]). Now say n ≤ x is of the form ab with 1 < a ≤ x1/2/B(x)
and n ∈ Sb. This implies that aab−1 ≡ 1 (mod b). Let q = P (b), which
we may assume is > B(x) and note that la(q) | ab − 1. Write b = qm
and since b ≡ m (mod q − 1), we have la(q) | am − 1. We distinguish
two cases: m ≤ B(x)1/2, m > B(x)1/2.
Suppose that m ≤ B(x)1/2. Since la(q) | am − 1, we have q |

aam−1 − 1. For a given choice of a,m, the number of primes q with
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this property is ≪ am log a. Summing this expression over a,m we get
≪ (x log x)/B(x), and so the number of integers ab is o(x).
Next suppose that m > B(x)1/2, so that q < x/(aB(x)1/2). For a, q

given, the number of m is at most 1 + x/(aqla(q)). The sum of “1”
over q is no problem, it is at most π(x/(aB(x)1/2), and so summing
on a, we get ≪ x/B(x)1/2 = o(x). If la(q) > B(x)1/3, then summing
x/(aqla(q)) < x/(aqB(x)1/3) is also no problem. So, suppose that
la(q) ≤ B(x)1/3. Since there are at most k log a primes dividing ak − 1,
by summing on k ≤ B(x)1/3 we see that the number of choices for q
is at most B(x)2/3 log x. Since q > B(x), we have the sum of x/(aq)
over these q’s at most (x log x)/(aB(x)1/3), which is negligible when
summed over a. �

An issue remains: Show that c0 < 1. This could be done say by
taking the sets Sb up to some moderate point, maybe 100, and find
a good upper bound for the density of the tail for b > 100. We have
the exact formula for δ(Sb) in (3) and perhaps we can work with that
to show the sum of the densities for large b is small. Some helpful
thoughts on this: If b > 2 and b ≡ 2 (mod 4), then Sb ⊂ S2, so it need
not be looked at again. Also see below about Tb. Another possibly
helpful thought: For b = p prime,

∑

d|λ(p)

N(d, p)

d
=

∑

d|λ(p)

ϕ(d)

d
≤ τ(p− 1),

where τ(n) is the number of divisors of n.
It seems interesting in this context to consider the function N(G)

for a finite abelian group G defined as follows:

N(G) =
∑

d|#G

N(d,G)

d
, where N(d,G) = #{g ∈ G : g has order d}.

Writing G = Gp1 × · · · ×Gpk , where Gp is a p-group and p1, . . . , pk are
the distinct primes dividing #G, we have

N(G) =
∏

p|#G

N(Gp).

So to get a formula or inequality for N(G) it suffices to do so in the
special case of a finite abelian p-group. The literature has papers on
counting cyclic subgroups, which is essentially the same problem. For
example, see Tóth [23]. Using this, perhaps we have

N(G) ≤ τ(λ(G))#G

λ(G)
,
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where λ(G) is the universal exponent for G. In the case of interest for
Ordowski’s conjecture, this assertion is

∑

d|λ(b)

N(d, b)

d
≤ τ(λ(b))ϕ(b)

λ(b)
.

This would supply an alternate approach to proving our theorem that
might lend itself more readily to showing that c0 < 1.
These thoughts ignore the condition that gcd(d, b) = 1, but espe-

cially numerically it would not be hard to remove the local factors
corresponding to primes dividing gcd(λ(b), b).

With c1 as in (2), I believe we have
∑

n≤x

D(n) ∼ c1x, x → ∞.

Let Tb = Sb \
⋃

2≤j<b Sj . Then Tb is a finite union of residue classes,
S is the disjoint union of the Tb’s, and

(7) δ(S) =
∑

b≥2

δ(Tb).

We illustrate for b = 3. For T3, note that when a ≡ 1 (mod 3), we
have 3a ≡ 2 (mod 4) with the same frequency as all numbers, so this
part of S3 contributes a density of 3

4
× 1

9
= 1

12
to T3. In the other part

of S3 when a ≡ 5 (mod 6), we have 3a odd, so we can put all of it in
T3. Thus, δ(T3) =

1
12

+ 1
18

= 5
36
.

3. Pseudoprimes in residue classes

Lots of tables and numbers go here with some words on how they
were found.

Dedication Our proof of Ordowski’s conjecture bears some resem-
blance to a series of papers of Aleksandar Ivić [8, 13, 14] dealing with
tight estimates for the reciprocal sum of the largest prime factor of
an integer. We trust he would have enjoyed the connection, and we
dedicate this paper to his memory.
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[8] J.-M. De Koninck and A. Ivić, Topics in arithmetical functions, Asymptotic
formulae for sums of reciprocals of arithmetical functions and related results.
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